// Copyright 2020 The Tint Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/type_determiner.h" #include #include #include #include #include "src/ast/array_accessor_expression.h" #include "src/ast/assignment_statement.h" #include "src/ast/binary_expression.h" #include "src/ast/bitcast_expression.h" #include "src/ast/block_statement.h" #include "src/ast/break_statement.h" #include "src/ast/call_expression.h" #include "src/ast/call_statement.h" #include "src/ast/case_statement.h" #include "src/ast/continue_statement.h" #include "src/ast/discard_statement.h" #include "src/ast/else_statement.h" #include "src/ast/fallthrough_statement.h" #include "src/ast/identifier_expression.h" #include "src/ast/if_statement.h" #include "src/ast/loop_statement.h" #include "src/ast/member_accessor_expression.h" #include "src/ast/return_statement.h" #include "src/ast/scalar_constructor_expression.h" #include "src/ast/switch_statement.h" #include "src/ast/type_constructor_expression.h" #include "src/ast/unary_op_expression.h" #include "src/ast/variable_decl_statement.h" #include "src/diagnostic/formatter.h" #include "src/program_builder.h" #include "src/semantic/call.h" #include "src/semantic/expression.h" #include "src/semantic/function.h" #include "src/semantic/intrinsic.h" #include "src/semantic/member_accessor_expression.h" #include "src/semantic/statement.h" #include "src/semantic/variable.h" #include "src/type/array_type.h" #include "src/type/bool_type.h" #include "src/type/depth_texture_type.h" #include "src/type/f32_type.h" #include "src/type/i32_type.h" #include "src/type/matrix_type.h" #include "src/type/multisampled_texture_type.h" #include "src/type/pointer_type.h" #include "src/type/sampled_texture_type.h" #include "src/type/storage_texture_type.h" #include "src/type/struct_type.h" #include "src/type/texture_type.h" #include "src/type/u32_type.h" #include "src/type/vector_type.h" #include "src/type/void_type.h" namespace tint { namespace { using IntrinsicType = tint::semantic::IntrinsicType; // Helper class that temporarily assigns a value to a reference for the scope of // the object. Once the ScopedAssignment is destructed, the original value is // restored. template class ScopedAssignment { public: ScopedAssignment(T& ref, T val) : ref_(ref) { old_value_ = ref; ref = val; } ~ScopedAssignment() { ref_ = old_value_; } private: T& ref_; T old_value_; }; } // namespace TypeDeterminer::TypeDeterminer(ProgramBuilder* builder) : builder_(builder), intrinsic_table_(IntrinsicTable::Create()) {} TypeDeterminer::~TypeDeterminer() = default; TypeDeterminer::BlockInfo::BlockInfo(TypeDeterminer::BlockInfo::Type type, TypeDeterminer::BlockInfo* parent, const ast::BlockStatement* block) : type(type), parent(parent), block(block) {} TypeDeterminer::BlockInfo::~BlockInfo() = default; void TypeDeterminer::set_referenced_from_function_if_needed(VariableInfo* var, bool local) { if (current_function_ == nullptr) { return; } if (var->storage_class == ast::StorageClass::kNone || var->storage_class == ast::StorageClass::kFunction) { return; } current_function_->referenced_module_vars.add(var); if (local) { current_function_->local_referenced_module_vars.add(var); } } bool TypeDeterminer::Determine() { bool result = DetermineInternal(); // Even if resolving failed, create all the semantic nodes for information we // did generate. CreateSemanticNodes(); return result; } bool TypeDeterminer::DetermineInternal() { for (auto* var : builder_->AST().GlobalVariables()) { variable_stack_.set_global(var->symbol(), CreateVariableInfo(var)); if (var->has_constructor()) { if (!DetermineResultType(var->constructor())) { return false; } } } if (!DetermineFunctions(builder_->AST().Functions())) { return false; } return true; } bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) { for (auto* func : funcs) { if (!DetermineFunction(func)) { return false; } } return true; } bool TypeDeterminer::DetermineFunction(ast::Function* func) { auto* func_info = function_infos_.Create(func); ScopedAssignment sa(current_function_, func_info); variable_stack_.push_scope(); for (auto* param : func->params()) { variable_stack_.set(param->symbol(), CreateVariableInfo(param)); } if (!DetermineBlockStatement(func->body())) { return