// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/tint/resolver/resolver.h" #include #include #include #include #include #include "src/tint/ast/alias.h" #include "src/tint/ast/array.h" #include "src/tint/ast/assignment_statement.h" #include "src/tint/ast/bitcast_expression.h" #include "src/tint/ast/break_statement.h" #include "src/tint/ast/call_statement.h" #include "src/tint/ast/continue_statement.h" #include "src/tint/ast/depth_texture.h" #include "src/tint/ast/disable_validation_attribute.h" #include "src/tint/ast/discard_statement.h" #include "src/tint/ast/fallthrough_statement.h" #include "src/tint/ast/for_loop_statement.h" #include "src/tint/ast/id_attribute.h" #include "src/tint/ast/if_statement.h" #include "src/tint/ast/internal_attribute.h" #include "src/tint/ast/interpolate_attribute.h" #include "src/tint/ast/loop_statement.h" #include "src/tint/ast/matrix.h" #include "src/tint/ast/pointer.h" #include "src/tint/ast/return_statement.h" #include "src/tint/ast/sampled_texture.h" #include "src/tint/ast/sampler.h" #include "src/tint/ast/storage_texture.h" #include "src/tint/ast/switch_statement.h" #include "src/tint/ast/traverse_expressions.h" #include "src/tint/ast/type_name.h" #include "src/tint/ast/unary_op_expression.h" #include "src/tint/ast/variable_decl_statement.h" #include "src/tint/ast/vector.h" #include "src/tint/ast/workgroup_attribute.h" #include "src/tint/resolver/uniformity.h" #include "src/tint/sem/abstract_float.h" #include "src/tint/sem/abstract_int.h" #include "src/tint/sem/array.h" #include "src/tint/sem/atomic.h" #include "src/tint/sem/call.h" #include "src/tint/sem/depth_multisampled_texture.h" #include "src/tint/sem/depth_texture.h" #include "src/tint/sem/for_loop_statement.h" #include "src/tint/sem/function.h" #include "src/tint/sem/if_statement.h" #include "src/tint/sem/loop_statement.h" #include "src/tint/sem/materialize.h" #include "src/tint/sem/member_accessor_expression.h" #include "src/tint/sem/module.h" #include "src/tint/sem/multisampled_texture.h" #include "src/tint/sem/pointer.h" #include "src/tint/sem/reference.h" #include "src/tint/sem/sampled_texture.h" #include "src/tint/sem/sampler.h" #include "src/tint/sem/statement.h" #include "src/tint/sem/storage_texture.h" #include "src/tint/sem/struct.h" #include "src/tint/sem/switch_statement.h" #include "src/tint/sem/type_constructor.h" #include "src/tint/sem/type_conversion.h" #include "src/tint/sem/variable.h" #include "src/tint/utils/defer.h" #include "src/tint/utils/math.h" #include "src/tint/utils/reverse.h" #include "src/tint/utils/scoped_assignment.h" #include "src/tint/utils/transform.h" namespace tint::resolver { Resolver::Resolver(ProgramBuilder* builder) : builder_(builder), diagnostics_(builder->Diagnostics()), intrinsic_table_(IntrinsicTable::Create(*builder)), sem_(builder, dependencies_), validator_(builder, sem_) {} Resolver::~Resolver() = default; bool Resolver::Resolve() { if (builder_->Diagnostics().contains_errors()) { return false; } if (!DependencyGraph::Build(builder_->AST(), builder_->Symbols(), builder_->Diagnostics(), dependencies_)) { return false; } bool result = ResolveInternal(); if (!result && !diagnostics_.contains_errors()) { TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised"; return false; } // Create the semantic module builder_->Sem().SetModule(builder_->create( std::move(dependencies_.ordered_globals), std::move(enabled_extensions_))); return result; } bool Resolver::ResolveInternal() { Mark(&builder_->AST()); // Process all module-scope declarations in dependency order. for (auto* decl : dependencies_.ordered_globals) { Mark(decl); if (!Switch( decl, // [&](const ast::Enable* e) { return Enable(e); }, [&](const ast::TypeDecl* td) { return TypeDecl(td); }, [&](const ast::Function* func) { return Function(func); }, [&](const ast::Variable* var) { return GlobalVariable(var); }, [&](Default) { TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled global declaration: " << decl->TypeInfo().name; return false; })) { return false; } } AllocateOverridableConstantIds(); SetShadows(); if (!validator_.PipelineStages(entry_points_)) { return false; } if (!enabled_extensions_.contains(ast::Extension::kChromiumDisableUniformityAnalysis)) { if (!AnalyzeUniformity(builder_, dependencies_)) { // TODO(jrprice): Reject programs that fail uniformity analysis. } } bool result = true; for (auto* node : builder_->ASTNodes().Objects()) { if (marked_.count(node) == 0) { TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" << "At: " << node->source << "\n" << "Pointer: " << node; result = false; } } return result; } sem::Type* Resolver::Type(const ast::Type* ty) { Mark(ty); auto* s = Switch( ty, // [&](const ast::Void*) { return builder_->create(); }, [&](const ast::Bool*) { return builder_->create(); }, [&](const ast::I32*) { return builder_->create(); }, [&](const ast::U32*) { return builder_->create(); }, [&](const ast::F16* t) -> sem::F16* { // Validate if f16 type is allowed. if (!enabled_extensions_.contains(ast::Extension::kF16)) { AddError("f16 used without 'f16' extension enabled", t->source); return nullptr; } return builder_->create(); }, [&](const ast::F32*) { return builder_->create(); }, [&](const ast::Vector* t) -> sem::Vector* { if (!t->type) { AddError("missing vector element type", t->source.End()); return nullptr; } if (auto* el = Type(t->type)) { if (auto* vector = builder_->create(el, t->width)) { if (validator_.Vector(vector, t->source)) { return vector; } } } return nullptr; }, [&](const ast::Matrix* t) -> sem::Matrix* { if (!t->type) { AddError("missing matrix element type", t->source.End()); return nullptr; } if (auto* el = Type(t->type)) { if (auto* column_type = builder_->create(el, t->rows)) { if (auto* matrix = builder_->create(column_type, t->columns)) { if (validator_.Matrix(matrix, t->source)) { return matrix; } } } } return nullptr; }, [&](const ast::Array* t) { return Array(t); }, [&](const ast::Atomic* t) -> sem::Atomic* { if (auto* el = Type(t->type)) { auto* a = builder_->create(el); if (!validator_.Atomic(t, a)) { return nullptr; } return a; } return nullptr; }, [&](const ast::Pointer* t) -> sem::Pointer* { if (auto* el = Type(t->type)) { auto access = t->access; if (access == ast::kUndefined) { access = DefaultAccessForStorageClass(t->storage_class); } return builder_->create(el, t->storage_class, access); } return nullptr; }, [&](const ast::Sampler* t) { return builder_->create(t->kind); }, [&](const ast::SampledTexture* t) -> sem::SampledTexture* { if (auto* el = Type(t->type)) { return builder_->create(t->dim, el); } return nullptr; }, [&](const ast::MultisampledTexture* t) -> sem::MultisampledTexture* { if (auto* el = Type(t->type)) { return builder_->create(t->dim, el); } return nullptr; }, [&](const ast::DepthTexture* t) { return builder_->create(t->dim); }, [&](const ast::DepthMultisampledTexture* t) { return builder_->create(t->dim); }, [&](const ast::StorageTexture* t) -> sem::StorageTexture* { if (auto* el = Type(t->type)) { if (!validator_.StorageTexture(t)) { return nullptr; } return builder_->create(t->dim, t->format, t->access, el); } return nullptr; }, [&](const ast::ExternalTexture*) { return builder_->create(); }, [&](Default) { auto* resolved = sem_.ResolvedSymbol(ty); return Switch( resolved, // [&](sem::Type* type) { return type; }, [&](sem::Variable* var) { auto name = builder_->Symbols().NameFor(var->Declaration()->symbol); AddError("cannot use variable '" + name + "' as type", ty->source); AddNote("'" + name + "' declared here", var->Declaration()->source); return nullptr; }, [&](sem::Function* func) { auto name = builder_->Symbols().NameFor(func->Declaration()->symbol); AddError("cannot use function '" + name + "' as type", ty->source); AddNote("'" + name + "' declared here", func->Declaration()->source); return nullptr; }, [&](Default) { if (auto* tn = ty->As()) { if (IsBuiltin(tn->name)) { auto name = builder_->Symbols().NameFor(tn->name); AddError("cannot use builtin '" + name + "' as type", ty->source); return nullptr; } } TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled resolved type '" << (resolved ? resolved->TypeInfo().name : "") << "' resolved from ast::Type '" << ty->TypeInfo().name << "'"; return nullptr; }); }); if (s) { builder_->Sem().Add(ty, s); } return s; } sem::Variable* Resolver::Variable(const ast::Variable* var, VariableKind kind, uint32_t index /* = 0 */) { const sem::Type* storage_ty = nullptr; // If the variable has a declared type, resolve it. if (auto* ty = var->type) { storage_ty = Type(ty); if (!storage_ty) { return nullptr; } } const sem::Expression* rhs = nullptr; // Does the variable have a constructor? if (var->constructor) { rhs = Materialize(Expression(var->constructor), storage_ty); if (!rhs) { return nullptr; } // If the variable has no declared type, infer it from the RHS if (!storage_ty) { if (!var->is_const && kind == VariableKind::kGlobal) { AddError("global var declaration must specify a type", var->source); return nullptr; } storage_ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS } } else if (var->is_const && !var->is_overridable && kind != VariableKind::kParameter) { AddError("let declaration must have an initializer", var->source); return nullptr; } else if (!var->type) { AddError((kind == VariableKind::kGlobal) ? "module scope var declaration requires a type and initializer" : "function scope var declaration requires a type or initializer", var->source); return nullptr; } if (!storage_ty) { TINT_ICE(Resolver, diagnostics_) << "failed to determine storage type for variable '" + builder_->Symbols().NameFor(var->symbol) + "'\n" << "Source: " << var->source; return nullptr; } auto storage_class = var->declared_storage_class; if (storage_class == ast::StorageClass::kNone && !var->is_const) { // No declared storage class. Infer from usage / type. if (kind == VariableKind::kLocal) { storage_class = ast::StorageClass::kFunction; } else if (storage_ty->UnwrapRef()->is_handle()) { // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables // If the store type is a texture type or a sampler type, then the // variable declaration must not have a storage class attribute. The // storage class will always be handle. storage_class = ast::StorageClass::kHandle; } } if (kind == VariableKind::kLocal && !var->is_const && storage_class != ast::StorageClass::kFunction && validator_.IsValidationEnabled(var->attributes, ast::DisabledValidation::kIgnoreStorageClass)) { AddError("function variable has a non-function storage class", var->source); return nullptr; } auto access = var->declared_access; if (access == ast::Access::kUndefined) { access = DefaultAccessForStorageClass(storage_class); } auto* var_ty = storage_ty; if (!var->is_const) { // Variable declaration. Unlike `let`, `var` has storage. // Variables are always of a reference type to the declared storage type. var_ty = builder_->create(storage_ty, storage_class, access); } if (rhs && !validator_.VariableConstructorOrCast(var, storage_class, storage_ty, rhs->Type())) { return nullptr; } if (!ApplyStorageClassUsageToType(storage_class, const_cast(var_ty), var->source)) { AddNote(std::string("while instantiating ") + ((kind == VariableKind::kParameter) ? "parameter " : "variable ") + builder_->Symbols().NameFor(var->symbol), var->source); return nullptr; } if (kind == VariableKind::kParameter) { if (auto* ptr = var_ty->As()) { // For MSL, we push module-scope variables into the entry point as pointer // parameters, so we also need to handle their store type. if (!ApplyStorageClassUsageToType( ptr->StorageClass(), const_cast(ptr->StoreType()), var->source)) { AddNote("while instantiating parameter " + builder_->Symbols().NameFor(var->symbol), var->source); return nullptr; } } } switch (kind) { case VariableKind::kGlobal: { sem::BindingPoint binding_point; if (auto bp = var->BindingPoint()) { binding_point = {bp.group->value, bp.binding->value}; } bool has_const_val = rhs && var->is_const && !var->is_overridable; auto* global = builder_->create( var, var_ty, storage_class, access, has_const_val ? rhs->ConstantValue() : sem::Constant{}, binding_point); if (var->is_overridable) { global->SetIsOverridable(); if (auto* id = ast::GetAttribute(var->attributes)) { global->SetConstantId(static_cast(id->value)); } } global->SetConstructor(rhs); builder_->Sem().Add(var, global); return global; } case VariableKind::kLocal: { auto* local = builder_->create( var, var_ty, storage_class, access, current_statement_, (rhs && var->is_const) ? rhs->ConstantValue() : sem::Constant{}); builder_->Sem().Add(var, local); local->SetConstructor(rhs); return local; } case VariableKind::kParameter: { auto* param = builder_->create(var, index, var_ty, storage_class, access); builder_->Sem().Add(var, param); return param; } } TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled VariableKind " << static_cast(kind); return nullptr; } ast::Access Resolver::DefaultAccessForStorageClass(ast::StorageClass storage_class) { // https://gpuweb.github.io/gpuweb/wgsl/#storage-class switch (storage_class) { case ast::StorageClass::kStorage: case ast::StorageClass::kUniform: case ast::StorageClass::kHandle: return ast::Access::kRead; default: break; } return ast::Access::kReadWrite; } void Resolver::AllocateOverridableConstantIds() { // The next pipeline constant ID to try to allocate. uint16_t next_constant_id = 0; // Allocate constant IDs in global declaration order, so that they are // deterministic. // TODO(crbug.com/tint/1192): If a transform changes the order or removes an // unused constant, the allocation may change on the next Resolver pass. for (auto* decl : builder_->AST().GlobalDeclarations()) { auto* var = decl->As(); if (!var || !var->is_overridable) { continue; } uint16_t constant_id; if (auto* id_attr = ast::GetAttribute(var->attributes)) { constant_id = static_cast(id_attr->value); } else { // No ID was specified, so allocate the next available ID. constant_id = next_constant_id; while (constant_ids_.count(constant_id)) { if (constant_id == UINT16_MAX) { TINT_ICE(Resolver, builder_->Diagnostics()) << "no more pipeline constant IDs available"; return; } constant_id++; } next_constant_id = constant_id + 1; } auto* sem = sem_.Get(var); const_cast(sem)->SetConstantId(constant_id); } } void Resolver::SetShadows() { for (auto it : dependencies_.shadows) { Switch( sem_.Get(it.first), // [&](sem::LocalVariable* local) { local->SetShadows(sem_.Get(it.second)); }, [&](sem::Parameter* param) { param->SetShadows(sem_.Get(it.second)); }); } } sem::GlobalVariable* Resolver::GlobalVariable(const ast::Variable* var) { auto* sem = Variable(var, VariableKind::kGlobal); if (!sem) { return nullptr; } auto storage_class = sem->StorageClass(); if (!var->is_const && storage_class == ast::StorageClass::kNone) { AddError("global variables must have a storage class", var->source); return nullptr; } if (var->is_const && storage_class != ast::StorageClass::kNone) { AddError("global constants shouldn't have a storage class", var->source); return nullptr; } for (auto* attr : var->attributes) { Mark(attr); if (auto* id_attr = attr->As()) { // Track the constant IDs that are specified in the shader. constant_ids_.emplace(id_attr->value, sem); } } if (!validator_.NoDuplicateAttributes(var->attributes)) { return nullptr; } if (!validator_.GlobalVariable(sem, constant_ids_, atomic_composite_info_)) { return nullptr; } // TODO(bclayton): Call this at the end of resolve on all uniform and storage // referenced structs if (!validator_.StorageClassLayout(sem, valid_type_storage_layouts_)) { return nullptr; } return sem->As(); } sem::Function* Resolver::Function(const ast::Function* decl) { uint32_t parameter_index = 0; std::unordered_map parameter_names; std::vector parameters; // Resolve all the parameters for (auto* param : decl->params) { Mark(param); { // Check the parameter name is unique for the function auto emplaced = parameter_names.emplace(param->symbol, param->source); if (!emplaced.second) { auto name = builder_->Symbols().NameFor(param->symbol); AddError("redefinition of parameter '" + name + "'", param->source); AddNote("previous definition is here", emplaced.first->second); return nullptr; } } auto* var = As(Variable(param, VariableKind::kParameter, parameter_index++)); if (!var) { return nullptr; } for (auto* attr : param->attributes) { Mark(attr); } if (!validator_.NoDuplicateAttributes(param->attributes)) { return nullptr; } parameters.emplace_back(var); auto* var_ty = const_cast(var->Type()); if (auto* str = var_ty->As()) { switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexInput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentInput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeInput); break; case ast::PipelineStage::kNone: break; } } } // Resolve the return type sem::Type* return_type = nullptr; if (auto* ty = decl->return_type) { return_type = Type(ty); if (!return_type) { return nullptr; } } else { return_type = builder_->create(); } if (auto* str = return_type->As()) { if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, decl->source)) { AddNote( "while instantiating return type for " + builder_->Symbols().NameFor(decl->symbol), decl->source); return nullptr; } switch (decl->PipelineStage()) { case ast::PipelineStage::kVertex: str->AddUsage(sem::PipelineStageUsage::kVertexOutput); break; case ast::PipelineStage::kFragment: str->AddUsage(sem::PipelineStageUsage::kFragmentOutput); break; case