prime/libc/math.h

218 lines
5.5 KiB
C

#ifndef _MATH_H_
#define _MATH_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _MATH_INLINE
#define _MATH_INLINE static inline
#endif
#ifdef __MWERKS__
/* Metrowerks */
#if __option(little_endian)
#define __IEEE_LITTLE_ENDIAN
#else
#define __IEEE_BIG_ENDIAN
#endif
#else
/* GCC */
#ifdef __BIG_ENDIAN__
#define __IEEE_BIG_ENDIAN
#endif
#ifdef __LITTLE_ENDIAN__
#define __IEEE_LITTLE_ENDIAN
#endif
#endif
#ifndef __IEEE_BIG_ENDIAN
#ifndef __IEEE_LITTLE_ENDIAN
#error Must define endianness
#endif
#endif
#ifndef _INT32
typedef int _INT32;
typedef unsigned int _UINT32;
#endif
int abs(int n);
#ifdef __MWERKS__
#define abs(n) __abs(n)
#define labs(n) __labs(n)
static inline double fabs(double x) { return __fabs(x); }
#else
// static inline int abs(int n) {
// int mask = n >> 31;
// return (n + mask) ^ mask;
// }
#endif
extern _INT32 __float_huge[];
extern _INT32 __float_nan[];
extern _INT32 __double_huge[];
extern _INT32 __extended_huge[];
#define HUGE_VAL (*(double*)__double_huge)
#define INFINITY (*(float*)__float_huge)
#define NAN (*(float*)__float_nan)
#define HUGE_VALF (*(float*)__float_huge)
#define HUGE_VALL (*(long double*)__extended_huge)
double fabs(double x);
double fmod(double x, double m);
double sin(double x);
double cos(double x);
double atan(double x);
double atan2(double y, double x);
double tan(double x);
double ceil(double x);
_MATH_INLINE float fabsf(float x) { return (float)fabs((double)x); }
_MATH_INLINE float sinf(float x) { return (float)sin((double)x); }
_MATH_INLINE float cosf(float x) { return (float)cos((double)x); }
_MATH_INLINE float atan2f(float y, float x) { return (float)atan2((double)y, (double)x); }
_MATH_INLINE float fmodf(float x, float m) { return (float)fmod((double)x, (double)m); }
float tanf(float x);
double asin(double x);
double acos(double x);
float acosf(float x);
double log(double x);
double exp(double x);
double ldexp(double x, int exp);
double copysign(double x, double y);
double floor(double x);
_MATH_INLINE float floorf(float x) { return floor(x); }
double fabs(double x);
double pow(double x, double y);
_MATH_INLINE float powf(float __x, float __y) { return pow(__x, __y); }
#ifdef __MWERKS__
#pragma cplusplus on
#endif
#ifdef __IEEE_LITTLE_ENDIAN
#define __HI(x) (sizeof(x) == 8 ? *(1 + (_INT32*)&x) : (*(_INT32*)&x))
#define __LO(x) (*(_INT32*)&x)
#define __UHI(x) (sizeof(x) == 8 ? *(1 + (_UINT32*)&x) : (*(_UINT32*)&x))
#define __ULO(x) (*(_UINT32*)&x)
#else
#define __LO(x) (sizeof(x) == 8 ? *(1 + (_INT32*)&x) : (*(_INT32*)&x))
#define __HI(x) (*(_INT32*)&x)
#define __ULO(x) (sizeof(x) == 8 ? *(1 + (_UINT32*)&x) : (*(_UINT32*)&x))
#define __UHI(x) (*(_UINT32*)&x)
#endif
#define FP_NAN 1
#define FP_INFINITE 2
#define FP_ZERO 3
#define FP_NORMAL 4
#define FP_SUBNORMAL 5
static inline int __fpclassifyf(float x) {
switch ((*(_INT32*)&x) & 0x7f800000) {
case 0x7f800000: {
if ((*(_INT32*)&x) & 0x007fffff)
return FP_NAN;
else
return FP_INFINITE;
break;
}
case 0: {
if ((*(_INT32*)&x) & 0x007fffff)
return FP_SUBNORMAL;
else
return FP_ZERO;
break;
}
}
return FP_NORMAL;
}
static inline int __fpclassifyd(double x) {
switch (__HI(x) & 0x7ff00000) {
case 0x7ff00000: {
if ((__HI(x) & 0x000fffff) || (__LO(x) & 0xffffffff))
return FP_NAN;
else
return FP_INFINITE;
break;
}
case 0: {
if ((__HI(x) & 0x000fffff) || (__LO(x) & 0xffffffff))
return FP_SUBNORMAL;
else
return FP_ZERO;
break;
}
}
return FP_NORMAL;
}
#define fpclassify(x) \
(sizeof(x) == sizeof(float) ? __fpclassifyf((float)(x)) : __fpclassifyd((double)(x)))
#define isnormal(x) (fpclassify(x) == FP_NORMAL)
#define isnan(x) (fpclassify(x) == FP_NAN)
#define isinf(x) (fpclassify(x) == FP_INFINITE)
#define isfinite(x) ((fpclassify(x) > FP_INFINITE))
extern inline float sqrtf(float x) {
static const double _half = .5;
static const double _three = 3.0;
volatile float y;
if (x > 0.0f) {
double guess = __frsqrte((double)x); /* returns an approximation to */
guess = _half * guess * (_three - guess * guess * x); /* now have 12 sig bits
*/
guess = _half * guess * (_three - guess * guess * x); /* now have 24 sig bits
*/
guess = _half * guess * (_three - guess * guess * x); /* now have 32 sig bits
*/
y = (float)(x * guess);
return y;
}
return x;
}
_MATH_INLINE double sqrt(double x) {
if (x > 0.0) {
double guess = __frsqrte(x); /* returns an approximation to */
guess = .5 * guess * (3.0 - guess * guess * x); /* now have 8 sig bits */
guess = .5 * guess * (3.0 - guess * guess * x); /* now have 16 sig bits */
guess = .5 * guess * (3.0 - guess * guess * x); /* now have 32 sig bits */
guess = .5 * guess * (3.0 - guess * guess * x); /* now have > 53 sig bits */
return x * guess;
} else if (x == 0.0) {
return 0;
} else if (x) {
return NAN;
}
return INFINITY;
}
static inline float ldexpf(float x, int exp) { return (float)ldexp((double)x, exp); }
static inline double scalbn(double x, int n) { return ldexp(x, n); }
static inline float scalbnf(float x, int n) { return (float)ldexpf(x, n); }
#ifdef __MWERKS__
#pragma cplusplus reset
#endif
#ifdef __cplusplus
}
#endif
#endif