false; } variable_stack_.pop_scope(); // Register the function information _after_ processing the statements. This // allows us to catch a function calling itself when determining the call // information as this function doesn't exist until it's finished. symbol_to_function_[func->symbol()] = func_info; function_to_info_.emplace(func, func_info); return true; } bool TypeDeterminer::DetermineBlockStatement(const ast::BlockStatement* stmt) { auto* block = block_infos_.Create(BlockInfo::Type::Generic, current_block_, stmt); block_to_info_[stmt] = block; ScopedAssignment scope_sa(current_block_, block); return DetermineStatements(stmt->list()); } bool TypeDeterminer::DetermineStatements(const ast::StatementList& stmts) { for (auto* stmt : stmts) { if (auto* decl = stmt->As()) { if (!ValidateVariableDeclStatement(decl)) { return false; } } if (!DetermineVariableStorageClass(stmt)) { return false; } if (!DetermineResultType(stmt)) { return false; } } return true; } bool TypeDeterminer::DetermineVariableStorageClass(ast::Statement* stmt) { auto* var_decl = stmt->As(); if (var_decl == nullptr) { return true; } auto* var = var_decl->variable(); auto* info = CreateVariableInfo(var); variable_to_info_.emplace(var, info); // Nothing to do for const if (var->is_const()) { return true; } if (info->storage_class == ast::StorageClass::kFunction) { return true; } if (info->storage_class != ast::StorageClass::kNone) { diagnostics_.add_error("function variable has a non-function storage class", stmt->source()); return false; } info->storage_class = ast::StorageClass::kFunction; return true; } bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) { auto* sem_statement = builder_->create(stmt); ScopedAssignment sa(current_statement_, sem_statement); if (auto* a = stmt->As()) { return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs()); } if (auto* b = stmt->As()) { return DetermineBlockStatement(b); } if (stmt->Is()) { return true; } if (auto* c = stmt->As()) { return DetermineResultType(c->expr()); } if (auto* c = stmt->As()) { return DetermineBlockStatement(c->body()); } if (stmt->Is()) { // Set if we've hit the first continue statement in our parent loop if (auto* loop_block = current_block_->FindFirstParent(BlockInfo::Type::Loop)) { if (loop_block->first_continue == size_t(~0)) { loop_block->first_continue = loop_block->decls.size(); } } else { diagnostics_.add_error("continue statement must be in a loop", stmt->source()); return false; } return true; } if (stmt->Is()) { return true; } if (auto* e = stmt->As()) { return DetermineResultType(e->condition()) && DetermineBlockStatement(e->body()); } if (stmt->Is()) { return true; } if (auto* i = stmt->As()) { if (!DetermineResultType(i->condition()) || !DetermineBlockStatement(i->body())) { return false; } for (auto* else_stmt : i->else_statements()) { if (!DetermineResultType(else_stmt)) { return false; } } return true; } if (auto* l = stmt->As()) { // We don't call DetermineBlockStatement on the body and continuing block as // these would make their BlockInfo siblings as in the AST, but we want the // body BlockInfo to parent the continuing BlockInfo for semantics and // validation. Also, we need to set their types differently. auto* block = block_infos_.Create(BlockInfo::Type::Loop, current_block_, l->body()); block_to_info_[l->body()] = block; ScopedAssignment scope_sa(current_block_, block); if (!DetermineStatements(l->body()->list())) { return false; } if (l->has_continuing()) { auto* block = block_infos_.Create(BlockInfo::Type::LoopContinuing, current_block_, l->continuing()); block_to_info_[l->continuing()] = block; ScopedAssignment scope_sa(current_block_, block); if (!DetermineStatements(l->continuing()->list())) { return false; } } return true; } if (auto* r = stmt->As()) { return DetermineResultType(r->value()); } if (auto* s = stmt->As()) { if (!DetermineResultType(s->condition())) { return false; } for (auto* case_stmt : s->body()) { if (!DetermineResultType(case_stmt)) { return false; } } return true; } if (auto* v = stmt->As()) { variable_stack_.set(v->variable()->symbol(), variable_to_info_.at(v->variable())); current_block_->decls.push_back(v->variable()); return DetermineResultType(v->variable()->constructor()); } diagnostics_.add_error( "unknown