ast::PipelineStage::kCompute: str->AddUsage(sem::PipelineStageUsage::kComputeOutput); break; case ast::PipelineStage::kNone: break; } } auto* func = builder_->create(decl, return_type, parameters); builder_->Sem().Add(decl, func); TINT_SCOPED_ASSIGNMENT(current_function_, func); if (!WorkgroupSize(decl)) { return nullptr; } if (decl->IsEntryPoint()) { entry_points_.emplace_back(func); } if (decl->body) { Mark(decl->body); if (current_compound_statement_) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Function() called with a current compound statement"; return nullptr; } auto* body = StatementScope(decl->body, builder_->create(func), [&] { return Statements(decl->body->statements); }); if (!body) { return nullptr; } func->Behaviors() = body->Behaviors(); if (func->Behaviors().Contains(sem::Behavior::kReturn)) { // https://www.w3.org/TR/WGSL/#behaviors-rules // We assign a behavior to each function: it is its body’s behavior // (treating the body as a regular statement), with any "Return" replaced // by "Next". func->Behaviors().Remove(sem::Behavior::kReturn); func->Behaviors().Add(sem::Behavior::kNext); } } for (auto* attr : decl->attributes) { Mark(attr); } if (!validator_.NoDuplicateAttributes(decl->attributes)) { return nullptr; } for (auto* attr : decl->return_type_attributes) { Mark(attr); } if (!validator_.NoDuplicateAttributes(decl->return_type_attributes)) { return nullptr; } auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() : ast::PipelineStage::kNone; if (!validator_.Function(func, stage)) { return nullptr; } // If this is an entry point, mark all transitively called functions as being // used by this entry point. if (decl->IsEntryPoint()) { for (auto* f : func->TransitivelyCalledFunctions()) { const_cast(f)->AddAncestorEntryPoint(func); } } return func; } bool Resolver::WorkgroupSize(const ast::Function* func) { // Set work-group size defaults. sem::WorkgroupSize ws; for (int i = 0; i < 3; i++) { ws[i].value = 1; ws[i].overridable_const = nullptr; } auto* attr = ast::GetAttribute(func->attributes); if (!attr) { return true; } auto values = attr->Values(); std::array args = {}; std::array arg_tys = {}; size_t arg_count = 0; constexpr const char* kErrBadType = "workgroup_size argument must be either literal or module-scope constant of type i32 " "or u32"; for (int i = 0; i < 3; i++) { // Each argument to this attribute can either be a literal, an identifier for a module-scope // constants, or nullptr if not specified. auto* value = values[i]; if (!value) { break; } const auto* expr = Expression(value); if (!expr) { return false; } auto* ty = expr->Type(); if (!ty->IsAnyOf()) { AddError(kErrBadType, value->source); return false; } args[i] = expr; arg_tys[i] = ty; arg_count++; } auto* common_ty = sem::Type::Common(arg_tys.data(), arg_count); if (!common_ty) { AddError("workgroup_size arguments must be of the same type, either i32 or u32", attr->source); return false; } // If all arguments are abstract-integers, then materialize to i32. if (common_ty->Is()) { common_ty = builder_->create(); } for (size_t i = 0; i < arg_count; i++) { auto* materialized = Materialize(args[i], common_ty); if (!materialized) { return false; } sem::Constant value; if (auto* user = args[i]->As()) { // We have an variable of a module-scope constant. auto* decl = user->Variable()->Declaration(); if (!decl->is_const) { AddError(kErrBadType, values[i]->source); return false; } // Capture the constant if it is pipeline-overridable. if (decl->is_overridable) { ws[i].overridable_const = decl; } if (decl->constructor) { value = sem_.Get(decl->constructor)->ConstantValue(); } else { // No constructor means this value must be overriden by the user. ws[i].value = 0; continue; } } else if (values[i]->Is()) { value = materialized->ConstantValue(); } else { AddError( "workgroup_size argument must be either a literal or a " "module-scope constant", values[i]->source); return false; } if (!value) { TINT_ICE(Resolver, diagnostics_) << "could not resolve constant workgroup_size constant value"; continue; } // validator_.Validate and set the default value for this dimension. if (value.Element(0).value < 1) { AddError("workgroup_size argument must be at least 1", values[i]->source); return false; } ws[i].value = value.Element(0); } current_function_->SetWorkgroupSize(std::move(ws)); return true; } bool Resolver::Statements(const ast::StatementList& stmts) { sem::Behaviors behaviors{sem::Behavior::kNext}; bool reachable = true; for (auto* stmt : stmts) { Mark(stmt); auto* sem = Statement(stmt); if (!sem) { return false; } // s1 s2:(B1∖{Next}) ∪ B2 sem->SetIsReachable(reachable); if (reachable) { behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors(); } reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext); } current_statement_->Behaviors() = behaviors; if (!validator_.Statements(stmts)) { return false; } return true; } sem::Statement* Resolver::Statement(const ast::Statement* stmt) { return Switch( stmt, // Compound statements. These create their own sem::CompoundStatement // bindings. [&](const ast::BlockStatement* b) { return BlockStatement(b); }, [&](const ast::ForLoopStatement* l) { return ForLoopStatement(l); }, [&](const ast::LoopStatement* l) { return LoopStatement(l); }, [&](const ast::IfStatement* i) { return IfStatement(i); }, [&](const ast::SwitchStatement* s) { return SwitchStatement(s); }, // Non-Compound statements [&](const ast::AssignmentStatement* a) { return AssignmentStatement(a); }, [&](const ast::BreakStatement* b) { return BreakStatement(b); }, [&](const ast::CallStatement* c) { return CallStatement(c); }, [&](const ast::CompoundAssignmentStatement* c) { return CompoundAssignmentStatement(c); }, [&](const ast::ContinueStatement* c) { return ContinueStatement(c); }, [&](const ast::DiscardStatement* d) { return DiscardStatement(d); }, [&](const ast::FallthroughStatement* f) { return FallthroughStatement(f); }, [&](const ast::IncrementDecrementStatement* i) { return IncrementDecrementStatement(i); }, [&](const ast::ReturnStatement* r) { return ReturnStatement(r); }, [&](const ast::VariableDeclStatement* v) { return VariableDeclStatement(v); }, // Error cases [&](const ast::CaseStatement*) { AddError("case statement can only be used inside a switch statement", stmt->source); return nullptr; }, [&](Default) { AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), stmt->source); return nullptr; }); } sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Selectors().reserve(stmt->selectors.size()); for (auto* sel : stmt->selectors) { auto* expr = Expression(sel); if (!expr) { return false; } sem->Selectors().emplace_back(expr); } Mark(stmt->body); auto* body = BlockStatement(stmt->body); if (!body) { return false; } sem->SetBlock(body); sem->Behaviors() = body->Behaviors(); return true; }); } sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* cond = Expression(stmt->condition); if (!cond) { return false; } sem->SetCondition(cond); sem->Behaviors() = cond->Behaviors(); sem->Behaviors().Remove(sem::Behavior::kNext); Mark(stmt->body); auto* body = builder_->create(stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } sem->Behaviors().Add(body->Behaviors()); if (stmt->else_statement) { Mark(stmt->else_statement); auto* else_sem = Statement(stmt->else_statement); if (!else_sem) { return false; } sem->Behaviors().Add(else_sem->Behaviors()); } else { // https://www.w3.org/TR/WGSL/#behaviors-rules // if statements without an else branch are treated as if they had an // empty else branch (which adds Next to their behavior) sem->Behaviors().Add(sem::Behavior::kNext); } return validator_.IfStatement(sem); }); } sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) { auto* sem = builder_->create( stmt->As(), current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { return Statements(stmt->statements); }); } sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); return StatementScope(stmt->body, body, [&] { if (!Statements(stmt->body->statements)) { return false; } auto& behaviors = sem->Behaviors(); behaviors = body->Behaviors(); if (stmt->continuing) { Mark(stmt->continuing); auto* continuing = StatementScope( stmt->continuing, builder_->create( stmt->continuing, current_compound_statement_, current_function_), [&] { return Statements(stmt->continuing->statements); }); if (!continuing) { return false; } behaviors.Add(continuing->Behaviors()); } if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? behaviors.Add(sem::Behavior::kNext); } else { behaviors.Remove(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); return validator_.LoopStatement(sem); }); }); } sem::ForLoopStatement* Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = sem->Behaviors(); if (auto* initializer = stmt->initializer) { Mark(initializer); auto* init = Statement(initializer); if (!init) { return false; } behaviors.Add(init->Behaviors()); } if (auto* cond_expr = stmt->condition) { auto* cond = Expression(cond_expr); if (!cond) { return false; } sem->SetCondition(cond); behaviors.Add(cond->Behaviors()); } if (auto* continuing = stmt->continuing) { Mark(continuing); auto* cont = Statement(continuing); if (!cont) { return false; } behaviors.Add(cont->Behaviors()); } Mark(stmt->body); auto* body = builder_->create( stmt->body, current_compound_statement_, current_function_); if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { return false; } behaviors.Add(body->Behaviors()); if (stmt->condition || behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? behaviors.Add(sem::Behavior::kNext); } else { behaviors.Remove(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); return validator_.ForLoopStatement(sem); }); } sem::Expression* Resolver::Expression(const ast::Expression* root) { std::vector sorted; constexpr size_t kMaxExpressionDepth = 512U; bool failed = false; if (!ast::TraverseExpressions( root, diagnostics_, [&](const ast::Expression* expr, size_t depth) { if (depth > kMaxExpressionDepth) { AddError( "reached max expression depth of " + std::to_string(kMaxExpressionDepth), expr->source); failed = true; return ast::TraverseAction::Stop; } if (!Mark(expr)) { failed = true; return ast::TraverseAction::Stop; } sorted.emplace_back(expr); return ast::TraverseAction::Descend; })) { return nullptr; } if (failed) { return nullptr; } for (auto* expr : utils::Reverse(sorted)) { auto* sem_expr = Switch( expr, [&](const ast::IndexAccessorExpression* array) -> sem::Expression* { return IndexAccessor(array); }, [&](const ast::BinaryExpression* bin_op) -> sem::Expression* { return Binary(bin_op); }, [&](const ast::BitcastExpression* bitcast) -> sem::Expression* { return Bitcast(bitcast); }, [&](const ast::CallExpression* call) -> sem::Expression* { return Call(call); }, [&](const ast::IdentifierExpression* ident) -> sem::Expression* { return Identifier(ident); }, [&](const ast::LiteralExpression* literal) -> sem::Expression* { return Literal(literal); }, [&](const ast::MemberAccessorExpression* member) -> sem::Expression* { return MemberAccessor(member); }, [&](const ast::UnaryOpExpression* unary) -> sem::Expression* { return UnaryOp(unary); }, [&](const ast::PhonyExpression*) -> sem::Expression* { return builder_->create(expr, builder_->create(), current_statement_, sem::Constant{}, /* has_side_effects */ false); }, [&](Default) { TINT_ICE(Resolver, diagnostics_) << "unhandled expression type: " << expr->TypeInfo().name; return nullptr; }); if (!sem_expr) { return nullptr; } builder_->Sem().Add(expr, sem_expr); if (expr == root) { return sem_expr; } } TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node"; return nullptr; } const sem::Expression* Resolver::Materialize(const sem::Expression* expr, const sem::Type* target_type /* = nullptr */) { if (!expr) { return nullptr; // Allow for Materialize(Expression(blah)) } // Helper for actually creating the the materialize node, performing the constant cast, updating // the ast -> sem binding, and performing validation. auto materialize = [&](const sem::Type* target_ty) -> sem::Materialize* { auto* decl = expr->Declaration(); auto expr_val = EvaluateConstantValue(decl, expr->Type()); if (!expr_val) { return nullptr; } if (!expr_val->IsValid()) { TINT_ICE(Resolver, builder_->Diagnostics()) << decl->source << "EvaluateConstantValue() returned invalid value for materialized value of type: " << builder_->FriendlyName(expr->Type()); return nullptr; } auto materialized_val = ConvertValue(expr_val.Get(), target_ty, decl->source); if (!materialized_val) { return nullptr; } if (!materialized_val->IsValid()) { TINT_ICE(Resolver, builder_->Diagnostics()) << decl->source << "ConvertValue(" << builder_->FriendlyName(expr_val->Type()) << " -> " << builder_->FriendlyName(target_ty) << ") returned invalid value"; return nullptr; } auto* m = builder_->create(expr, current_statement_, materialized_val.Get()); m->Behaviors() = expr->Behaviors(); builder_->Sem().Replace(decl, m); return validator_.Materialize(m) ? m : nullptr; }; // Helpers for constructing semantic types auto i32 = [&] { return builder_->create(); }; auto f32 = [&] { return builder_->create(); }; auto i32v = [&](uint32_t width) { return builder_->create(i32(), width); }; auto f32v = [&](uint32_t width) { return builder_->create(f32(), width); }; auto f32m = [&](uint32_t columns, uint32_t rows) { return builder_->create(f32v(rows), columns); }; // Type dispatch based on the expression type return Switch( expr->Type(), // [&](const sem::AbstractInt*) { return materialize(target_type ? target_type : i32()); }, [&](const sem::AbstractFloat*) { return materialize(target_type ? target_type : f32()); }, [&](const sem::Vector* v) { return Switch( v->type(), // [&](const sem::AbstractInt*) { return materialize(target_type ? target_type : i32v(v->Width())); }, [&](const sem::AbstractFloat*) { return materialize(target_type ? target_type : f32v(v->Width())); }, [&](Default) { return expr; }); }, [&](const sem::Matrix* m) { return Switch( m->type(), // [&](const sem::AbstractFloat*) { return materialize(target_type ? target_type : f32m(m->columns(), m->rows())); }, [&](Default) { return expr; }); }, [&](Default) { return expr; }); } bool Resolver::MaterializeArguments(std::vector& args, const sem::CallTarget* target) { for (size_t i = 0, n = std::min(args.size(), target->Parameters().size()); i < n; i++) { const auto* param_ty = target->Parameters()[i]->Type(); if (ShouldMaterializeArgument(param_ty)) { auto* materialized = Materialize(args[i], param_ty); if (!materialized) { return false; } args[i] = materialized; } } return true; } bool Resolver::ShouldMaterializeArgument(const sem::Type* parameter_ty) const { const auto* param_el_ty = sem::Type::ElementOf(parameter_ty); return param_el_ty && !param_el_ty->Is(); } sem::Expression* Resolver::IndexAccessor(const ast::IndexAccessorExpression* expr) { auto* idx = Materialize(sem_.Get(expr->index)); if (!idx) { return nullptr; } auto* obj = sem_.Get(expr->object); auto* obj_raw_ty = obj->Type(); auto* obj_ty = obj_raw_ty->UnwrapRef(); auto* ty = Switch( obj_ty, // [&](const sem::Array* arr) { return arr->ElemType(); }, [&](const sem::Vector* vec) { return vec->type(); }, [&](const sem::Matrix* mat) { return builder_->create(mat->type(), mat->rows()); }, [&](Default) { AddError("cannot index type '" + sem_.TypeNameOf(obj_ty) + "'", expr->source); return nullptr; }); if (ty == nullptr) { return nullptr; } auto* idx_ty = idx->Type()->UnwrapRef(); if (!idx_ty->IsAnyOf()) { AddError("index must be of type 'i32' or 'u32', found: '" + sem_.TypeNameOf(idx_ty) + "'", idx->Declaration()->source); return nullptr; } // If we're extracting from a reference, we return a reference. if (auto* ref = obj_raw_ty->As()) { ty = builder_->create(ty, ref->StorageClass(), ref->Access()); } auto val = EvaluateConstantValue(expr, ty); if (!val) { return nullptr; } bool has_side_effects = idx->HasSideEffects() || obj->HasSideEffects(); auto* sem = builder_->create(expr, ty, current_statement_, val.Get(), has_side_effects, obj->SourceVariable()); sem->Behaviors() = idx->Behaviors() + obj->Behaviors(); return sem; } sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) { auto* inner = Materialize(sem_.Get(expr->expr)); if (!inner) { return nullptr; } auto* ty = Type(expr->type); if (!ty) { return nullptr; } auto val = EvaluateConstantValue(expr, ty); if (!val) { return nullptr; } auto* sem = builder_->create(expr, ty, current_statement_, val.Get(), inner->HasSideEffects()); sem->Behaviors() = inner->Behaviors(); if (!validator_.Bitcast(expr, ty)) { return nullptr; } return sem; } sem::Call* Resolver::Call(const ast::CallExpression* expr) { // A CallExpression can resolve to one of: // * A function call. // * A builtin call. // * A type constructor. // * A type conversion. // Resolve all of the arguments, their types and the set of behaviors. std::vector args(expr->args.size()); sem::Behaviors arg_behaviors; for (size_t i = 0; i < expr->args.size(); i++) { auto* arg = sem_.Get(expr->args[i]); if (!arg) { return nullptr; } args[i] = arg; arg_behaviors.Add(arg->Behaviors()); } arg_behaviors.Remove(sem::Behavior::kNext); // Did any arguments have side effects? bool has_side_effects = std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); // ct_ctor_or_conv is a helper for building either a sem::TypeConstructor or sem::TypeConversion // call for a CtorConvIntrinsic with an optional template