2022-08-26 03:46:24 +00:00
|
|
|
/* @(#)e_acos.c 1.2 95/01/04 */
|
|
|
|
/*
|
|
|
|
* ====================================================
|
|
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software is freely granted, provided that this notice
|
|
|
|
* is preserved.
|
|
|
|
* ====================================================
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* __ieee754_acos(x)
|
|
|
|
* Method :
|
|
|
|
* acos(x) = pi/2 - asin(x)
|
|
|
|
* acos(-x) = pi/2 + asin(x)
|
|
|
|
* For |x|<=0.5
|
|
|
|
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
|
|
|
* For x>0.5
|
|
|
|
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
|
|
|
* = 2asin(sqrt((1-x)/2))
|
|
|
|
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
|
|
|
* = 2f + (2c + 2s*z*R(z))
|
|
|
|
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
|
|
|
* for f so that f+c ~ sqrt(z).
|
|
|
|
* For x<-0.5
|
|
|
|
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
|
|
|
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
|
|
|
*
|
|
|
|
* Special cases:
|
|
|
|
* if x is NaN, return x itself;
|
|
|
|
* if |x|>1, return NaN with invalid signal.
|
|
|
|
*
|
|
|
|
* Function needed: sqrt
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "fdlibm.h"
|
|
|
|
|
|
|
|
#ifdef __STDC__
|
|
|
|
static const double
|
|
|
|
#else
|
|
|
|
static double
|
|
|
|
#endif
|
|
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
|
|
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
|
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
|
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
|
|
|
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
|
|
|
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
|
|
|
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
|
|
|
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
|
|
|
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
|
|
|
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
|
|
|
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
|
|
|
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
|
|
|
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
|
|
|
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
|
|
|
|
|
|
|
#ifdef __STDC__
|
|
|
|
double __ieee754_acos(double x)
|
|
|
|
#else
|
|
|
|
double __ieee754_acos(x)
|
|
|
|
double x;
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
double z, p, q, r, w, s, c, df;
|
2022-08-30 04:05:16 +00:00
|
|
|
_INT32 hx, ix;
|
2022-08-26 03:46:24 +00:00
|
|
|
hx = __HI(x);
|
|
|
|
ix = hx & 0x7fffffff;
|
|
|
|
if (ix >= 0x3ff00000) { /* |x| >= 1 */
|
|
|
|
if (((ix - 0x3ff00000) | __LO(x)) == 0) { /* |x|==1 */
|
|
|
|
if (hx > 0)
|
|
|
|
return 0.0; /* acos(1) = 0 */
|
|
|
|
else
|
|
|
|
return pi + 2.0 * pio2_lo; /* acos(-1)= pi */
|
|
|
|
}
|
|
|
|
return NAN; /* acos(|x|>1) is NaN */
|
|
|
|
}
|
|
|
|
if (ix < 0x3fe00000) { /* |x| < 0.5 */
|
|
|
|
if (ix <= 0x3c600000)
|
|
|
|
return pio2_hi + pio2_lo; /*if|x|<2**-57*/
|
|
|
|
z = x * x;
|
|
|
|
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
|
|
|
|
q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
|
|
|
|
r = p / q;
|
|
|
|
return pio2_hi - (x - (pio2_lo - x * r));
|
|
|
|
} else if (hx < 0) { /* x < -0.5 */
|
|
|
|
z = (one + x) * 0.5;
|
|
|
|
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
|
|
|
|
q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
|
|
|
|
s = sqrt(z);
|
|
|
|
r = p / q;
|
|
|
|
w = r * s - pio2_lo;
|
|
|
|
return pi - 2.0 * (s + w);
|
|
|
|
} else { /* x > 0.5 */
|
|
|
|
z = (one - x) * 0.5;
|
|
|
|
s = sqrt(z);
|
|
|
|
df = s;
|
|
|
|
__LO(df) = 0;
|
|
|
|
c = (z - df * df) / (s + df);
|
|
|
|
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
|
|
|
|
q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
|
|
|
|
r = p / q;
|
|
|
|
w = r * s + c;
|
|
|
|
return 2.0 * (df + w);
|
|
|
|
}
|
|
|
|
}
|