statement type for type determination: " + builder_->str(stmt), stmt->source()); return false; } bool TypeDeterminer::DetermineResultType(const ast::ExpressionList& list) { for (auto* expr : list) { if (!DetermineResultType(expr)) { return false; } } return true; } bool TypeDeterminer::DetermineResultType(ast::Expression* expr) { // This is blindly called above, so in some cases the expression won't exist. if (!expr) { return true; } if (TypeOf(expr)) { return true; // Already resolved } if (auto* a = expr->As()) { return DetermineArrayAccessor(a); } if (auto* b = expr->As()) { return DetermineBinary(b); } if (auto* b = expr->As()) { return DetermineBitcast(b); } if (auto* c = expr->As()) { return DetermineCall(c); } if (auto* c = expr->As()) { return DetermineConstructor(c); } if (auto* i = expr->As()) { return DetermineIdentifier(i); } if (auto* m = expr->As()) { return DetermineMemberAccessor(m); } if (auto* u = expr->As()) { return DetermineUnaryOp(u); } diagnostics_.add_error("unknown expression for type determination", expr->source()); return false; } bool TypeDeterminer::DetermineArrayAccessor( ast::ArrayAccessorExpression* expr) { if (!DetermineResultType(expr->array())) { return false; } if (!DetermineResultType(expr->idx_expr())) { return false; } auto* res = TypeOf(expr->array()); auto* parent_type = res->UnwrapAll(); type::Type* ret = nullptr; if (auto* arr = parent_type->As()) { ret = arr->type(); } else if (auto* vec = parent_type->As()) { ret = vec->type(); } else if (auto* mat = parent_type->As()) { ret = builder_->create(mat->type(), mat->rows()); } else { diagnostics_.add_error("invalid parent type (" + parent_type->type_name() + ") in array accessor", expr->source()); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } else if (auto* arr = parent_type->As()) { if (!arr->type()->is_scalar()) { // If we extract a non-scalar from an array then we also get a pointer. We // will generate a Function storage class variable to store this // into. ret = builder_->create(ret, ast::StorageClass::kFunction); } } SetType(expr, ret); return true; } bool TypeDeterminer::DetermineBitcast(ast::BitcastExpression* expr) { if (!DetermineResultType(expr->expr())) { return false; } SetType(expr, expr->type()); return true; } bool TypeDeterminer::DetermineCall(ast::CallExpression* call) { if (!DetermineResultType(call->params())) { return false; } // The expression has to be an identifier as you can't store function pointers // but, if it isn't we'll just use the normal result determination to be on // the safe side. auto* ident = call->func()->As(); if (!ident) { diagnostics_.add_error("call target is not an identifier", call->source()); return false; } auto name = builder_->Symbols().NameFor(ident->symbol()); auto intrinsic_type = semantic::ParseIntrinsicType(name); if (intrinsic_type != IntrinsicType::kNone) { if (!DetermineIntrinsicCall(call, intrinsic_type)) { return false; } } else { if (current_function_) { auto callee_func_it = symbol_to_function_.find(ident->symbol()); if (callee_func_it == symbol_to_function_.end()) { if (current_function_->declaration->symbol() == ident->symbol()) { diagnostics_.add_error("recursion is not permitted. '" + name + "' attempted to call itself.", call->source()); } else { diagnostics_.add_error( "v-0006: unable to find called function: " + name, call->source()); } return false; } auto* callee_func = callee_func_it->second; // Note: Requires called functions to be resolved first. // This is currently guaranteed as functions must be declared before use. current_function_->transitive_calls.add(callee_func); for (auto* transitive_call : callee_func->transitive_calls) { current_function_->transitive_calls.add(transitive_call); } // We inherit any referenced variables from the callee. for (auto* var : callee_func->referenced_module_vars) { set_referenced_from_function_if_needed(var, false); } } auto iter = symbol_to_function_.find(ident->symbol()); if (iter == symbol_to_function_.end()) { diagnostics_.add_error( "v-0005: function must be declared before use: '" + name + "'", call->source()); return false; } auto* function = iter->second; function_calls_.emplace(call, FunctionCallInfo{function, current_statement_}); SetType(call, function->declaration->return_type()); } return