// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/type_determiner.h" #include #include #include "spirv/unified1/GLSL.std.450.h" #include "src/ast/array_accessor_expression.h" #include "src/ast/as_expression.h" #include "src/ast/assignment_statement.h" #include "src/ast/binary_expression.h" #include "src/ast/block_statement.h" #include "src/ast/break_statement.h" #include "src/ast/call_expression.h" #include "src/ast/call_statement.h" #include "src/ast/case_statement.h" #include "src/ast/cast_expression.h" #include "src/ast/continue_statement.h" #include "src/ast/else_statement.h" #include "src/ast/identifier_expression.h" #include "src/ast/if_statement.h" #include "src/ast/intrinsic.h" #include "src/ast/loop_statement.h" #include "src/ast/member_accessor_expression.h" #include "src/ast/return_statement.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/switch_statement.h" #include "src/ast/type/array_type.h" #include "src/ast/type/bool_type.h" #include "src/ast/type/f32_type.h" #include "src/ast/type/matrix_type.h" #include "src/ast/type/pointer_type.h" #include "src/ast/type/struct_type.h" #include "src/ast/type/vector_type.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" namespace tint { namespace { // Most of these are floating-point general except the below which are only // FP16 and FP32. We only have FP32 at this point so the below works, if we // get FP64 support or otherwise we'll need to differentiate. // * radians // * degrees // * sin, cos, tan // * asin, acos, atan // * sinh, cosh, tanh // * asinh, acosh, atanh // * exp, exp2 // * log, log2 enum class GlslDataType { kFloatScalarOrVector, kIntScalarOrVector, kFloatVector, kMatrix }; struct GlslData { const char* name; uint8_t param_count; uint32_t op_id; GlslDataType type; uint8_t vector_count; }; constexpr const GlslData kGlslData[] = { {"acos", 1, GLSLstd450Acos, GlslDataType::kFloatScalarOrVector, 0}, {"acosh", 1, GLSLstd450Acosh, GlslDataType::kFloatScalarOrVector, 0}, {"asin", 1, GLSLstd450Asin, GlslDataType::kFloatScalarOrVector, 0}, {"asinh", 1, GLSLstd450Asinh, GlslDataType::kFloatScalarOrVector, 0}, {"atan", 1, GLSLstd450Atan, GlslDataType::kFloatScalarOrVector, 0}, {"atan2", 2, GLSLstd450Atan2, GlslDataType::kFloatScalarOrVector, 0}, {"atanh", 1, GLSLstd450Atanh, GlslDataType::kFloatScalarOrVector, 0}, {"ceil", 1, GLSLstd450Ceil, GlslDataType::kFloatScalarOrVector, 0}, {"cos", 1, GLSLstd450Cos, GlslDataType::kFloatScalarOrVector, 0}, {"cosh", 1, GLSLstd450Cosh, GlslDataType::kFloatScalarOrVector, 0}, {"cross", 2, GLSLstd450Cross, GlslDataType::kFloatVector, 3}, {"degrees", 1, GLSLstd450Degrees, GlslDataType::kFloatScalarOrVector, 0}, {"determinant", 1, GLSLstd450Determinant, GlslDataType::kMatrix, 0}, {"distance", 2, GLSLstd450Distance, GlslDataType::kFloatScalarOrVector, 0}, {"exp", 1, GLSLstd450Exp, GlslDataType::kFloatScalarOrVector, 0}, {"exp2", 1, GLSLstd450Exp2, GlslDataType::kFloatScalarOrVector, 0}, {"fabs", 1, GLSLstd450FAbs, GlslDataType::kFloatScalarOrVector, 0}, {"faceforward", 3, GLSLstd450FaceForward, GlslDataType::kFloatScalarOrVector, 0}, {"fclamp", 3, GLSLstd450FClamp, GlslDataType::kFloatScalarOrVector, 0}, {"findilsb", 1, GLSLstd450FindILsb, GlslDataType::kIntScalarOrVector, 0}, {"findumsb", 1, GLSLstd450FindUMsb, GlslDataType::kIntScalarOrVector, 0}, {"findsmsb", 1, GLSLstd450FindSMsb, GlslDataType::kIntScalarOrVector, 0}, {"floor", 1, GLSLstd450Floor, GlslDataType::kFloatScalarOrVector, 0}, {"fma", 3, GLSLstd450Fma, GlslDataType::kFloatScalarOrVector, 0}, {"fmax", 2, GLSLstd450FMax, GlslDataType::kFloatScalarOrVector, 0}, {"fmin", 2, GLSLstd450FMin, GlslDataType::kFloatScalarOrVector, 0}, {"fmix", 3, GLSLstd450FMix, GlslDataType::kFloatScalarOrVector, 0}, {"fract", 1, GLSLstd450Fract, GlslDataType::kFloatScalarOrVector, 0}, {"fsign", 1, GLSLstd450FSign, GlslDataType::kFloatScalarOrVector, 0}, {"interpolateatcentroid", 1, GLSLstd450InterpolateAtCentroid, GlslDataType::kFloatScalarOrVector, 0}, {"inversesqrt", 1, GLSLstd450InverseSqrt, GlslDataType::kFloatScalarOrVector, 0}, {"length", 1, GLSLstd450Length, GlslDataType::kFloatScalarOrVector, 