mirror of https://github.com/PrimeDecomp/prime.git
parent
047ee1a32e
commit
5b44016209
|
@ -0,0 +1,37 @@
|
|||
#ifndef _g721_h
|
||||
#define _g721_h
|
||||
|
||||
struct g72x_state {
|
||||
long yl; /* Locked or steady state step size multiplier. */
|
||||
short yu; /* Unlocked or non-steady state step size multiplier. */
|
||||
short dms; /* Short term energy estimate. */
|
||||
short dml; /* Long term energy estimate. */
|
||||
short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
|
||||
|
||||
short a[2]; /* Coefficients of pole portion of prediction filter. */
|
||||
short b[6]; /* Coefficients of zero portion of prediction filter. */
|
||||
short pk[2]; /*
|
||||
* Signs of previous two samples of a partially
|
||||
* reconstructed signal.
|
||||
*/
|
||||
short dq[6]; /*
|
||||
* Previous 6 samples of the quantized difference
|
||||
* signal represented in an internal floating point
|
||||
* format.
|
||||
*/
|
||||
short sr[2]; /*
|
||||
* Previous 2 samples of the quantized difference
|
||||
* signal represented in an internal floating point
|
||||
* format.
|
||||
*/
|
||||
char td; /* delayed tone detect, new in 1988 version */
|
||||
};
|
||||
|
||||
void
|
||||
g72x_init_state(struct g72x_state *state_ptr);
|
||||
|
||||
int
|
||||
g721_decoder(int i,
|
||||
struct g72x_state *state_ptr);
|
||||
|
||||
#endif
|
|
@ -623,7 +623,7 @@ KYOTO_2 :=\
|
|||
$(BUILD_DIR)/asm/Kyoto/Input/RumbleAdsr.o\
|
||||
$(BUILD_DIR)/asm/Kyoto/Input/CRumbleGenerator.o\
|
||||
$(BUILD_DIR)/asm/Kyoto/Audio/SDSPStream.o\
|
||||
$(BUILD_DIR)/asm/Kyoto/Audio/g721.o\
|
||||
$(BUILD_DIR)/src/Kyoto/Audio/g721.o\
|
||||
$(BUILD_DIR)/asm/Kyoto/Audio/CStaticAudioPlayer.o\
|
||||
$(BUILD_DIR)/asm/Kyoto/CFrameDelayedKiller.o\
|
||||
|
||||
|
|
|
@ -0,0 +1,461 @@
|
|||
/* G.721 decoder, from Sun's public domain CCITT-ADPCM sources,
|
||||
* retrieved from ftp://ftp.cwi.nl/pub/audio/ccitt-adpcm.tar.gz
|
||||
*
|
||||
* For reference, here's the original license:
|
||||
*
|
||||
* This source code is a product of Sun Microsystems, Inc. and is provided
|
||||
* for unrestricted use. Users may copy or modify this source code without
|
||||
* charge.
|
||||
*
|
||||
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
|
||||
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
||||
*
|
||||
* Sun source code is provided with no support and without any obligation on
|
||||
* the part of Sun Microsystems, Inc. to assist in its use, correction,
|
||||
* modification or enhancement.
|
||||
*
|
||||
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
||||
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
|
||||
* OR ANY PART THEREOF.
|
||||
*
|
||||
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
||||
* or profits or other special, indirect and consequential damages, even if
|
||||
* Sun has been advised of the possibility of such damages.
|
||||
*
|
||||
* Sun Microsystems, Inc.
|
||||
* 2550 Garcia Avenue
|
||||
* Mountain View, California 94043
|
||||
*
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
extern "C" int abs(int);
|
||||
#include <Kyoto/Audio/g721.h>
|
||||
|
||||
static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
|
||||
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
|
||||
|
||||
/*
|
||||
* quan()
|
||||
*
|
||||
* quantizes the input val against the table of size short integers.
|
||||
* It returns i if table[i - 1] <= val < table[i].
|
||||
*
|
||||
* Using linear search for simple coding.
|
||||
*/
|
||||
static int
|
||||
quan(
|
||||
int val,
|
||||
short *table,
|
||||
int size)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
if (val < *table++)
|
||||
break;
|
||||
return (i);
|
||||
}
|
||||
|
||||
/*
|
||||
* fmult()
|
||||
*
|
||||
* returns the integer product of the 14-bit integer "an" and
|
||||
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
|
||||
*/
|
||||
static int
|
||||
fmult(
|
||||
int an,
|
||||
int srn)
|
||||
{
|
||||
short anmag, anexp, anmant;
|
||||
short wanexp, wanmant;
|
||||
short retval;
|
||||
|
||||
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
|
||||
anexp = quan(anmag, power2, 15) - 6;
|
||||
anmant = (anmag == 0) ? 32 :
|
||||
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
|
||||
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
|
||||
|
||||
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
|
||||
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
|
||||
(wanmant >> -wanexp);
|
||||
|
||||
return (((an ^ srn) < 0) ? -retval : retval);
|
||||
}
|
||||
|
||||
/*
|
||||
* g72x_init_state()
|
||||
*
|
||||
* This routine initializes and/or resets the g72x_state structure
|
||||
* pointed to by 'state_ptr'.