true; } bool TypeDeterminer::DetermineIntrinsicCall( ast::CallExpression* call, semantic::IntrinsicType intrinsic_type) { std::vector arg_tys; arg_tys.reserve(call->params().size()); for (auto* expr : call->params()) { arg_tys.emplace_back(TypeOf(expr)); } auto result = intrinsic_table_->Lookup(*builder_, intrinsic_type, arg_tys, call->source()); if (!result.intrinsic) { // Intrinsic lookup failed. diagnostics_.add(result.diagnostics); // TODO(bclayton): https://crbug.com/tint/487 // The Validator expects intrinsic signature mismatches to still produce // type information. The rules for what the Validator expects are rather // bespoke. Try to match what the Validator expects. As the Validator's // checks on intrinsics is now almost entirely covered by the // IntrinsicTable, we should remove the Validator checks on intrinsic // signatures and remove these hacks. semantic::ParameterList parameters; parameters.reserve(arg_tys.size()); for (auto* arg : arg_tys) { parameters.emplace_back(semantic::Parameter{arg}); } type::Type* ret_ty = nullptr; switch (intrinsic_type) { case IntrinsicType::kCross: ret_ty = builder_->ty.vec3(); break; case IntrinsicType::kDeterminant: ret_ty = builder_->create(); break; case IntrinsicType::kArrayLength: ret_ty = builder_->create(); break; default: ret_ty = arg_tys.empty() ? builder_->ty.void_() : arg_tys[0]; break; } auto* intrinsic = builder_->create(intrinsic_type, ret_ty, parameters); builder_->Sem().Add(call, builder_->create( call, intrinsic, current_statement_)); SetType(call, ret_ty); return false; } builder_->Sem().Add(call, builder_->create( call, result.intrinsic, current_statement_)); SetType(call, result.intrinsic->ReturnType()); return true; } bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) { if (auto* ty = expr->As()) { for (auto* value : ty->values()) { if (!DetermineResultType(value)) { return false; } } SetType(expr, ty->type()); } else { SetType(expr, expr->As()->literal()->type()); } return true; } bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) { auto symbol = expr->symbol(); VariableInfo* var; if (variable_stack_.get(symbol, &var)) { // A constant is the type, but a variable is always a pointer so synthesize // the pointer around the variable type. if (var->declaration->is_const()) { SetType(expr, var->declaration->type()); } else if (var->declaration->type()->Is()) { SetType(expr, var->declaration->type()); } else { SetType(expr, builder_->create(var->declaration->type(), var->storage_class)); } var->users.push_back(expr); set_referenced_from_function_if_needed(var, true); // If identifier is part of a loop continuing block, make sure it doesn't // refer to a variable that is bypassed by a continue statement in the // loop's body block. if (auto* continuing_block = current_block_->FindFirstParent(BlockInfo::Type::LoopContinuing)) { auto* loop_block = continuing_block->FindFirstParent(BlockInfo::Type::Loop); if (loop_block->first_continue != size_t(~0)) { auto& decls = loop_block->decls; // If our identifier is in loop_block->decls, make sure its index is // less than first_continue auto iter = std::find_if( decls.begin(), decls.end(), [&symbol](auto* var) { return var->symbol() == symbol; }); if (iter != decls.end()) { auto var_decl_index = static_cast(std::distance(decls.begin(), iter)); if (var_decl_index >= loop_block->first_continue) { diagnostics_.add_error( "continue statement bypasses declaration of '" + builder_->Symbols().NameFor(symbol) + "' in continuing block", expr->source()); return false; } } } } return true; } auto iter = symbol_to_function_.find(symbol); if (iter != symbol_to_function_.end()) { diagnostics_.add_error("missing '(' for function call", expr->source().End()); return false; } std::string name = builder_->Symbols().NameFor(symbol); if (semantic::ParseIntrinsicType(name) != IntrinsicType::kNone) { diagnostics_.add_error("missing '(' for intrinsic call", expr->source().End()); return false; } diagnostics_.add_error( "v-0006: identifier must be declared before use: " + name, expr->source()); return false; } bool TypeDeterminer::DetermineMemberAccessor( ast::MemberAccessorExpression* expr) { if (!DetermineResultType(expr->structure())) { return false; } auto* res = TypeOf(expr->structure()); auto* data_type = res->UnwrapPtrIfNeeded()->UnwrapIfNeeded(); type::Type* ret = nullptr; std::vector swizzle; if (auto* ty = data_type->As()) { auto* strct = ty->impl(); auto symbol = expr->member()->symbol(); for (auto* member : strct->members()) { if (member->symbol() == symbol) { ret = member->type(); break; } } if (ret == nullptr) { diagnostics_.add_error( "struct member " + builder_->Symbols().NameFor(symbol) + " not found", expr->source()); return false; } // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } } else if (auto* vec = data_type->As()) { std::string str = builder_->Symbols().NameFor(expr->member()->symbol()); auto size = str.size(); swizzle.reserve(str.size()); for (auto c : str) { switch (c) { case 'x': case 'r': swizzle.emplace_back(0); break; case 'y': case 'g': swizzle.emplace_back(1); break; case 'z': case 'b': swizzle.emplace_back(2); break; case 'w': case 'a': swizzle.emplace_back(3); break; default: diagnostics_.add_error( "invalid vector swizzle character", expr->member()->source().Begin() + swizzle.size()); return false; } } if (size < 1 || size > 4) { diagnostics_.add_error("invalid vector swizzle size", expr->member()->source()); return false; } // All characters are valid, check if they're being mixed auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; if (!std::all_of(str.begin(), str.end(), is_rgba) && !std::all_of(str.begin(), str.end(), is_xyzw)) { diagnostics_.add_error( "invalid mixing of vector swizzle characters rgba with xyzw", expr->member()->source()); return false; } if (size == 1) { // A single element swizzle is just the type of the vector. ret = vec->type(); // If we're extracting from a pointer, we return a pointer. if (auto* ptr = res->As()) { ret = builder_->create(ret, ptr->storage_class()); } } else { // The vector will have a number of components equal to the length of // the swizzle. This assumes the validator will check that the swizzle // is correct. ret = builder_->create(vec->type(), static_cast(size)); } } else { diagnostics_.add_error( "invalid use of member accessor on a non-vector/non-struct " + data_type->type_name(), expr->source()); return false; } builder_->Sem().Add(expr, builder_->create( expr, ret, current_statement_, std::move(swizzle))); SetType(expr, ret); return true; } bool TypeDeterminer::DetermineBinary(ast::BinaryExpression* expr) { if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) { return false; } // Result type matches first parameter type if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() || expr->IsShiftRight() || expr->IsAdd() || expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) { SetType(expr, TypeOf(expr->lhs())->UnwrapPtrIfNeeded()); return true; } // Result type is a scalar or vector of boolean type if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() || expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() || expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) { auto* bool_type = builder_->create(); auto* param_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded(); type::Type* result_type = bool_type; if (auto* vec = param_type->As()) { result_type = builder_->create(bool_type, vec->size()); } SetType(expr, result_type); return true; } if (expr->IsMultiply()) { auto* lhs_type = TypeOf(expr->lhs())->UnwrapPtrIfNeeded(); auto* rhs_type = TypeOf(expr->rhs())->UnwrapPtrIfNeeded(); // Note, the ordering here matters. The later checks depend on the prior // checks having been done. auto* lhs_mat = lhs_type->As(); auto* rhs_mat = rhs_type->As(); auto* lhs_vec = lhs_type->As(); auto* rhs_vec = rhs_type->As(); type::Type* result_type; if (lhs_mat && rhs_mat) { result_type = builder_->create( lhs_mat->type(), lhs_mat->rows(), rhs_mat->columns()); } else if (lhs_mat && rhs_vec) { result_type = builder_->create(lhs_mat->type(), lhs_mat->rows()); } else if (lhs_vec && rhs_mat) { result_type = builder_->create(rhs_mat->type(), rhs_mat->columns()); } else if (lhs_mat) { // matrix * scalar result_type = lhs_type; } else if (rhs_mat) { // scalar * matrix result_type = rhs_type; } else if (lhs_vec && rhs_vec) { result_type = lhs_type; } else if (lhs_vec) { // Vector * scalar result_type = lhs_type; } else if (rhs_vec) { // Scalar * vector result_type = rhs_type; } else { // Scalar * Scalar result_type = lhs_type; } SetType(expr, result_type); return true; } diagnostics_.add_error("Unknown binary expression", expr->source()); return false; } bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) { // Result type matches the parameter type. if (!DetermineResultType(expr->expr())) { return false; } auto* result_type = TypeOf(expr->expr())->UnwrapPtrIfNeeded(); SetType(expr, result_type); return true; } bool TypeDeterminer::ValidateVariableDeclStatement( const ast::VariableDeclStatement* stmt) { auto* ctor = stmt->variable()->constructor(); if (!ctor) { return true; } if (auto* sce = ctor->As()) { auto* lhs_type = stmt->variable()->type()->UnwrapAliasIfNeeded(); auto* rhs_type = sce->literal()->type()->UnwrapAliasIfNeeded(); if (lhs_type != rhs_type) { diagnostics_.add_error( "constructor expression type does not match variable type", stmt->source()); return false; } } return true; } TypeDeterminer::VariableInfo* TypeDeterminer::CreateVariableInfo( ast::Variable* var) { auto* info = variable_infos_.Create(var); variable_to_info_.emplace(var, info); return info; } type::Type* TypeDeterminer::TypeOf(ast::Expression* expr) { auto it = expr_info_.find(expr); if (it != expr_info_.end()) { return it->second.type; } return nullptr; } void TypeDeterminer::SetType(ast::Expression* expr, type::Type* type) { assert(expr_info_.count(expr) == 0); expr_info_.emplace(expr, ExpressionInfo{type, current_statement_}); } void TypeDeterminer::CreateSemanticNodes() const { auto& sem = builder_->Sem(); // Collate all the 'ancestor_entry_points' - this is a map of function symbol // to all the entry points that transitively call the function. std::unordered_map> ancestor_entry_points; for (auto* func : builder_->AST().Functions()) { auto it = function_to_info_.find(func); if (it == function_to_info_.end()) { continue; // Type determination has likely errored. Process what we can. } auto* info = it->second; if (!func->IsEntryPoint()) { continue; } for (auto* call : info->transitive_calls) { auto& vec = ancestor_entry_points[call->declaration->symbol()]; vec.emplace_back(func->symbol()); } } // Create semantic nodes for all ast::Variables for (auto it : variable_to_info_) { auto* var = it.first; auto* info = it.second; std::vector users; for (auto* user : info->users) { // Create semantic node for the identifier expression if necessary auto* sem_expr = sem.Get(user); if (sem_expr == nullptr) { auto* type = expr_info_.at(user).type; auto* stmt = expr_info_.at(user).statement; sem_expr = builder_->create(user, type, stmt); sem.Add(user, sem_expr); } users.push_back(sem_expr); } sem.Add(var, builder_->create(var, info->storage_class, std::move(users))); } auto remap_vars = [&sem](const std::vector& in) { std::vector out; out.reserve(in.size()); for (auto* info : in) { out.emplace_back(sem.Get(info->declaration)); } return out; }; // Create semantic nodes for all ast::Functions std::unordered_map func_info_to_sem_func; for (auto it : function_to_info_) { auto* func = it.first; auto* info = it.second; auto* sem_func = builder_->create( info->declaration, remap_vars(info->referenced_module_vars), remap_vars(info->local_referenced_module_vars), ancestor_entry_points[func->symbol()]); func_info_to_sem_func.emplace(info, sem_func); sem.Add(func, sem_func); } // Create semantic nodes for all ast::CallExpressions for (auto it : function_calls_) { auto* call = it.first; auto info = it.second; auto* sem_func = func_info_to_sem_func.at(info.function); sem.Add(call, builder_->create(call, sem_func, info.statement)); } // Create semantic nodes for all remaining expression types for (auto it : expr_info_) { auto* expr = it.first; auto& info = it.second; if (sem.Get(expr)) { // Expression has already been assigned a semantic node continue; } sem.Add(expr, builder_->create(expr, info.type, info.statement)); } } TypeDeterminer::VariableInfo::VariableInfo(ast::Variable* decl) : declaration(decl), storage_class(decl->declared_storage_class()) {} TypeDeterminer::VariableInfo::~VariableInfo() = default; TypeDeterminer::FunctionInfo::FunctionInfo(ast::Function* decl) : declaration(decl) {} TypeDeterminer::FunctionInfo::~FunctionInfo() = default; } // namespace tint