#include using namespace metal; struct Uniforms { /* 0x0000 */ uint dimAOuter; /* 0x0004 */ uint dimInner; /* 0x0008 */ uint dimBOuter; }; struct Matrix { /* 0x0000 */ float numbers[1]; }; struct tint_array_wrapper_1 { float arr[64]; }; struct tint_array_wrapper { tint_array_wrapper_1 arr[64]; }; struct tint_array_wrapper_2 { float arr[16]; }; struct tint_array_wrapper_3 { float arr[4]; }; constant uint RowPerThread = 4u; constant uint ColPerThread = 4u; constant uint TileAOuter = 64u; constant uint TileBOuter = 64u; constant uint TileInner = 64u; float mm_readA(constant Uniforms& uniforms, const device Matrix& firstMatrix, uint row, uint col) { if (((row < uniforms.dimAOuter) && (col < uniforms.dimInner))) { float const result = firstMatrix.numbers[((row * uniforms.dimInner) + col)]; return result; } return 0.0f; } float mm_readB(constant Uniforms& uniforms, const device Matrix& secondMatrix, uint row, uint col) { if (((row < uniforms.dimInner) && (col < uniforms.dimBOuter))) { float const result = secondMatrix.numbers[((row * uniforms.dimBOuter) + col)]; return result; } return 0.0f; } void mm_write(constant Uniforms& uniforms, device Matrix& resultMatrix, uint row, uint col, float value) { if (((row < uniforms.dimAOuter) && (col < uniforms.dimBOuter))) { uint const index = (col + (row * uniforms.dimBOuter)); resultMatrix.numbers[index] = value; } } kernel void tint_symbol(uint3 local_id [[thread_position_in_threadgroup]], uint3 global_id [[thread_position_in_grid]], uint local_invocation_index [[thread_index_in_threadgroup]], constant Uniforms& uniforms [[buffer(3)]], const device Matrix& firstMatrix [[buffer(0)]], const device Matrix& secondMatrix [[buffer(1)]], device Matrix& resultMatrix [[buffer(2)]]) { threadgroup tint_array_wrapper tint_symbol_4; threadgroup tint_array_wrapper tint_symbol_5; if ((local_invocation_index == 0u)) { tint_array_wrapper const tint_symbol_2 = {.arr={}}; tint_symbol_4 = tint_symbol_2; tint_array_wrapper const tint_symbol_3 = {.arr={}}; tint_symbol_5 = tint_symbol_3; } threadgroup_barrier(mem_flags::mem_threadgroup); uint const tileRow = (local_id.y * RowPerThread); uint const tileCol = (local_id.x * ColPerThread); uint const globalRow = (global_id.y * RowPerThread); uint const globalCol = (global_id.x * ColPerThread); uint const numTiles = (((uniforms.dimInner - 1u) / TileInner) + 1u); tint_array_wrapper_2 acc = {}; float ACached = 0.0f; tint_array_wrapper_3 BCached = {}; for(uint index = 0u; (index < (RowPerThread * ColPerThread)); index = (index + 1u)) { acc.arr[index] = 0.0f; } uint const ColPerThreadA = (TileInner / 16u); uint const tileColA = (local_id.x * ColPerThreadA); uint const RowPerThreadB = (TileInner / 16u); uint const tileRowB = (local_id.y * RowPerThreadB); for(uint t = 0u; (t < numTiles); t = (t + 1u)) { for(uint innerRow = 0u; (innerRow < RowPerThread); innerRow = (innerRow + 1u)) { for(uint innerCol = 0u; (innerCol < ColPerThreadA); innerCol = (innerCol + 1u)) { uint const inputRow = (tileRow + innerRow); uint const inputCol = (tileColA + innerCol); tint_symbol_4.arr[inputRow].arr[inputCol] = mm_readA(uniforms, firstMatrix, (globalRow + innerRow), ((t * TileInner) + inputCol)); } } for(uint innerRow = 0u; (innerRow < RowPerThreadB); innerRow = (innerRow + 1u)) { for(uint innerCol = 0u; (innerCol < ColPerThread); innerCol = (innerCol + 1u)) { uint const inputRow = (tileRowB + innerRow); uint const inputCol = (tileCol + innerCol); tint_symbol_5.arr[innerCol].arr[inputCol] = mm_readB(uniforms, secondMatrix, ((t * TileInner) + inputRow), (globalCol + innerCol)); } } threadgroup_barrier(mem_flags::mem_threadgroup); for(uint k = 0u; (k < TileInner); k = (k + 1u)) { for(uint inner = 0u; (inner < ColPerThread); inner = (inner + 1u)) { BCached.arr[inner] = tint_symbol_5.arr[k].arr[(tileCol + inner)]; } for(uint innerRow = 0u; (innerRow < RowPerThread); innerRow = (innerRow + 1u)) { ACached = tint_symbol_4.arr[(tileRow + innerRow)].arr[k]; for(uint innerCol = 0u; (innerCol < ColPerThread); innerCol = (innerCol + 1u)) { uint const index = ((innerRow * ColPerThread) + innerCol); acc.arr[index] = (acc.arr[index] + (ACached * BCached.arr[innerCol])); } } } threadgroup_barrier(mem_flags::mem_threadgroup); } for(uint innerRow = 0u; (innerRow < RowPerThread); innerRow = (innerRow + 1u)) { for(uint innerCol = 0u; (innerCol < ColPerThread); innerCol = (innerCol + 1u)) { uint const index = ((innerRow * ColPerThread) + innerCol); mm_write(uniforms, resultMatrix, (globalRow + innerRow), (globalCol + innerCol), acc.arr[index]); } } return; }