0}, {"log", 1, GLSLstd450Log, GlslDataType::kFloatScalarOrVector, 0}, {"log2", 1, GLSLstd450Log2, GlslDataType::kFloatScalarOrVector, 0}, {"matrixinverse", 1, GLSLstd450MatrixInverse, GlslDataType::kMatrix, 0}, {"nclamp", 3, GLSLstd450NClamp, GlslDataType::kFloatScalarOrVector, 0}, {"nmax", 2, GLSLstd450NMax, GlslDataType::kFloatScalarOrVector, 0}, {"nmin", 2, GLSLstd450NMin, GlslDataType::kFloatScalarOrVector, 0}, {"normalize", 1, GLSLstd450Normalize, GlslDataType::kFloatScalarOrVector, 0}, {"pow", 2, GLSLstd450Pow, GlslDataType::kFloatScalarOrVector, 0}, {"radians", 1, GLSLstd450Radians, GlslDataType::kFloatScalarOrVector, 0}, {"reflect", 2, GLSLstd450Reflect, GlslDataType::kFloatScalarOrVector, 0}, {"round", 1, GLSLstd450Round, GlslDataType::kFloatScalarOrVector, 0}, {"roundeven", 1, GLSLstd450RoundEven, GlslDataType::kFloatScalarOrVector, 0}, {"sabs", 1, GLSLstd450SAbs, GlslDataType::kIntScalarOrVector, 0}, {"sclamp", 3, GLSLstd450SClamp, GlslDataType::kIntScalarOrVector, 0}, {"sin", 1, GLSLstd450Sin, GlslDataType::kFloatScalarOrVector, 0}, {"sinh", 1, GLSLstd450Sinh, GlslDataType::kFloatScalarOrVector, 0}, {"smax", 2, GLSLstd450SMax, GlslDataType::kIntScalarOrVector, 0}, {"smin", 2, GLSLstd450SMin, GlslDataType::kIntScalarOrVector, 0}, {"smoothstep", 3, GLSLstd450SmoothStep, GlslDataType::kFloatScalarOrVector, 0}, {"sqrt", 1, GLSLstd450Sqrt, GlslDataType::kFloatScalarOrVector, 0}, {"ssign", 1, GLSLstd450SSign, GlslDataType::kIntScalarOrVector, 0}, {"step", 2, GLSLstd450Step, GlslDataType::kFloatScalarOrVector, 0}, {"tan", 1, GLSLstd450Tan, GlslDataType::kFloatScalarOrVector, 0}, {"tanh", 1, GLSLstd450Tanh, GlslDataType::kFloatScalarOrVector, 0}, {"trunc", 1, GLSLstd450Trunc, GlslDataType::kFloatScalarOrVector, 0}, {"uclamp", 3, GLSLstd450UClamp, GlslDataType::kIntScalarOrVector, 0}, {"umax", 2, GLSLstd450UMax, GlslDataType::kIntScalarOrVector, 0}, {"umin", 2, GLSLstd450UMin, GlslDataType::kIntScalarOrVector, 0}, }; constexpr const uint32_t kGlslDataCount = sizeof(kGlslData) / sizeof(GlslData); } // namespace TypeDeterminer::TypeDeterminer(Context* ctx, ast::Module* mod) : ctx_(*ctx), mod_(mod) {} TypeDeterminer::~TypeDeterminer() = default; void TypeDeterminer::set_error(const Source& src, const std::string& msg) { error_ = ""; if (src.line > 0) { error_ += std::to_string(src.line) + ":" + std::to_string(src.column) + ": "; } error_ += msg; } void TypeDeterminer::set_referenced_from_function_if_needed( ast::Variable* var) { if (current_function_ == nullptr) { return; } if (var->storage_class() == ast::StorageClass::kNone || var->storage_class() == ast::StorageClass::kFunction) { return; } current_function_->add_referenced_module_variable(var); } bool TypeDeterminer::Determine() { for (const auto& var : mod_->global_variables()) { variable_stack_.set_global(var->name(), var.get()); if (var->has_constructor()) { if (!DetermineResultType(var->constructor())) { return false; } } } if (!DetermineFunctions(mod_->functions())) { return false; } // Walk over the caller to callee information and update functions with which // entry points call those functions. for (const auto& ep : mod_->entry_points()) { for (const auto& callee : caller_to_callee_[ep->function_name()]) { set_entry_points(callee, ep->name()); } } return true; } void TypeDeterminer::set_entry_points(const std::string& fn_name, const std::string& ep_name) { name_to_function_[fn_name]->add_ancestor_entry_point(ep_name); for (const auto& callee : caller_to_callee_[fn_name]) { set_entry_points(callee, ep_name); } } bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { for (const auto& func : funcs) { if (!DetermineFunction(func.get())) { return false; } } return true; } bool TypeDeterminer::DetermineFunction(ast::Function* func) { name_to_function_[func->name()] = func; current_function_ = func; variable_stack_.push_scope(); for (const auto& param : func->params()) { variable_stack_.set(param->name(), param.get()); } if (!DetermineStatements(func->body())) { return false; } variable_stack_.pop_scope(); current_function_ = nullptr; return