argument type. auto ct_ctor_or_conv = [&](CtorConvIntrinsic ty, const sem::Type* template_arg) -> sem::Call* { auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); auto* call_target = intrinsic_table_->Lookup(ty, template_arg, arg_tys, expr->source); if (!call_target) { return nullptr; } if (!MaterializeArguments(args, call_target)) { return nullptr; } auto val = EvaluateConstantValue(expr, call_target->ReturnType()); if (!val) { return nullptr; } return builder_->create(expr, call_target, std::move(args), current_statement_, val.Get(), has_side_effects); }; // ct_ctor_or_conv is a helper for building either a sem::TypeConstructor or sem::TypeConversion // call for the given semantic type. auto ty_ctor_or_conv = [&](const sem::Type* ty) { return Switch( ty, // [&](const sem::Vector* v) { return ct_ctor_or_conv(VectorCtorConvIntrinsic(v->Width()), v->type()); }, [&](const sem::Matrix* m) { return ct_ctor_or_conv(MatrixCtorConvIntrinsic(m->columns(), m->rows()), m->type()); }, [&](const sem::I32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kI32, nullptr); }, [&](const sem::U32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kU32, nullptr); }, [&](const sem::F32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kF32, nullptr); }, [&](const sem::Bool*) { return ct_ctor_or_conv(CtorConvIntrinsic::kBool, nullptr); }, [&](const sem::Array* arr) -> sem::Call* { auto* call_target = utils::GetOrCreate( array_ctors_, ArrayConstructorSig{{arr, args.size()}}, [&]() -> sem::TypeConstructor* { sem::ParameterList params(args.size()); for (size_t i = 0; i < args.size(); i++) { params[i] = builder_->create( nullptr, // declaration static_cast(i), // index arr->ElemType(), // type ast::StorageClass::kNone, // storage_class ast::Access::kUndefined); // access } return builder_->create(arr, std::move(params)); }); if (!MaterializeArguments(args, call_target)) { return nullptr; } auto val = EvaluateConstantValue(expr, call_target->ReturnType()); if (!val) { return nullptr; } return builder_->create(expr, call_target, std::move(args), current_statement_, val.Get(), has_side_effects); }, [&](const sem::Struct* str) -> sem::Call* { auto* call_target = utils::GetOrCreate( struct_ctors_, StructConstructorSig{{str, args.size()}}, [&]() -> sem::TypeConstructor* { sem::ParameterList params(std::min(args.size(), str->Members().size())); for (size_t i = 0, n = params.size(); i < n; i++) { params[i] = builder_->create( nullptr, // declaration static_cast(i), // index str->Members()[i]->Type(), // type ast::StorageClass::kNone, // storage_class ast::Access::kUndefined); // access } return builder_->create(str, std::move(params)); }); if (!MaterializeArguments(args, call_target)) { return nullptr; } auto val = EvaluateConstantValue(expr, call_target->ReturnType()); if (!val) { return nullptr; } return builder_->create(expr, call_target, std::move(args), current_statement_, val.Get(), has_side_effects); }, [&](Default) { AddError("type is not constructible", expr->source); return nullptr; }); }; // ast::CallExpression has a target which is either an ast::Type or an ast::IdentifierExpression sem::Call* call = nullptr; if (expr->target.type) { // ast::CallExpression has an ast::Type as the target. // This call is either a type constructor or type conversion. call = Switch( expr->target.type, [&](const ast::Vector* v) -> sem::Call* { Mark(v); // vector element type must be inferred if it was not specified. sem::Type* template_arg = nullptr; if (v->type) { template_arg = Type(v->type); if (!template_arg) { return nullptr; } } if (auto* c = ct_ctor_or_conv(VectorCtorConvIntrinsic(v->width), template_arg)) { builder_->Sem().Add(expr->target.type, c->Target()->ReturnType()); return c; } return nullptr; }, [&](const ast::Matrix* m) -> sem::Call* { Mark(m); // matrix element type must be inferred if it was not specified. sem::Type* template_arg = nullptr; if (m->type) { template_arg = Type(m->type); if (!template_arg) { return nullptr; } } if (auto* c = ct_ctor_or_conv(MatrixCtorConvIntrinsic(m->columns, m->rows), template_arg)) { builder_->Sem().Add(expr->target.type, c->Target()->ReturnType()); return c; } return nullptr; }, [&](const ast::Type* ast) -> sem::Call* { // Handler for AST types that do not have an optional element type. if (auto* ty = Type(ast)) { return ty_ctor_or_conv(ty); } return nullptr; }, [&](Default) { TINT_ICE(Resolver, diagnostics_) << expr->source << " unhandled CallExpression target:\n" << "type: " << (expr->target.type ? expr->target.type->TypeInfo().name : ""); return nullptr; }); } else { // ast::CallExpression has an ast::IdentifierExpression as the target. // This call is either a function call, builtin call, type constructor or type conversion. auto* ident = expr->target.name; Mark(ident); auto* resolved = sem_.ResolvedSymbol(ident); call = Switch( resolved, // [&](sem::Type* ty) { // A type constructor or conversions. // Note: Unlike the code path where we're resolving the call target from an // ast::Type, all types must already have the element type explicitly specified, so // there's no need to infer element types. return ty_ctor_or_conv(ty); }, [&](sem::Function* func) { return FunctionCall(expr, func, std::move(args), arg_behaviors); }, [&](sem::Variable* var) { auto name = builder_->Symbols().NameFor(var->Declaration()->symbol); AddError("cannot call variable '" + name + "'", ident->source); AddNote("'" + name + "' declared here", var->Declaration()->source); return nullptr; }, [&](Default) -> sem::Call* { auto name = builder_->Symbols().NameFor(ident->symbol); auto builtin_type = sem::ParseBuiltinType(name); if (builtin_type != sem::BuiltinType::kNone) { return BuiltinCall(expr, builtin_type, std::move(args)); } TINT_ICE(Resolver, diagnostics_) << expr->source << " unhandled CallExpression target:\n" << "resolved: " << (resolved ? resolved->TypeInfo().name : "") << "\n" << "name: " << builder_->Symbols().NameFor(ident->symbol); return nullptr; }); } if (!call) { return nullptr; } return validator_.Call(call, current_statement_) ? call : nullptr; } sem::Call* Resolver::BuiltinCall(const ast::CallExpression* expr, sem::BuiltinType builtin_type, std::vector args) { const sem::Builtin* builtin = nullptr; { auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); builtin = intrinsic_table_->Lookup(builtin_type, arg_tys, expr->source); if (!builtin) { return nullptr; } } if (!MaterializeArguments(args, builtin)) { return nullptr; } if (builtin->IsDeprecated()) { AddWarning("use of deprecated builtin", expr->source); } bool has_side_effects = builtin->HasSideEffects() || std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); auto* call = builder_->create(expr, builtin, std::move(args), current_statement_, sem::Constant{}, has_side_effects); current_function_->AddDirectlyCalledBuiltin(builtin); if (!validator_.RequiredExtensionForBuiltinFunction(call, enabled_extensions_)) { return nullptr; } if (IsTextureBuiltin(builtin_type)) { if (!validator_.TextureBuiltinFunction(call)) { return nullptr; } CollectTextureSamplerPairs(builtin, call->Arguments()); } if (!validator_.BuiltinCall(call)) { return nullptr; } current_function_->AddDirectCall(call); return call; } void Resolver::CollectTextureSamplerPairs(const sem::Builtin* builtin, const std::vector& args) const { // Collect a texture/sampler pair for this builtin. const auto& signature = builtin->Signature(); int texture_index = signature.IndexOf(sem::ParameterUsage::kTexture); if (texture_index == -1) { TINT_ICE(Resolver, diagnostics_) << "texture builtin without texture parameter"; } auto* texture = args[texture_index]->As()->Variable(); if (!texture->Type()->UnwrapRef()->Is()) { int sampler_index = signature.IndexOf(sem::ParameterUsage::kSampler); const sem::Variable* sampler = sampler_index != -1 ? args[sampler_index]->As()->Variable() : nullptr; current_function_->AddTextureSamplerPair(texture, sampler); } } sem::Call* Resolver::FunctionCall(const ast::CallExpression* expr, sem::Function* target, std::vector args, sem::Behaviors arg_behaviors) { auto sym = expr->target.name->symbol; auto name = builder_->Symbols().NameFor(sym); if (!MaterializeArguments(args, target)) { return nullptr; } // TODO(crbug.com/tint/1420): For now, assume all function calls have side // effects. bool has_side_effects = true; auto* call = builder_->create(expr, target, std::move(args), current_statement_, sem::Constant{}, has_side_effects); target->AddCallSite(call); call->Behaviors() = arg_behaviors + target->Behaviors(); if (!validator_.FunctionCall(call, current_statement_)) { return nullptr; } if (current_function_) { // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before // use. current_function_->AddTransitivelyCalledFunction(target); current_function_->AddDirectCall(call); for (auto* transitive_call : target->TransitivelyCalledFunctions()) { current_function_->AddTransitivelyCalledFunction(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : target->TransitivelyReferencedGlobals()) { current_function_->AddTransitivelyReferencedGlobal(var); } // Note: Validation *must* be performed before calling this method. CollectTextureSamplerPairs(target, call->Arguments()); } return call; } void Resolver::CollectTextureSamplerPairs(sem::Function* func, const std::vector& args) const { // Map all texture/sampler pairs from the target function to the // current function. These can only be global or parameter // variables. Resolve any parameter variables to the corresponding // argument passed to the current function. Leave global variables // as-is. Then add the mapped pair to the current function's list of // texture/sampler pairs. for (sem::VariablePair pair : func->TextureSamplerPairs()) { const sem::Variable* texture = pair.first; const sem::Variable* sampler = pair.second; if (auto* param = texture->As()) { texture = args[param->Index()]->As()->Variable(); } if (sampler) { if (auto* param = sampler->As()) { sampler = args[param->Index()]->As()->Variable(); } } current_function_->AddTextureSamplerPair(texture, sampler); } } sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) { auto* ty = Switch( literal, [&](const ast::IntLiteralExpression* i) -> sem::Type* { switch (i->suffix) { case ast::IntLiteralExpression::Suffix::kNone: return builder_->create(); case ast::IntLiteralExpression::Suffix::kI: return builder_->create(); case ast::IntLiteralExpression::Suffix::kU: return builder_->create(); } return nullptr; }, [&](const ast::FloatLiteralExpression* f) -> sem::Type* { if (f->suffix == ast::FloatLiteralExpression::Suffix::kNone) { return builder_->create(); } return builder_->create(); }, [&](const ast::BoolLiteralExpression*) { return builder_->create(); }, [&](Default) { return nullptr; }); if (ty == nullptr) { TINT_UNREACHABLE(Resolver, builder_->Diagnostics()) << "Unhandled literal type: " << literal->TypeInfo().name; return nullptr; } auto val = EvaluateConstantValue(literal, ty); if (!val) { return nullptr; } return builder_->create(literal, ty, current_statement_, val.Get(), /* has_side_effects */ false); } sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) { auto symbol = expr->symbol; auto* resolved = sem_.ResolvedSymbol(expr); if (auto* var = As(resolved)) { auto* user = builder_->create(expr, current_statement_, var); if (current_statement_) { // If identifier is part of a loop continuing block, make sure it // doesn't refer to a variable that is bypassed by a continue statement // in the loop's body block. if (auto* continuing_block = current_statement_->FindFirstParent()) { auto* loop_block = continuing_block->FindFirstParent(); if (loop_block->FirstContinue()) { auto& decls = loop_block->Decls(); // If our identifier is in loop_block->decls, make sure its index is // less than first_continue auto iter = std::find_if(decls.begin(), decls.end(), [&symbol](auto* v) { return v->symbol == symbol; }); if (iter != decls.end()) { auto var_decl_index = static_cast(std::distance(decls.begin(), iter)); if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) { AddError("continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "'", loop_block->FirstContinue()->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' declared here", (*iter)->source); AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + "' referenced in continuing block here", expr->source); return nullptr; } } } } } if (current_function_) { if (auto* global = var->As()) { current_function_->AddDirectlyReferencedGlobal(global); } } var->AddUser(user); return user; } if (Is(resolved)) { AddError("missing '(' for function call", expr->source.End()); return nullptr; } if (IsBuiltin(symbol)) { AddError("missing '(' for builtin call", expr->source.End()); return nullptr; } if (resolved->Is()) { AddError("missing '(' for type constructor or cast", expr->source.End()); return nullptr; } TINT_ICE(Resolver, diagnostics_) << expr->source << " unresolved identifier:\n" << "resolved: " << (resolved ? resolved->TypeInfo().name : "") << "\n" << "name: " << builder_->Symbols().NameFor(symbol); return nullptr; } sem::Expression* Resolver::MemberAccessor(const ast::MemberAccessorExpression* expr) { auto* structure = sem_.TypeOf(expr->structure); auto* storage_ty = structure->UnwrapRef(); auto* source_var = sem_.Get(expr->structure)->SourceVariable(); const sem::Type* ret = nullptr; std::vector swizzle; // Structure may be a side-effecting expression (e.g. function call). auto* sem_structure = sem_.Get(expr->structure); bool has_side_effects = sem_structure && sem_structure->HasSideEffects(); if (auto* str = storage_ty->As()) { Mark(expr->member); auto symbol = expr->member->symbol; const sem::StructMember* member = nullptr; for (auto* m : str->Members()) { if (m->Name() == symbol) { ret = m->Type(); member = m; break; } } if (ret == nullptr) { AddError("struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source); return nullptr; } // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } return builder_->create(expr, ret, current_statement_, member, has_side_effects, source_var); } if (auto* vec = storage_ty->As()) { Mark(expr->member); std::string s = builder_->Symbols().NameFor(expr->member->symbol); auto size = s.size(); swizzle.reserve(s.size()); for (auto c : s) { switch (c) { case 'x': case 'r': swizzle.emplace_back(0); break; case 'y': case 'g': swizzle.emplace_back(1); break; case 'z': case 'b': swizzle.emplace_back(2); break; case 'w': case 'a': swizzle.emplace_back(3); break; default: AddError("invalid vector swizzle character", expr->member->source.Begin() + swizzle.size()); return nullptr; } if (swizzle.back() >= vec->Width()) { AddError("invalid vector swizzle member", expr->member->source); return nullptr; } } if (size < 1 || size > 4) { AddError("invalid vector swizzle size", expr->member->source); return nullptr; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(s.begin(), s.end(), is_rgba) && !std::all_of(s.begin(), s.end(), is_xyzw)) { AddError("invalid mixing of vector swizzle characters rgba with xyzw", expr->member->source); return nullptr; } if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a reference, we return a reference. if (auto* ref = structure->As()) { ret = builder_->create(ret, ref->StorageClass(), ref->Access()); } } else { // The vector will have a number of components equal to the length of // the swizzle. ret = builder_->create(vec->type(), static_cast(size)); } return builder_->create(expr, ret, current_statement_, std::move(swizzle), has_side_effects, source_var); } AddError("invalid member accessor expression. Expected vector or struct, got '" + sem_.TypeNameOf(storage_ty) + "'", expr->structure->source); return nullptr; } sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) { const auto* lhs = sem_.Get(expr->lhs); const auto* rhs = sem_.Get(expr->rhs); auto* lhs_ty = lhs->Type()->UnwrapRef(); auto* rhs_ty = rhs->Type()->UnwrapRef(); auto op = intrinsic_table_->Lookup(expr->op, lhs_ty, rhs_ty, expr->source, false); if (!op.result) { return nullptr; } if (ShouldMaterializeArgument(op.lhs)) { lhs = Materialize(lhs, op.lhs); if (!lhs) { return nullptr; } } if (ShouldMaterializeArgument(op.rhs)) { rhs = Materialize(rhs, op.rhs); if (!rhs) { return nullptr; } } auto val = EvaluateConstantValue(expr, op.result); if (!val) { return nullptr; } bool has_side_effects = lhs->HasSideEffects() || rhs->HasSideEffects(); auto* sem = builder_->create(expr, op.result, current_statement_, val.Get(), has_side_effects); sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors(); return sem; } sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) { const auto* expr = sem_.Get(unary->expr); auto* expr_ty = expr->Type(); if (!expr_ty) { return nullptr; } const sem::Type* ty = nullptr; const sem::Variable* source_var = nullptr; switch (unary->op) { case ast::UnaryOp::kAddressOf: if (auto* ref = expr_ty->As()) { if (ref->StoreType()->UnwrapRef()->is_handle()) { AddError("cannot take the address of expression in handle storage class", unary->expr->source); return nullptr; } auto* array = unary->expr->As(); auto* member = unary->expr->As(); if ((array && sem_.TypeOf(array->object)->UnwrapRef()->Is()) || (member && sem_.TypeOf(member->structure)->UnwrapRef()->Is())) { AddError("cannot take the address of a vector component", unary->expr->source); return nullptr; } ty = builder_->create(ref->StoreType(), ref->StorageClass(), ref->Access()); source_var = expr->SourceVariable(); } else { AddError("cannot take the address of expression", unary->expr->source); return nullptr; } break; case ast::UnaryOp::kIndirection: if (auto* ptr = expr_ty->As()) { ty = builder_->create(ptr->StoreType(), ptr->StorageClass(), ptr->Access()); source_var = expr->SourceVariable(); } else { AddError("cannot dereference expression of type '" + sem_.TypeNameOf(expr_ty) + "'", unary->expr->source); return nullptr; } break; default: { auto op = intrinsic_table_->Lookup(unary->op, expr_ty, unary->source); if (!op.result) { return nullptr; } if (ShouldMaterializeArgument(op.parameter)) { expr = Materialize(expr, op.parameter); if (!expr) { return nullptr; } } ty = op.result; break; } } auto val = EvaluateConstantValue(unary, ty); if (!val) { return nullptr; } auto* sem = builder_->create(unary, ty, current_statement_, val.Get(), expr->HasSideEffects(), source_var); sem->Behaviors() = expr->Behaviors(); return sem; } bool Resolver::Enable(const ast::Enable* enable) { enabled_extensions_.add(enable->extension); return true; } sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { sem::Type* result = nullptr; if (auto* alias = named_type->As()) { result = Alias(alias); } else if (auto* str = named_type->As()) { result = Structure(str); } else { TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; } if (!result) { return nullptr; } builder_->Sem().Add(named_type, result); return result; } sem::Array* Resolver::Array(const ast::Array* arr) { auto source = arr->source; auto* elem_type = Type(arr->type); if (!elem_type) { return nullptr; } if (!validator_.IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize() AddError(sem_.TypeNameOf(elem_type) + " cannot be used as an element type of an array", source); return nullptr; } uint32_t el_align = elem_type->Align(); uint32_t el_size = elem_type->Size(); if (!validator_.NoDuplicateAttributes(arr->attributes)) { return nullptr; } // Look for explicit stride via @stride(n) attribute uint32_t explicit_stride = 0; for (auto* attr : arr->attributes) { Mark(attr); if (auto* sd = attr->As()) { explicit_stride = sd->stride; if (!validator_.ArrayStrideAttribute(sd, el_size, el_align, source)) { return nullptr; } continue; } AddError("attribute is not valid for array types", attr->source); return nullptr; } // Calculate implicit stride uint64_t implicit_stride = utils::RoundUp(el_align, el_size); uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; // Evaluate the constant array size expression. // sem::Array uses a size of 0 for a runtime-sized array. uint32_t count = 0; if (auto* count_expr = arr->count) { const auto* count_sem = Materialize(Expression(count_expr)); if (!count_sem) { return nullptr; } auto size_source = count_expr->source; auto* ty = count_sem->Type()->UnwrapRef(); if (!ty->is_integer_scalar()) { AddError("array size must be integer scalar", size_source); return nullptr; } if (auto* ident = count_expr->As()) { // Make sure the identifier is a non-overridable module-scope constant. auto* var = sem_.ResolvedSymbol(ident); if (!var || !var->Declaration()->is_const) { AddError("array size identifier must be a module-scope constant", size_source); return nullptr; } if (var->IsOverridable()) { AddError("array size expression must not be pipeline-overridable", size_source); return nullptr; } count_expr = var->Declaration()->constructor; } else if (!count_expr->Is()) { AddError( "array size expression must be either a literal or a module-scope " "constant", size_source); return nullptr; } auto count_val = count_sem->ConstantValue(); if (!count_val) { TINT_ICE(Resolver, diagnostics_) << "could not resolve array size expression"; return nullptr; } if (count_val.Element(0).value < 1) { AddError("array size must be at least 1", size_source); return nullptr; } count = count_val.Element(0); } auto size = std::max(count, 1) * stride; if (size > std::numeric_limits::max()) { std::stringstream msg; msg << "array size in bytes must not exceed 0x" << std::hex << std::numeric_limits::max() << ", but is 0x" << std::hex << size; AddError(msg.str(), arr->source); return nullptr; } if (stride > std::numeric_limits::max() || implicit_stride > std::numeric_limits::max()) { TINT_ICE(Resolver, diagnostics_) << "calculated array stride exceeds uint32"; return nullptr; } auto* out = builder_->create( elem_type, count, el_align, static_cast(size), static_cast(stride), static_cast(implicit_stride)); if (!validator_.Array(out, source)) { return nullptr; } if (elem_type->Is()) { atomic_composite_info_.emplace(out, arr->type->source); } else { auto found = atomic_composite_info_.find(elem_type); if (found != atomic_composite_info_.end()) { atomic_composite_info_.emplace(out, found->second); } } return out; } sem::Type* Resolver::Alias(const ast::Alias* alias) { auto* ty = Type(alias->type); if (!ty) { return nullptr; } if (!validator_.Alias(alias)) { return nullptr; } return ty; } sem::Struct* Resolver::Structure(const ast::Struct* str) { if (!validator_.NoDuplicateAttributes(str->attributes)) { return nullptr; } for (auto* attr : str->attributes) { Mark(attr); } sem::StructMemberList sem_members; sem_members.reserve(str->members.size()); // Calculate the effective size and alignment of each field, and the overall // size of the structure. // For size, use the size attribute if provided, otherwise use the default // size for the type. // For alignment, use the alignment attribute if provided, otherwise use the // default alignment for the member type. // Diagnostic errors are raised if a basic rule is violated. // Validation of storage-class rules requires analysing the actual variable // usage of the structure, and so is performed as part of the variable // validation. uint64_t struct_size = 0; uint64_t struct_align = 1; std::unordered_map member_map; for (auto* member : str->members) { Mark(member); auto result = member_map.emplace(member->symbol, member); if (!result.second) { AddError("redefinition of '" + builder_->Symbols().NameFor(member->symbol) + "'", member->source); AddNote("previous definition is here", result.first->second->source); return nullptr; } // Resolve member type auto* type = Type(member->type); if (!type) { return nullptr; } // validator_.Validate member type if (!validator_.IsPlain(type)) { AddError(sem_.TypeNameOf(type) + " cannot be used as the type of a structure member", member->source); return nullptr; } uint64_t offset = struct_size; uint64_t align = type->Align(); uint64_t size = type->Size(); if (!validator_.NoDuplicateAttributes(member->attributes)) { return nullptr; } bool has_offset_attr = false; bool has_align_attr = false; bool has_size_attr = false; for (auto* attr : member->attributes) { Mark(attr); if (auto* o = attr->As()) { // Offset attributes are not part of the WGSL spec, but are emitted // by the SPIR-V reader. if (o->offset < struct_size) { AddError("offsets must be in ascending order", o->source); return nullptr; } offset = o->offset; align = 1; has_offset_attr = true; } else if (auto* a = attr->As()) { if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) { AddError("align value must be a positive, power-of-two integer", a->source); return nullptr; } align = a->align; has_align_attr = true; } else if (auto* s = attr->As()) { if (s->size < size) { AddError("size must be at least as big as the type's size (" + std::to_string(size) + ")", s->source); return nullptr; } size = s->size; has_size_attr = true; } } if (has_offset_attr && (has_align_attr || has_size_attr)) { AddError("offset attributes cannot be used with align or size attributes", member->source); return nullptr; } offset = utils::RoundUp(align, offset); if (offset > std::numeric_limits::max()) { std::stringstream msg; msg << "struct member has byte offset 0x" << std::hex << offset << ", but must not exceed 0x" << std::hex << std::numeric_limits::max(); AddError(msg.str(), member->source); return nullptr; } auto* sem_member = builder_->create( member, member->symbol, type, static_cast(sem_members.size()), static_cast(offset), static_cast(align), static_cast(size)); builder_->Sem().Add(member, sem_member); sem_members.emplace_back(sem_member); struct_size = offset + size; struct_align = std::max(struct_align, align); } uint64_t size_no_padding = struct_size; struct_size = utils::RoundUp(struct_align, struct_size); if (struct_size > std::numeric_limits::max()) { std::stringstream msg; msg << "struct size in bytes must not exceed 0x" << std::hex << std::numeric_limits::max() << ", but is 0x" << std::hex << struct_size; AddError(msg.str(), str->source); return nullptr; } if (struct_align > std::numeric_limits::max()) { TINT_ICE(Resolver, diagnostics_) << "calculated struct stride exceeds uint32"; return nullptr; } auto* out = builder_->create( str, str->name, sem_members, static_cast(struct_align), static_cast(struct_size), static_cast(size_no_padding)); for (size_t i = 0; i < sem_members.size(); i++) { auto* mem_type = sem_members[i]->Type(); if (mem_type->Is()) { atomic_composite_info_.emplace(out, sem_members[i]->Declaration()->source); break; } else { auto found = atomic_composite_info_.find(mem_type); if (found != atomic_composite_info_.end()) { atomic_composite_info_.emplace(out, found->second); break; } } } auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() : ast::PipelineStage::kNone; if (!validator_.Structure(out, stage)) { return nullptr; } return out; } sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = current_statement_->Behaviors(); behaviors = sem::Behavior::kReturn; const sem::Type* value_ty = nullptr; if (auto* value = stmt->value) { const auto* expr = Materialize(Expression(value), current_function_->ReturnType()); if (!expr) { return false; } behaviors.Add(expr->Behaviors() - sem::Behavior::kNext); value_ty = expr->Type()->UnwrapRef(); } else { value_ty = builder_->create(); } // Validate after processing the return value expression so that its type // is available for validation. return validator_.Return(stmt, current_function_->ReturnType(), value_ty, current_statement_); }); } sem::SwitchStatement* Resolver::SwitchStatement(const ast::SwitchStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto& behaviors = sem->Behaviors(); const auto* cond = Expression(stmt->condition); if (!cond) { return false; } behaviors = cond->Behaviors() - sem::Behavior::kNext; auto* cond_ty = cond->Type()->UnwrapRef(); utils::UniqueVector types; types.add(cond_ty); std::vector cases; cases.reserve(stmt->body.size()); for (auto* case_stmt : stmt->body) { Mark(case_stmt); auto* c = CaseStatement(case_stmt); if (!c) { return false; } for (auto* expr : c->Selectors()) { types.add(expr->Type()->UnwrapRef()); } cases.emplace_back(c); behaviors.Add(c->Behaviors()); sem->Cases().emplace_back(c); } // Determine the common type across all selectors and the switch expression // This must materialize to an integer scalar (non-abstract). auto* common_ty = sem::Type::Common(types.data(), types.size()); if (!common_ty || !common_ty->is_integer_scalar()) { // No common type found or the common type was abstract. // Pick i32 and let validation deal with any mismatches. common_ty = builder_->create(); } cond = Materialize(cond, common_ty); if (!cond) { return false; } for (auto* c : cases) { for (auto*& sel : c->Selectors()) { // Note: pointer reference sel = Materialize(sel, common_ty); if (!sel) { return false; } } } if (behaviors.Contains(sem::Behavior::kBreak)) { behaviors.Add(sem::Behavior::kNext); } behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kFallthrough); return validator_.SwitchStatement(stmt); }); } sem::Statement* Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { Mark(stmt->variable); auto* var = Variable(stmt->variable, VariableKind::kLocal); if (!var) { return false; } for (auto* attr : stmt->variable->attributes) { Mark(attr); if (!attr->Is()) { AddError("attributes are not valid on local variables", attr->source); return false; } } if (current_block_) { // Not all statements are inside a block current_block_->AddDecl(stmt->variable); } if (auto* ctor = var->Constructor()) { sem->Behaviors() = ctor->Behaviors(); } return validator_.Variable(var); }); } sem::Statement* Resolver::AssignmentStatement(const ast::AssignmentStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* lhs = Expression(stmt->lhs); if (!lhs) { return false; } const bool is_phony_assignment = stmt->lhs->Is(); const auto* rhs = Expression(stmt->rhs); if (!rhs) { return false; } if (!is_phony_assignment) { rhs = Materialize(rhs, lhs->Type()->UnwrapRef()); if (!rhs) { return false; } } auto& behaviors = sem->Behaviors(); behaviors = rhs->Behaviors(); if (!is_phony_assignment) { behaviors.Add(lhs->Behaviors()); } return validator_.Assignment(stmt, sem_.TypeOf(stmt->rhs)); }); } sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kBreak; return validator_.BreakStatement(sem, current_statement_); }); } sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { if (auto* expr = Expression(stmt->expr)) { sem->Behaviors() = expr->Behaviors(); return true; } return false; }); } sem::Statement* Resolver::CompoundAssignmentStatement( const ast::CompoundAssignmentStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* lhs = Expression(stmt->lhs); if (!lhs) { return false; } auto* rhs = Expression(stmt->rhs); if (!rhs) { return false; } sem->Behaviors() = rhs->Behaviors() + lhs->Behaviors(); auto* lhs_ty = lhs->Type()->UnwrapRef(); auto* rhs_ty = rhs->Type()->UnwrapRef(); auto* ty = intrinsic_table_->Lookup(stmt->op, lhs_ty, rhs_ty, stmt->source, true).result; if (!ty) { return false; } return validator_.Assignment(stmt, ty); }); } sem::Statement* Resolver::ContinueStatement(const ast::ContinueStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kContinue; // Set if we've hit the first continue statement in our parent loop if (auto* block = sem->FindFirstParent()) { if (!block->FirstContinue()) { const_cast(block)->SetFirstContinue( stmt, block->Decls().size()); } } return validator_.ContinueStatement(sem, current_statement_); }); } sem::Statement* Resolver::DiscardStatement(const ast::DiscardStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kDiscard; current_function_->SetHasDiscard(); return validator_.DiscardStatement(sem, current_statement_); }); } sem::Statement* Resolver::FallthroughStatement(const ast::FallthroughStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { sem->Behaviors() = sem::Behavior::kFallthrough; return validator_.FallthroughStatement(sem); }); } sem::Statement* Resolver::IncrementDecrementStatement( const ast::IncrementDecrementStatement* stmt) { auto* sem = builder_->create(stmt, current_compound_statement_, current_function_); return StatementScope(stmt, sem, [&] { auto* lhs = Expression(stmt->lhs); if (!lhs) { return false; } sem->Behaviors() = lhs->Behaviors(); return validator_.IncrementDecrementStatement(stmt); }); } bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc, sem::Type* ty, const Source& usage) { ty = const_cast(ty->UnwrapRef()); if (auto* str = ty->As()) { if (str->StorageClassUsage().count(sc)) { return true; // Already applied } str->AddUsage(sc); for (auto* member : str->Members()) { if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) { std::stringstream err; err << "while analysing structure member " << sem_.TypeNameOf(str) << "." << builder_->Symbols().NameFor(member->Declaration()->symbol); AddNote(err.str(), member->Declaration()->source); return false; } } return true; } if (auto* arr = ty->As()) { if (arr->IsRuntimeSized() && sc != ast::StorageClass::kStorage) { AddError( "runtime-sized arrays can only be used in the storage " "class", usage); return false; } return ApplyStorageClassUsageToType(sc, const_cast(arr->ElemType()), usage); } if (ast::IsHostShareable(sc) && !validator_.IsHostShareable(ty)) { std::stringstream err; err << "Type '" << sem_.TypeNameOf(ty) << "' cannot be used in storage class '" << sc << "' as it is non-host-shareable"; AddError(err.str(), usage); return false; } return true; } template SEM* Resolver::StatementScope(const ast::Statement* ast, SEM* sem, F&& callback) { builder_->Sem().Add(ast, sem); auto* as_compound = As(sem); auto* as_block = As(sem); TINT_SCOPED_ASSIGNMENT(current_statement_, sem); TINT_SCOPED_ASSIGNMENT(current_compound_statement_, as_compound ? as_compound : current_compound_statement_); TINT_SCOPED_ASSIGNMENT(current_block_, as_block ? as_block : current_block_); if (!callback()) { return nullptr; } return sem; } bool Resolver::Mark(const ast::Node* node) { if (node == nullptr) { TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr"; return false; } if (marked_.emplace(node).second) { return true; } TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name << "' was encountered twice in the same AST of a Program\n" << "At: " << node->source << "\n" << "Pointer: " << node; return false; } void Resolver::AddError(const std::string& msg, const Source& source) const { diagnostics_.add_error(diag::System::Resolver, msg, source); } void Resolver::AddWarning(const std::string& msg, const Source& source) const { diagnostics_.add_warning(diag::System::Resolver, msg, source); } void Resolver::AddNote(const std::string& msg, const Source& source) const { diagnostics_.add_note(diag::System::Resolver, msg, source); } bool Resolver::IsBuiltin(Symbol symbol) const { std::string name = builder_->Symbols().NameFor(symbol); return sem::ParseBuiltinType(name) != sem::BuiltinType::kNone; } } // namespace tint::resolver