|
||||
* All the initial state values are specified in the CCITT G.721 document.
|
||||
*/
|
||||
void
|
||||
g72x_init_state(struct g72x_state *state_ptr)
|
||||
{
|
||||
int cnta;
|
||||
|
||||
state_ptr->yl = 34816;
|
||||
state_ptr->yu = 544;
|
||||
state_ptr->dms = 0;
|
||||
state_ptr->dml = 0;
|
||||
state_ptr->ap = 0;
|
||||
for (cnta = 0; cnta < 2; cnta++) {
|
||||
state_ptr->a[cnta] = 0;
|
||||
state_ptr->pk[cnta] = 0;
|
||||
state_ptr->sr[cnta] = 32;
|
||||
}
|
||||
for (cnta = 0; cnta < 6; cnta++) {
|
||||
state_ptr->b[cnta] = 0;
|
||||
state_ptr->dq[cnta] = 32;
|
||||
}
|
||||
state_ptr->td = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* predictor_zero()
|
||||
*
|
||||
* computes the estimated signal from 6-zero predictor.
|
||||
*
|
||||
*/
|
||||
static int
|
||||
predictor_zero(
|
||||
struct g72x_state *state_ptr)
|
||||
{
|
||||
int i;
|
||||
int sezi;
|
||||
|
||||
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
|
||||
for (i = 1; i < 6; i++) /* ACCUM */
|
||||
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
|
||||
return (sezi);
|
||||
}
|
||||
/*
|
||||
* predictor_pole()
|
||||
*
|
||||
* computes the estimated signal from 2-pole predictor.
|
||||
*
|
||||
*/
|
||||
static int
|
||||
predictor_pole(
|
||||
struct g72x_state *state_ptr)
|
||||
{
|
||||
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
|
||||
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
|
||||
}
|
||||
/*
|
||||
* step_size()
|
||||
*
|
||||
* computes the quantization step size of the adaptive quantizer.
|
||||
*
|
||||
*/
|
||||
static long
|
||||
step_size(
|
||||
struct g72x_state *state_ptr)
|
||||
{
|
||||
long y;
|
||||
long dif;
|
||||
long al;
|
||||
|
||||
if (state_ptr->ap >= 256)
|
||||
return (state_ptr->yu);
|
||||
else {
|
||||
y = state_ptr->yl >> 6;
|
||||
dif = state_ptr->yu - y;
|
||||
al = state_ptr->ap >> 2;
|
||||
if (dif > 0)
|
||||
y += (dif * al) >> 6;
|
||||
else if (dif < 0)
|
||||
y += (dif * al + 0x3F) >> 6;
|
||||
return (y);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* reconstruct()
|
||||
*
|
||||
* Returns reconstructed difference signal 'dq' obtained from
|
||||
* codeword 'i' and quantization step size scale factor 'y'.
|
||||
* Multiplication is performed in log base 2 domain as addition.