true; } bool TypeDeterminer::DetermineStatements(const ast::BlockStatement* stmts) { for (const auto& stmt : *stmts) { if (!DetermineVariableStorageClass(stmt.get())) { return false; } if (!DetermineResultType(stmt.get())) { return false; } } return true; } bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { if (!stmt->IsVariableDecl()) { return true; } auto* var = stmt->AsVariableDecl()->variable(); // Nothing to do for const if (var->is_const()) { return true; } if (var->storage_class() == ast::StorageClass::kFunction) { return true; } if (var->storage_class() != ast::StorageClass::kNone) { set_error(stmt->source(), "function variable has a non-function storage class"); return false; } var->set_storage_class(ast::StorageClass::kFunction); return true; } bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { if (stmt->IsAssign()) { auto* a = stmt->AsAssign(); return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); } if (stmt->IsBlock()) { return DetermineStatements(stmt->AsBlock()); } if (stmt->IsBreak()) { return true; } if (stmt->IsCall()) { return DetermineResultType(stmt->AsCall()->expr()); } if (stmt->IsCase()) { auto* c = stmt->AsCase(); return DetermineStatements(c->body()); } if (stmt->IsContinue()) { return true; } if (stmt->IsDiscard()) { return true; } if (stmt->IsElse()) { auto* e = stmt->AsElse(); return DetermineResultType(e->condition()) && DetermineStatements(e->body()); } if (stmt->IsFallthrough()) { return true; } if (stmt->IsIf()) { auto* i = stmt->AsIf(); if (!DetermineResultType(i->condition()) || !DetermineStatements(i->body())) { return false; } for (const auto& else_stmt : i->else_statements()) { if (!DetermineResultType(else_stmt.get())) { return false; } } return true; } if (stmt->IsLoop()) { auto* l = stmt->AsLoop(); return DetermineStatements(l->body()) && DetermineStatements(l->continuing()); } if (stmt->IsReturn()) { auto* r = stmt->AsReturn(); return DetermineResultType(r->value()); } if (stmt->IsSwitch()) { auto* s = stmt->AsSwitch(); if (!DetermineResultType(s->condition())) { return false; } for (const auto& case_stmt : s->body()) { if (!DetermineResultType(case_stmt.get())) { return false; } } return true; } if (stmt->IsVariableDecl()) { auto* v = stmt->AsVariableDecl(); variable_stack_.set(v->variable()->name(), v->variable()); return DetermineResultType(v->variable()->constructor()); } set_error(stmt->source(), "unknown statement type for type determination: " + stmt->str()); return false; } bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { for (const auto& expr : list) { if (!DetermineResultType(expr.get())) { return false; } } return true; } bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { // This is blindly called above, so in some cases the expression won't exist. if (!expr) { return true; } if (expr->IsArrayAccessor()) { return DetermineArrayAccessor(expr->AsArrayAccessor()); } if (expr->IsAs()) { return DetermineAs(expr->AsAs()); } if (expr->IsBinary()) { return DetermineBinary(expr->AsBinary()); } if (expr->IsCall()) { return DetermineCall(expr->AsCall()); } if (expr->IsCast()) { return DetermineCast(expr->AsCast()); } if (expr->IsConstructor()) { return DetermineConstructor(expr->AsConstructor()); } if (expr->IsIdentifier()) { return DetermineIdentifier(expr->AsIdentifier()); } if (expr->IsMemberAccessor()) { return DetermineMemberAccessor(expr->AsMemberAccessor()); } if (expr->IsUnaryOp()) { return DetermineUnaryOp(expr->AsUnaryOp()); } set_error(expr->source(), "unknown expression for type determination"); return false; } bool TypeDeterminer::DetermineArrayAccessor( ast::ArrayAccessorExpression* expr) { if (!DetermineResultType(expr->array())) { return false; } if (!DetermineResultType(expr->idx_expr())) { return false; } auto* res = expr->array()->result_type(); auto* parent_type = res->UnwrapAliasPtrAlias(); ast::type::Type* ret = nullptr; if (parent_type->IsArray()) { ret = parent_type->AsArray()->type(); } else if (parent_type->IsVector()) { ret = parent_type->AsVector()->type(); } else if (parent_type->IsMatrix()) { auto* m = parent_type->AsMatrix(); ret = ctx_.type_mgr().Get( std::make_unique(m->type(), m->rows())); } else { set_error(expr->source(), "invalid parent type in array accessor"); return false; } // If we're extracting from a pointer, we return a pointer. if (res->IsPointer()) { ret = ctx_.type_mgr().Get(std::make_unique( ret, res->AsPointer()->storage_class())); } expr->set_result_type(ret); return true; } bool TypeDeterminer::DetermineAs(ast::AsExpression* expr) { if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->type()); return true; } bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) { if (!DetermineResultType(expr->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. if (expr->func()->IsIdentifier()) { auto* ident = expr->func()->AsIdentifier(); if (ast::intrinsic::IsIntrinsic(ident->name())) { if (!DetermineIntrinsic(ident->name(), expr)) return false; } else if (ident->has_path()) { auto* imp = mod_->FindImportByName(ident->path()); if (imp == nullptr) { set_error(expr->source(), "Unable to find import for " + ident->name()); return false; } uint32_t ext_id = 0; auto* result_type = GetImportData(expr->source(), imp->path(), ident->name(), expr->params(), &ext_id); if (result_type == nullptr) { if (error_.empty()) { set_error(expr->source(), "Unable to determine result type for GLSL expression " + ident->name()); } return false; } imp->AddMethodId(ident->name(), ext_id); expr->func()->set_result_type(result_type); } else { if (current_function_) { caller_to_callee_[current_function_->name()].push_back(ident->name()); auto* callee_func = mod_->FindFunctionByName(ident->name()); if (callee_func == nullptr) { set_error(expr->source(), "unable to find called function: " + ident->name()); return false; } // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_variables()) { set_referenced_from_function_if_needed(var); } } // An identifier with a single name is a function call, not an import // lookup which we can handle with the regular identifier lookup. if (!DetermineResultType(ident)) { return false; } } } else { if (!DetermineResultType(expr->func())) { return false; } } if (!expr->func()->result_type()) { auto func_name = expr->func()->AsIdentifier()->name(); set_error( expr->source(), "v-0005: function must be declared before use: '" + func_name + "'"); return false; } expr->set_result_type(expr->func()->result_type()); return true; } bool TypeDeterminer::DetermineIntrinsic(const std::string& name, ast::CallExpression* expr) { if (ast::intrinsic::IsDerivative(name)) { if (expr->params().size() != 1) { set_error(expr->source(), "incorrect number of parameters for " + name); return false; } // The result type must be the same as the type of the parameter. auto& param = expr->params()[0]; if (!DetermineResultType(param.get())) { return false; } expr->func()->set_result_type(param->result_type()->UnwrapPtrIfNeeded()); return true; } if (name == "any" || name == "all") { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique())); return true; } if (ast::intrinsic::IsFloatClassificationIntrinsic(name)) { if (expr->params().size() != 1) { set_error(expr->source(), "incorrect number of parameters for " + name); return false; } auto* bool_type = ctx_.type_mgr().Get(std::make_unique()); auto& param = expr->params()[0]; if (!DetermineResultType(param.get())) { return false; } auto* param_type = param->result_type()->UnwrapPtrIfNeeded(); if (param_type->IsVector()) { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique( bool_type, param_type->AsVector()->size()))); } else { expr->func()->set_result_type(bool_type); } return true; } if (name == "dot") { expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique())); return true; } if (name == "outer_product") { if (expr->params().size() != 2) { set_error(expr->source(), "incorrect number of parameters for outer_product"); return false; } auto& param0 = expr->params()[0]; auto& param1 = expr->params()[1]; if (!DetermineResultType(param0.get()) || !DetermineResultType(param1.get())) { return false; } auto* param0_type = param0->result_type()->UnwrapPtrIfNeeded(); auto* param1_type = param1->result_type()->UnwrapPtrIfNeeded(); if (!param0_type->IsVector() || !param1_type->IsVector()) { set_error(expr->source(), "invalid parameter type for outer_product"); return false; } expr->func()->set_result_type( ctx_.type_mgr().Get(std::make_unique( ctx_.type_mgr().Get(std::make_unique()), param0_type->AsVector()->size(), param1_type->AsVector()->size()))); return true; } if (name == "select") { if (expr->params().size() != 3) { set_error(expr->source(), "incorrect number of parameters for select expected 3 got " + std::to_string(expr->params().size())); return false; } // The result type must be the same as the type of the parameter. auto& param = expr->params()[0]; if (!DetermineResultType(param.get())) { return false; } expr->func()->set_result_type(param->result_type()->UnwrapPtrIfNeeded()); return true; } return false; } bool TypeDeterminer::DetermineCast(ast::CastExpression* expr) { if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->type()); return true; } bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { if (expr->IsTypeConstructor()) { auto* ty = expr->AsTypeConstructor(); for (const auto& value : ty->values()) { if (!DetermineResultType(value.get())) { return false; } } expr->set_result_type(ty->type()); } else { expr->set_result_type(expr->AsScalarConstructor()->literal()->type()); } return true; } bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { if (expr->has_path()) { set_error(expr->source(), "determine identifier should not be called with imports"); return false; } auto name = expr->name(); ast::Variable* var; if (variable_stack_.get(name, &var)) { // A constant is the type, but a variable is always a pointer so synthesize // the pointer around the variable type. if (var->is_const()) { expr->set_result_type(var->type()); } else { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( var->type(), var->storage_class()))); } set_referenced_from_function_if_needed(var); return true; } auto iter = name_to_function_.find(name); if (iter != name_to_function_.end()) { expr->set_result_type(iter->second->return_type()); return true; } return true; } bool TypeDeterminer::DetermineMemberAccessor( ast::MemberAccessorExpression* expr) { if (!DetermineResultType(expr->structure())) { return false; } auto* res = expr->structure()->result_type(); auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapAliasesIfNeeded(); ast::type::Type* ret = nullptr; if (data_type->IsStruct()) { auto* strct = data_type->AsStruct()->impl(); auto name = expr->member()->name(); for (const auto& member : strct->members()) { if (member->name() == name) { ret = member->type(); break; } } if (ret == nullptr) { set_error(expr->source(), "struct member " + name + " not found"); return false; } // If we're extracting from a pointer, we return a pointer. if (res->IsPointer()) { ret = ctx_.type_mgr().Get(std::make_unique( ret, res->AsPointer()->storage_class())); } } else if (data_type->IsVector()) { auto* vec = data_type->AsVector(); auto size = expr->member()->name().size(); if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a pointer, we return a pointer. if (res->IsPointer()) { ret = ctx_.type_mgr().Get(std::make_unique( ret, res->AsPointer()->storage_class())); } } else { // The vector will have a number of components equal to the length of the // swizzle. This assumes the validator will check that the swizzle // is correct. ret = ctx_.type_mgr().Get( std::make_unique(vec->type(), size)); } } else { set_error(expr->source(), "invalid type " + data_type->type_name() + " in member accessor"); return false; } expr->set_result_type(ret); return true; } bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { expr->set_result_type(expr->lhs()->result_type()->UnwrapPtrIfNeeded()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = ctx_.type_mgr().Get(std::make_unique()); auto* param_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); if (param_type->IsVector()) { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( bool_type, param_type->AsVector()->size()))); } else { expr->set_result_type(bool_type); } return true; } if (expr->IsMultiply()) { auto* lhs_type = expr->lhs()->result_type()->UnwrapPtrIfNeeded(); auto* rhs_type = expr->rhs()->result_type()->UnwrapPtrIfNeeded(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. if (lhs_type->IsMatrix() && rhs_type->IsMatrix()) { expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( lhs_type->AsMatrix()->type(), lhs_type->AsMatrix()->rows(), rhs_type->AsMatrix()->columns()))); } else if (lhs_type->IsMatrix() && rhs_type->IsVector()) { auto* mat = lhs_type->AsMatrix(); expr->set_result_type(ctx_.type_mgr().Get( std::make_unique(mat->type(), mat->rows()))); } else if (lhs_type->IsVector() && rhs_type->IsMatrix()) { auto* mat = rhs_type->AsMatrix(); expr->set_result_type( ctx_.type_mgr().Get(std::make_unique( mat->type(), mat->columns()))); } else if (lhs_type->IsMatrix()) { // matrix * scalar expr->set_result_type(lhs_type); } else if (rhs_type->IsMatrix()) { // scalar * matrix expr->set_result_type(rhs_type); } else if (lhs_type->IsVector() && rhs_type->IsVector()) { expr->set_result_type(lhs_type); } else if (lhs_type->IsVector()) { // Vector * scalar expr->set_result_type(lhs_type); } else if (rhs_type->IsVector()) { // Scalar * vector expr->set_result_type(rhs_type); } else { // Scalar * Scalar expr->set_result_type(lhs_type); } return true; } set_error(expr->source(), "Unknown binary expression"); return false; } bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { // Result type matches the parameter type. if (!DetermineResultType(expr->expr())) { return false; } expr->set_result_type(expr->expr()->result_type()->UnwrapPtrIfNeeded()); return true; } ast::type::Type* TypeDeterminer::GetImportData( const Source& source, const std::string& path, const std::string& name, const ast::ExpressionList& params, uint32_t* id) { if (path != "GLSL.std.450") { return nullptr; } const GlslData* data = nullptr; for (uint32_t i = 0; i < kGlslDataCount; ++i) { if (name == kGlslData[i].name) { data = &kGlslData[i]; break; } } if (data == nullptr) { return nullptr; } if (params.size() != data->param_count) { set_error(source, "incorrect number of parameters for " + name + ". Expected " + std::to_string(data->param_count) + " got " + std::to_string(params.size())); return nullptr; } std::vector result_types; for (uint32_t i = 0; i < data->param_count; ++i) { result_types.push_back(params[i]->result_type()->UnwrapPtrIfNeeded()); switch (data->type) { case GlslDataType::kFloatScalarOrVector: if (!result_types.back()->is_float_scalar_or_vector()) { set_error(source, "incorrect type for " + name + ". " + "Requires float scalar or float vector values"); return nullptr; } break; case GlslDataType::kIntScalarOrVector: if (!result_types.back()->is_integer_scalar_or_vector()) { set_error(source, "incorrect type for " + name + ". " + "Requires integer scalar or integer vector values"); return nullptr; } break; case GlslDataType::kFloatVector: if (!result_types.back()->is_float_vector()) { set_error(source, "incorrect type for " + name + ". " + "Requires float vector values"); return nullptr; } if (data->vector_count > 0 && result_types.back()->AsVector()->size() != data->vector_count) { set_error(source, "incorrect vector size for " + name + ". " + "Requires " + std::to_string(data->vector_count) + " elements"); return nullptr; } break; case GlslDataType::kMatrix: if (!result_types.back()->IsMatrix()) { set_error(source, "incorrect type for " + name + ". Requires matrix value"); return nullptr; } break; } } // Verify all the parameter types match for (size_t i = 1; i < data->param_count; ++i) { if (result_types[0] != result_types[i]) { error_ = "mismatched parameter types for " + name; return nullptr; } } *id = data->op_id; // Handle functions which aways return the type, even if a vector is provided. if (name == "length" || name == "distance") { return result_types[0]->is_float_scalar() ? result_types[0] : result_types[0]->AsVector()->type(); } // The determinant returns the component type of the columns if (name == "determinant") { return result_types[0]->AsMatrix()->type(); } return result_types[0]; } } // namespace tint