# Copyright 2020 The Tint Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import "GLSL.std.450" as std; # vertex shader [[location 0]] var a_particlePos : vec2; [[location 1]] var a_particleVel : vec2; [[location 2]] var a_pos : vec2; [[builtin position]] var gl_Position : vec4; fn vtx_main() -> void { var angle : f32 = -std::atan2(a_particleVel.x, a_particleVel.y); var pos : vec2 = vec2( (a_pos.x * std::cos(angle)) - (a_pos.y * std::sin(angle)), (a_pos.x * std::sin(angle)) + (a_pos.y * std::cos(angle))); gl_Position = vec4(pos + a_particlePos, 0, 1); return; } entry_point vertex as "main" = vtx_main; # fragment shader [[location 0]] var fragColor : vec4; fn frag_main() -> void { fragColor = vec4(1.0, 1.0, 1.0, 1.0); return; } entry_point fragment as "main" = frag_main; # compute shader type Particle = struct { [[offset 0]] pos : vec2; [[offset 8]] vel : vec2; }; type SimParams = struct { [[offset 0]] deltaT : f32; [[offset 4]] rule1Distance : f32; [[offset 8]] rule2Distance : f32; [[offset 12]] rule3Distance : f32; [[offset 16]] rule1Scale : f32; [[offset 20]] rule2Scale : f32; [[offset 24]] rule3Scale : f32; }; type Particles = struct { [[offset 0]] particles : array; }; [[binding 0, set 0]] var params : SimParams; [[binding 1, set 0]] var particlesA : Particles; [[binding 2, set 0]] var particlesB : Particles; [[builtin global_invocation_id]] var gl_GlobalInvocationID : vec3; # https://github.com/austinEng/Project6-Vulkan-Flocking/blob/master/data/shaders/computeparticles/particle.comp fn compute_main() -> void { var index : u32 = gl_GlobalInvocationID.x; if (index >= 5) { return; } var vPos : vec2 = particlesA.particles[index].pos; var vVel : vec2 = particlesA.particles[index].vel; var cMass : vec2 = vec2(0, 0); var cVel : vec2 = vec2(0, 0); var colVel : vec2 = vec2(0, 0); var cMassCount : i32 = 0; var cVelCount : i32 = 0; var pos : vec2; var vel : vec2; var i : i32 = 0; loop { if (i >= 5) { break; } if (i == index) { continue; } pos = particlesA.particles[i].pos.xy; vel = particlesA.particles[i].vel.xy; if (std::distance(pos, vPos) < params.rule1Distance) { cMass = cMass + pos; cMassCount = cMassCount + 1; } if (std::distance(pos, vPos) < params.rule2Distance) { colVel = colVel - (pos - vPos); } if (std::distance(pos, vPos) < params.rule3Distance) { cVel = cVel + vel; cVelCount = cVelCount + 1; } continuing { i = i + 1; } } if (cMassCount > 0) { cMass = (cMass / vec2(cMassCount, cMassCount)) + vPos; } if (cVelCount > 0) { cVel = cVel / vec2(cVelCount, cVelCount); } vVel = vVel + (cMass * params.rule1Scale) + (colVel * params.rule2Scale) + (cVel * params.rule3Scale); # clamp velocity for a more pleasing simulation vVel = std::normalize(vVel) * std::fclamp(std::length(vVel), 0.0, 0.1); # kinematic update vPos = vPos + (vVel * params.deltaT); # Wrap around boundary if (vPos.x < -1.0) { vPos.x = 1.0; } if (vPos.x > 1.0) { vPos.x = -1.0; } if (vPos.y < -1.0) { vPos.y = 1.0; } if (vPos.y > 1.0) { vPos.y = -1.0; } # Write back particlesB.particles[index].pos = vPos; particlesB.particles[index].vel = vVel; return; } entry_point compute as "main" = compute_main;