/* Rijndael Block Cipher - aes.c Written by Mike Scott 21st April 1999 mike@compapp.dcu.ie Permission for free direct or derivative use is granted subject to compliance with any conditions that the originators of the algorithm place on its exploitation. */ #include "aes.h" #include //#include #include /* rotates x one bit to the left */ #define ROTL(x) (((x)>>7)|((x)<<1)) /* Rotates 32-bit word left by 1, 2 or 3 byte */ #define ROTL8(x) (((x)<<8)|((x)>>24)) #define ROTL16(x) (((x)<<16)|((x)>>16)) #define ROTL24(x) (((x)<<24)|((x)>>8)) /* Fixed Data */ static atUint8 InCo[4] = {0xB, 0xD, 0x9, 0xE}; /* Inverse Coefficients */ static atUint8 fbsub[256]; static atUint8 rbsub[256]; static atUint8 ptab[256], ltab[256]; static atUint32 ftable[256]; static atUint32 rtable[256]; static atUint32 rco[30]; /* Parameter-dependent data */ int Nk, Nb, Nr; atUint8 fi[24], ri[24]; atUint32 fkey[120]; atUint32 rkey[120]; static atUint32 pack(const atUint8* b) { /* pack bytes into a 32-bit Word */ return ((atUint32)b[3] << 24) | ((atUint32)b[2] << 16) | ((atUint32)b[1] << 8) | (atUint32)b[0]; } static void unpack(atUint32 a, atUint8* b) { /* unpack bytes from a word */ b[0] = (atUint8)a; b[1] = (atUint8)(a >> 8); b[2] = (atUint8)(a >> 16); b[3] = (atUint8)(a >> 24); } static atUint8 xtime(atUint8 a) { atUint8 b; if (a & 0x80) b = 0x1B; else b = 0; a <<= 1; a ^= b; return a; } static atUint8 bmul(atUint8 x, atUint8 y) { /* x.y= AntiLog(Log(x) + Log(y)) */ if (x && y) return ptab[(ltab[x] + ltab[y]) % 255]; else return 0; } static atUint32 SubByte(atUint32 a) { atUint8 b[4]; unpack(a, b); b[0] = fbsub[b[0]]; b[1] = fbsub[b[1]]; b[2] = fbsub[b[2]]; b[3] = fbsub[b[3]]; return pack(b); } static atUint8 product(atUint32 x, atUint32 y) { /* dot product of two 4-byte arrays */ atUint8 xb[4], yb[4]; unpack(x, xb); unpack(y, yb); return bmul(xb[0], yb[0])^bmul(xb[1], yb[1])^bmul(xb[2], yb[2])^bmul(xb[3], yb[3]); } static atUint32 InvMixCol(atUint32 x) { /* matrix Multiplication */ atUint32 y, m; atUint8 b[4]; m = pack(InCo); b[3] = product(m, x); m = ROTL24(m); b[2] = product(m, x); m = ROTL24(m); b[1] = product(m, x); m = ROTL24(m); b[0] = product(m, x); y = pack(b); return y; } atUint8 ByteSub(atUint8 x) { atUint8 y = ptab[255 - ltab[x]]; /* multiplicative inverse */ x = y; x = ROTL(x); y ^= x; x = ROTL(x); y ^= x; x = ROTL(x); y ^= x; x = ROTL(x); y ^= x; y ^= 0x63; return y; } void gentables(void) { /* generate tables */ int i; atUint8 y, b[4]; /* use 3 as primitive root to generate power and log tables */ ltab[0] = 0; ptab[0] = 1; ltab[1] = 0; ptab[1] = 3; ltab[3] = 1; for (i = 2; i < 256; i++) { ptab[i] = ptab[i - 1] ^ xtime(ptab[i - 1]); ltab[ptab[i]] = i; } /* affine transformation:- each bit is xored with itself shifted one bit */ fbsub[0] = 0x63; rbsub[0x63] = 0; for (i = 1; i < 256; i++) { y = ByteSub((atUint8)i); fbsub[i] = y; rbsub[y] = i; } for (i = 0, y = 1; i < 30; i++) { rco[i] = y; y = xtime(y); } /* calculate forward and reverse tables */ for (i = 0; i < 256; i++) { y = fbsub[i]; b[3] = y ^ xtime(y); b[2] = y; b[1] = y; b[0] = xtime(y); ftable[i] = pack(b); y = rbsub[i]; b[3] = bmul(InCo[0], y); b[2] = bmul(InCo[1], y); b[1] = bmul(InCo[2], y); b[0] = bmul(InCo[3], y); rtable[i] = pack(b); } } void gkey(int nb, int nk, const atUint8* key) { /* blocksize=32*nb bits. Key=32*nk bits */ /* currently nb,bk = 4, 6 or 8 */ /* key comes as 4*Nk bytes */ /* Key Scheduler. Create expanded encryption key */ int i, j, k, m, N; int C1, C2, C3; atUint32 CipherKey[8]; Nb = nb; Nk = nk; /* Nr is number of rounds */ if (Nb >= Nk) Nr = 6 + Nb; else Nr = 6 + Nk; C1 = 1; if (Nb < 8) { C2 = 2; C3 = 3; } else { C2 = 3; C3 = 4; } /* pre-calculate forward and reverse increments */ for (m = j = 0; j < nb; j++, m += 3) { fi[m] = (j + C1) % nb; fi[m + 1] = (j + C2) % nb; fi[m + 2] = (j + C3) % nb; ri[m] = (nb + j - C1) % nb; ri[m + 1] = (nb + j - C2) % nb; ri[m + 2] = (nb + j - C3) % nb; } N = Nb * (Nr + 1); for (i = j = 0; i < Nk; i++, j += 4) { CipherKey[i] = pack(key + j); } for (i = 0; i < Nk; i++) fkey[i] = CipherKey[i]; for (j = Nk, k = 0; j < N; j += Nk, k++) { fkey[j] = fkey[j - Nk] ^ SubByte(ROTL24(fkey[j - 1]))^rco[k]; if (Nk <= 6) { for (i = 1; i < Nk && (i + j) < N; i++) fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1]; } else { for (i = 1; i < 4 && (i + j) < N; i++) fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1]; if ((j + 4) < N) fkey[j + 4] = fkey[j + 4 - Nk] ^ SubByte(fkey[j + 3]); for (i = 5; i < Nk && (i + j) < N; i++) fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1]; } } /* now for the expanded decrypt key in reverse order */ for (j = 0; j < Nb; j++) rkey[j + N - Nb] = fkey[j]; for (i = Nb; i < N - Nb; i += Nb) { k = N - Nb - i; for (j = 0; j < Nb; j++) rkey[k + j] = InvMixCol(fkey[i + j]); } for (j = N - Nb; j < N; j++) rkey[j - N + Nb] = fkey[j]; } /* There is an obvious time/space trade-off possible here. * * Instead of just one ftable[], I could have 4, the other * * 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */ void encrypt(atUint8* buff) { int i, j, k, m; atUint32 a[8], b[8], *x, *y, *t; for (i = j = 0; i < Nb; i++, j += 4) { a[i] = pack(buff + j); a[i] ^= fkey[i]; } k = Nb; x = a; y = b; /* State alternates between a and b */ for (i = 1; i < Nr; i++) { /* Nr is number of rounds. May be odd. */ /* if Nb is fixed - unroll this next loop and hard-code in the values of fi[] */ for (m = j = 0; j < Nb; j++, m += 3) { /* deal with each 32-bit element of the State */ /* This is the time-critical bit */ y[j] = fkey[k++] ^ ftable[(atUint8)x[j]] ^ ROTL8(ftable[(atUint8)(x[fi[m]] >> 8)])^ ROTL16(ftable[(atUint8)(x[fi[m + 1]] >> 16)])^ ROTL24(ftable[(atUint8)(x[fi[m + 2]] >> 24)]); } t = x; x = y; y = t; /* swap pointers */ } /* Last Round - unroll if possible */ for (m = j = 0; j < Nb; j++, m += 3) { y[j] = fkey[k++] ^ (atUint32)fbsub[(atUint8)x[j]] ^ ROTL8((atUint32)fbsub[(atUint8)(x[fi[m]] >> 8)])^ ROTL16((atUint32)fbsub[(atUint8)(x[fi[m + 1]] >> 16)])^ ROTL24((atUint32)fbsub[(atUint8)(x[fi[m + 2]] >> 24)]); } for (i = j = 0; i < Nb; i++, j += 4) { unpack(y[i], (atUint8*)&buff[j]); x[i] = y[i] = 0; /* clean up stack */ } return; } void decrypt(atUint8* buff) { int