|
||||
*/
|
||||
static int
|
||||
reconstruct(
|
||||
int sign, /* 0 for non-negative value */
|
||||
int dqln, /* G.72x codeword */
|
||||
int y) /* Step size multiplier */
|
||||
{
|
||||
short dql; /* Log of 'dq' magnitude */
|
||||
short dex; /* Integer part of log */
|
||||
short dqt;
|
||||
short dq; /* Reconstructed difference signal sample */
|
||||
|
||||
dql = dqln + (y >> 2); /* ADDA */
|
||||
|
||||
if (dql < 0) {
|
||||
return ((sign) ? -0x8000 : 0);
|
||||
} else { /* ANTILOG */
|
||||
dex = (dql >> 7) & 15;
|
||||
dqt = 128 + (dql & 127);
|
||||
dq = (dqt << 7) >> (14 - dex);
|
||||
return ((sign) ? (dq - 0x8000) : dq);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* update()
|
||||
*
|
||||
* updates the state variables for each output code
|
||||
*/
|
||||
static void
|
||||
update(
|
||||
int code_size, /* distinguish 723_40 with others */
|
||||
int y, /* quantizer step size */
|
||||
int wi, /* scale factor multiplier */
|
||||
int fi, /* for long/short term energies */
|
||||
int dq, /* quantized prediction difference */
|
||||
int sr, /* reconstructed signal */
|
||||
int dqsez, /* difference from 2-pole predictor */
|
||||
struct g72x_state *state_ptr) /* coder state pointer */
|
||||
{
|
||||
int cnt;
|
||||
short mag, exp; /* Adaptive predictor, FLOAT A */
|
||||
short a2p; /* LIMC */
|
||||
short a1ul; /* UPA1 */
|
||||
short pks1; /* UPA2 */
|
||||
short fa1;
|
||||
char tr; /* tone/transition detector */
|
||||
short ylint, thr2, dqthr;
|
||||
short ylfrac, thr1;
|
||||
short pk0;
|
||||
|
||||
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
|
||||
|
||||
mag = dq & 0x7FFF; /* prediction difference magnitude */
|
||||
/* TRANS */
|
||||
ylint = state_ptr->yl >> 15; /* exponent part of yl */
|
||||
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
|
||||
thr1 = (32 + ylfrac) << ylint; /* threshold */
|
||||
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
|
||||
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
|
||||
if (state_ptr->td == 0) /* signal supposed voice */
|
||||
tr = 0;
|
||||
else if (mag <= dqthr) /* supposed data, but small mag */
|
||||
tr = 0; /* treated as voice */
|
||||
else /* signal is data (modem) */
|
||||
tr = 1;
|
||||
|
||||
/*
|
||||
* Quantizer scale factor adaptation.
|
||||
*/
|
||||
|
||||
/* FUNCTW & FILTD & DELAY */
|
||||
/* update non-steady state step size multiplier */
|
||||
state_ptr->yu = y + ((wi - y) >> 5);
|
||||
|
||||
/* LIMB */
|
||||
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
|
||||
state_ptr->yu = 544;
|
||||
else if (state_ptr->yu > 5120)
|
||||
state_ptr->yu = 5120;
|
||||
|
||||
/* FILTE & DELAY */
|
||||
/* update steady state step size multiplier */
|
||||
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
|
||||
|
||||
/*
|
||||
* Adaptive predictor coefficients.
|
||||
*/
|
||||
if (tr == 1) { /* reset a's and b's for modem signal */
|
||||
state_ptr->a[0] = 0;
|
||||
state_ptr->a[1] = 0;
|
||||
state_ptr->b[0] = 0;
|
||||
state_ptr->b[1] = 0;
|
||||
state_ptr->b[2] = 0;
|
||||
state_ptr->b[3] = 0;
|
||||
state_ptr->b[4] = 0;
|
||||
state_ptr->b[5] = 0;
|
||||
//a2p=0; /* won't be used, clear warning */
|
||||
} else { /* update a's and b's */
|
||||
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
|
||||
|
||||
/* update predictor pole a[1] */
|
||||
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
|
||||
if (dqsez != 0) {
|
||||
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
|
||||
if (fa1 < -8191) /* a2p = function of fa1 */
|
||||
a2p -= 0x100;
|
||||
else if (fa1 > 8191)
|
||||
a2p += 0xFF;
|
||||
else
|
||||
a2p += fa1 >> 5;
|
||||
|
||||
if (pk0 ^ state_ptr->pk[1])
|
||||
/* LIMC */
|
||||
if (a2p <= -12160)
|
||||
a2p = -12288;
|
||||
else if (a2p >= 12416)
|
||||
a2p = 12288;
|
||||
else
|
||||
a2p -= 0x80;
|
||||
else if (a2p <= -12416)
|
||||
a2p = -12288;
|
||||
else if (a2p >= 12160)
|
||||
a2p = 12288;
|
||||
else
|
||||
a2p += 0x80;
|
||||
}
|
||||
|
||||
/* TRIGB & DELAY */
|
||||
state_ptr->a[1] = a2p;
|
||||
|
||||
/* UPA1 */
|
||||
/* update predictor pole a[0] */
|
||||
state_ptr->a[0] -= state_ptr->a[0] >> 8;
|
||||
if (dqsez != 0) {
|
||||
if (pks1 == 0)
|
||||
state_ptr->a[0] += 192;
|
||||
else
|
||||
state_ptr->a[0] -= 192;
|
||||
}
|
||||
|
||||
/* LIMD */
|
||||
a1ul = 15360 - a2p;
|
||||
if (state_ptr->a[0] < -a1ul)
|
||||
state_ptr->a[0] = -a1ul;
|
||||
else if (state_ptr->a[0] > a1ul)
|
||||
state_ptr->a[0] = a1ul;
|
||||
|
||||
/* UPB : update predictor zeros b[6] */
|
||||
for (cnt = 0; cnt < 6; cnt++) {
|
||||
if (code_size == 5) /* for 40Kbps G.723 */
|
||||
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
|
||||
else /* for G.721 and 24Kbps G.723 */
|
||||
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
|
||||
if (dq & 0x7FFF) { /* XOR */
|
||||
if ((dq ^ state_ptr->dq[cnt]) >= 0)
|
||||
state_ptr->b[cnt] += 128;
|
||||
else
|
||||
state_ptr->b[cnt] -= 128;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (cnt = 5; cnt > 0; cnt--)
|
||||
state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
|
||||
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
|
||||
if (mag == 0) {
|
||||
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
|
||||
} else {
|
||||
exp = quan(mag, power2, 15);
|
||||
state_ptr->dq[0] = (dq >= 0) ?
