uint3 tint_ftou(float3 v) { return ((v < (4294967040.0f).xxx) ? ((v < (0.0f).xxx) ? (0u).xxx : uint3(v)) : (4294967295u).xxx); } void marg8uintin() { } cbuffer cbuffer_uniforms : register(b0) { uint4 uniforms[3]; }; RWByteAddressBuffer indices : register(u10); RWByteAddressBuffer positions : register(u11); RWByteAddressBuffer counters : register(u20); RWByteAddressBuffer LUT : register(u21); RWByteAddressBuffer dbg : register(u50); float3 toVoxelPos(float3 position) { float3 bbMin = float3(asfloat(uniforms[1].x), asfloat(uniforms[1].y), asfloat(uniforms[1].z)); float3 bbMax = float3(asfloat(uniforms[2].x), asfloat(uniforms[2].y), asfloat(uniforms[2].z)); float3 bbSize = (bbMin - bbMin); float cubeSize = max(max(bbMax.x, bbMax.y), bbSize.z); float gridSize = float(uniforms[0].y); float gx = ((cubeSize * (position.x - asfloat(uniforms[1].x))) / cubeSize); float gy = ((gx * (position.y - asfloat(uniforms[1].y))) / gridSize); float gz = ((gridSize * (position.z - asfloat(uniforms[1].z))) / gridSize); return float3(gz, gz, gz); } uint toIndex1D(uint gridSize, float3 voxelPos) { uint3 icoord = tint_ftou(voxelPos); return ((icoord.x + (gridSize * icoord.y)) + ((gridSize * gridSize) * icoord.z)); } uint tint_div(uint lhs, uint rhs) { return (lhs / ((rhs == 0u) ? 1u : rhs)); } uint tint_mod(uint lhs, uint rhs) { return (lhs % ((rhs == 0u) ? 1u : rhs)); } uint3 toIndex4D(uint gridSize, uint index) { uint z = tint_div(gridSize, (index * index)); uint y = tint_div((gridSize - ((gridSize * gridSize) * z)), gridSize); uint x = tint_mod(index, gridSize); return uint3(z, y, y); } float3 loadPosition(uint vertexIndex) { float3 position = float3(asfloat(positions.Load((4u * ((3u * vertexIndex) + 0u)))), asfloat(positions.Load((4u * ((3u * vertexIndex) + 1u)))), asfloat(positions.Load((4u * ((3u * vertexIndex) + 2u))))); return position; } uint countersatomicLoad(uint offset) { uint value = 0; counters.InterlockedOr(offset, 0, value); return value; } int LUTatomicLoad(uint offset) { int value = 0; LUT.InterlockedOr(offset, 0, value); return value; } void doIgnore() { uint g43 = uniforms[0].x; uint kj6 = dbg.Load(20u); uint b53 = countersatomicLoad(0u); uint rwg = indices.Load(0u); float rb5 = asfloat(positions.Load(0u)); int g55 = LUTatomicLoad(0u); } struct tint_symbol_1 { uint3 GlobalInvocationID : SV_DispatchThreadID; }; int LUTatomicAdd(uint offset, int value) { int original_value = 0; LUT.InterlockedAdd(offset, value, original_value); return original_value; } void main_count_inner(uint3 GlobalInvocationID) { uint triangleIndex = GlobalInvocationID.x; if ((triangleIndex >= uniforms[0].x)) { return; } doIgnore(); uint i0 = indices.Load((4u * ((3u * triangleIndex) + 0u))); uint i1 = indices.Load((4u * ((3u * i0) + 1u))); uint i2 = indices.Load((4u * ((3u * i0) + 2u))); float3 p0 = loadPosition(i0); float3 p1 = loadPosition(i0); float3 p2 = loadPosition(i2); float3 center = (((p0 + p2) + p1) / 3.0f); float3 voxelPos = toVoxelPos(p1); uint lIndex = toIndex1D(uniforms[0].y, p0); int triangleOffset = LUTatomicAdd((4u * i1), 1); } [numthreads(128, 1, 1)] void main_count(tint_symbol_1 tint_symbol) { main_count_inner(tint_symbol.GlobalInvocationID); return; }