i, j, k, m; atUint32 a[8], b[8], *x, *y, *t; for (i = j = 0; i < Nb; i++, j += 4) { a[i] = pack(buff + j); a[i] ^= rkey[i]; } k = Nb; x = a; y = b; /* State alternates between a and b */ for (i = 1; i < Nr; i++) { /* Nr is number of rounds. May be odd. */ /* if Nb is fixed - unroll this next loop and hard-code in the values of ri[] */ for (m = j = 0; j < Nb; j++, m += 3) { /* This is the time-critical bit */ y[j] = rkey[k++] ^ rtable[(atUint8)x[j]] ^ ROTL8(rtable[(atUint8)(x[ri[m]] >> 8)])^ ROTL16(rtable[(atUint8)(x[ri[m + 1]] >> 16)])^ ROTL24(rtable[(atUint8)(x[ri[m + 2]] >> 24)]); } t = x; x = y; y = t; /* swap pointers */ } /* Last Round - unroll if possible */ for (m = j = 0; j < Nb; j++, m += 3) { y[j] = rkey[k++] ^ (atUint32)rbsub[(atUint8)x[j]] ^ ROTL8((atUint32)rbsub[(atUint8)(x[ri[m]] >> 8)])^ ROTL16((atUint32)rbsub[(atUint8)(x[ri[m + 1]] >> 16)])^ ROTL24((atUint32)rbsub[(atUint8)(x[ri[m + 2]] >> 24)]); } for (i = j = 0; i < Nb; i++, j += 4) { unpack(y[i], (atUint8*)&buff[j]); x[i] = y[i] = 0; /* clean up stack */ } return; } void aes_set_key(const atUint8* key) { gentables(); gkey(4, 4, key); } // CBC mode decryption void aes_decrypt(atUint8* iv, const atUint8* inbuf, atUint8* outbuf, atUint64 len) { atUint8 block[16]; atUint8* ctext_ptr; unsigned int blockno = 0, i; //fprintf( stderr,"aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len ); //printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len); for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) { unsigned int fraction; if (blockno == (len / sizeof(block))) // last block { fraction = len % sizeof(block); if (fraction == 0) break; memset(block, 0, sizeof(block)); } else fraction = 16; // debug_printf("block %d: fraction = %d\n", blockno, fraction); memcpy(block, inbuf + blockno * sizeof(block), fraction); decrypt(block); if (blockno == 0) ctext_ptr = iv; else ctext_ptr = (atUint8*)(inbuf + (blockno - 1) * sizeof(block)); for (i = 0; i < fraction; i++) outbuf[blockno * sizeof(block) + i] = ctext_ptr[i] ^ block[i]; // debug_printf("Block %d output: ", blockno); // hexdump(outbuf + blockno*sizeof(block), 16); } } // CBC mode encryption void aes_encrypt(atUint8* iv, const atUint8* inbuf, atUint8* outbuf, atUint64 len) { atUint8 block[16]; unsigned int blockno = 0, i; //printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len); //fprintf( stderr,"aes_encrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len); for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) { unsigned int fraction; if (blockno == (len / sizeof(block))) // last block { fraction = len % sizeof(block); if (fraction == 0) break; memset(block, 0, sizeof(block)); } else fraction = 16; // debug_printf("block %d: fraction = %d\n", blockno, fraction); memcpy(block, inbuf + blockno * sizeof(block), fraction); for (i = 0; i < fraction; i++) block[i] = inbuf[blockno * sizeof(block) + i] ^ iv[i]; encrypt(block); memcpy(iv, block, sizeof(block)); memcpy(outbuf + blockno * sizeof(block), block, sizeof(block)); // debug_printf("Block %d output: ", blockno); // hexdump(outbuf + blockno*sizeof(block), 16); } }