|
||||
(exp << 6) + ((mag << 6) >> exp) :
|
||||
(exp << 6) + ((mag << 6) >> exp) - 0x400;
|
||||
}
|
||||
|
||||
state_ptr->sr[1] = state_ptr->sr[0];
|
||||
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
|
||||
if (sr == 0) {
|
||||
state_ptr->sr[0] = 0x20;
|
||||
} else if (sr > 0) {
|
||||
exp = quan(sr, power2, 15);
|
||||
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
|
||||
} else if (sr > -32768) {
|
||||
mag = -sr;
|
||||
exp = quan(mag, power2, 15);
|
||||
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
|
||||
} else
|
||||
state_ptr->sr[0] = 0xFC20;
|
||||
|
||||
/* DELAY A */
|
||||
state_ptr->pk[1] = state_ptr->pk[0];
|
||||
state_ptr->pk[0] = pk0;
|
||||
|
||||
/* TONE */
|
||||
if (tr == 1) /* this sample has been treated as data */
|
||||
state_ptr->td = 0; /* next one will be treated as voice */
|
||||
else if (a2p < -11776) /* small sample-to-sample correlation */
|
||||
state_ptr->td = 1; /* signal may be data */
|
||||
else /* signal is voice */
|
||||
state_ptr->td = 0;
|
||||
|
||||
/*
|
||||
* Adaptation speed control.
|
||||
*/
|
||||
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
|
||||
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
|
||||
|
||||
if (tr == 1)
|
||||
state_ptr->ap = 256;
|
||||
else if (y < 1536) /* SUBTC */
|
||||
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
||||
else if (state_ptr->td == 1)
|
||||
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
||||
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
|
||||
(state_ptr->dml >> 3))
|
||||
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
|
||||
else
|
||||
state_ptr->ap += (-state_ptr->ap) >> 4;
|
||||
}
|
||||
|
||||
/*
|
||||
* Maps G.721 code word to reconstructed scale factor normalized log
|
||||
* magnitude values.
|
||||
*/
|
||||
static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
|
||||
425, 373, 323, 273, 213, 135, 4, -2048};
|
||||
|
||||
/* Maps G.721 code word to log of scale factor multiplier. */
|
||||
static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
|
||||
1122, 355, 198, 112, 64, 41, 18, -12};
|
||||
/*
|
||||
* Maps G.721 code words to a set of values whose long and short
|
||||
* term averages are computed and then compared to give an indication
|
||||
* how stationary (steady state) the signal is.
|
||||
*/
|
||||
static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
|
||||
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
|
||||
/* HACK: To make match */
|
||||
/* TODO: Remove this */
|
||||
static int padding[8] = { 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
/*
|
||||
* g721_decoder()
|
||||
*
|
||||
* Description:
|
||||
*
|
||||
* Decodes a 4-bit code of G.721 encoded data of i and
|
||||
* returns the resulting linear PCM, A-law or u-law value.
|
||||
* return -1 for unknown out_coding value.
|
||||
*/
|
||||
int
|
||||
g721_decoder(int i,
|
||||
struct g72x_state *state_ptr)
|
||||
{
|
||||
short sezi, sei, sez, se; /* ACCUM */
|
||||
short y; /* MIX */
|
||||
short sr; /* ADDB */
|
||||
short dq;
|
||||
short dqsez;
|
||||
|
||||
i &= 0x0f; /* mask to get proper bits */
|
||||
sezi = predictor_zero(state_ptr);
|
||||
sez = sezi >> 1;
|
||||
sei = sezi + predictor_pole(state_ptr);
|
||||
se = sei >> 1; /* se = estimated signal */
|
||||
|
||||
y = step_size(state_ptr); /* dynamic quantizer step size */
|
||||
|
||||
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
|
||||
|
||||
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
|
||||
|
||||
dqsez = sr - se + sez; /* pole prediction diff. */
|
||||
|
||||
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
|
||||
|
||||
return (sr << 2); /* sr was 14-bit dynamic range */
|
||||
}
|
||||
|
Loading…
Reference in New Issue