prime/include/rstl/vector.hpp

239 lines
6.8 KiB
C++

#ifndef _RSTL_VECTOR
#define _RSTL_VECTOR
#include "types.h"
#include "rstl/pointer_iterator.hpp"
#include "rstl/rmemory_allocator.hpp"
class CInputStream;
namespace rstl {
// template < typename T, typename Alloc >
// struct allocator_auto_ptr {
// allocator_auto_ptr(T* ptr, Alloc* alloc) : ptr(ptr) {}
// ~allocator_auto_ptr() {
// if (ptr != nullptr) {
// Alloc::deallocate(ptr);
// ptr = nullptr;
// }
// }
// T* release() { T* v = ptr; ptr = nullptr; return v; }
// private:
// T* ptr;
// };
template < typename T, typename Alloc = rmemory_allocator >
class vector {
protected:
Alloc x0_allocator;
int x4_count;
int x8_capacity;
T* xc_items;
public:
typedef pointer_iterator< T, vector< T, Alloc >, Alloc > iterator;
typedef const_pointer_iterator< T, vector< T, Alloc >, Alloc > const_iterator;
typedef T value_type;
iterator begin() { return iterator(xc_items); }
const_iterator begin() const { return const_iterator(xc_items); }
iterator end() { return iterator(xc_items + x4_count); }
const_iterator end() const { return const_iterator(xc_items + x4_count); }
vector() : x4_count(0), x8_capacity(0), xc_items(NULL) {}
vector(int count) : x4_count(0), x8_capacity(0), xc_items(0) { reserve(count); }
vector(int count, const T& v) : x4_count(count), x8_capacity(count) {
x0_allocator.allocate(xc_items, x4_count);
uninitialized_fill_n(xc_items, count, v);
}
vector(int count, const T& v, const Alloc& alloc);
vector(const vector& other) : x4_count(other.x4_count), x8_capacity(other.x8_capacity) {
if (other.x4_count == 0 && other.x8_capacity == 0) {
xc_items = nullptr;
} else {
x0_allocator.allocate(xc_items, x8_capacity);
uninitialized_copy_n(other.xc_items, x4_count, xc_items);
}
}
vector(CInputStream& in, const Alloc& alloc = Alloc());
~vector() {
destroy(begin(), end());
x0_allocator.deallocate(xc_items);
}
void reserve(int size);
void resize(int size, const T& in);
iterator insert(iterator it, const T& value);
template < typename from_iterator >
iterator insert(iterator it, from_iterator begin, from_iterator end);
iterator erase(iterator it);
iterator erase(iterator first, iterator last);
void push_back(const T& in) {
if (x4_count >= x8_capacity) {
reserve(x8_capacity != 0 ? x8_capacity * 2 : 4);
}
iterator out = begin() + x4_count;
out = in;
++x4_count;
}
vector& operator=(const vector& other);
void clear() {
destroy(begin(), end());
x4_count = 0;
}
T* data() { return xc_items; }
const T* data() const { return xc_items; }
int size() const { return x4_count; }
bool empty() const { return x4_count == 0; }
int capacity() const { return x8_capacity; }
T& at(int idx) { return xc_items[idx]; }
const T& at(int idx) const { return xc_items[idx]; }
T& front() { return at(0); }
const T& front() const { return at(0); }
T& back() { return at(x4_count - 1); }
const T& back() const { return at(x4_count - 1); }
T& operator[](int idx) { return xc_items[idx]; }
const T& operator[](int idx) const { return xc_items[idx]; }
protected:
template < typename In >
iterator insert_into(iterator at, int n, In in);
};
template < typename T, typename Alloc >
void vector< T, Alloc >::resize(int size, const T& in) {
if (x4_count != size) {
if (size > x4_count) {
reserve(size);
uninitialized_fill_n(xc_items + x4_count, size - x4_count, in);
} else {
destroy(begin() + size, end());
}
x4_count = size;
}
}
template < typename T, typename Alloc >
void vector< T, Alloc >::reserve(int newSize) {
if (newSize <= x8_capacity) {
return;
}
T* newData = x0_allocator.template allocate2< T >(newSize);
uninitialized_copy(begin(), end(), newData);
destroy(xc_items, xc_items + x4_count);
x0_allocator.deallocate(xc_items);
xc_items = newData;
x8_capacity = newSize;
}
template < typename T, typename Alloc >
typename vector< T, Alloc >::iterator vector< T, Alloc >::insert(iterator it, const T& value) {
typename iterator::difference_type diff = it - begin(); // distance(begin(), it);
// // TODO: implement
// const_counting_iterator< T > in(&value, 0);
// insert_into(it, 1, in);
return begin() + diff;
}
template < typename T, typename Alloc >
template < typename from_iterator >
typename vector< T, Alloc >::iterator vector< T, Alloc >::insert(iterator it, from_iterator begin,
from_iterator end) {
return insert_into(it, rstl::distance(begin, end), begin);
}
template < typename T, typename Alloc >
template < typename In >
typename vector< T, Alloc >::iterator vector< T, Alloc >::insert_into(iterator at, int n, In in) {
// TODO: correct
// An implementation can be found in CAnimationDatabaseGame.o
int newCount = x4_count + n;
if (newCount <= x8_capacity) {
int diffFromAt = at - begin();
int diff = x4_count - diffFromAt - 1;
for (int i = diff; 0 <= diff; --i) {
construct(xc_items + (diffFromAt + i), xc_items[i]);
destroy(data() + i);
}
uninitialized_copy_n(in, n, begin() + diffFromAt);
x4_count += n;
} else {
int newCapacity = x8_capacity != 0 ? x8_capacity * 2 : 4;
for (; newCapacity < newCount; newCapacity *= 2)
;
T* newData;
x0_allocator.allocate(newData, newCapacity);
int diffFromAt = at - begin();
uninitialized_copy_n(begin(), diffFromAt, newData);
uninitialized_copy_n(in, n, newData + diffFromAt);
uninitialized_copy_n(begin() + diffFromAt, x4_count - diffFromAt, newData + diffFromAt + n);
destroy(xc_items, xc_items + x4_count);
x0_allocator.deallocate(xc_items);
xc_items = newData;
x8_capacity = newCapacity;
x4_count += n;
}
}
template < typename T, typename Alloc >
vector< T, Alloc >& vector< T, Alloc >::operator=(const vector< T, Alloc >& other) {
if (this == &other)
return *this;
clear();
if (other.size() == 0) {
x0_allocator.deallocate(xc_items);
x4_count = 0;
x8_capacity = 0;
xc_items = nullptr;
} else {
reserve(other.size());
uninitialized_copy(other.data(), other.data() + other.size(), data());
x4_count = other.x4_count;
}
return *this;
}
template < typename T, typename Alloc >
typename vector< T, Alloc >::iterator vector< T, Alloc >::erase(iterator it) {
return erase(it, it + 1);
}
template < typename T, typename Alloc >
typename vector< T, Alloc >::iterator vector< T, Alloc >::erase(iterator first, iterator last) {
destroy(first, last);
iterator start = begin();
int newCount = rstl::distance(first, start);
iterator moved = start + newCount;
for (iterator it = last; it != end(); ++it) {
construct(&*moved, *it);
++moved;
++newCount;
}
x4_count = newCount;
return first;
}
typedef vector< void > unk_vector;
CHECK_SIZEOF(unk_vector, 0x10)
} // namespace rstl
#endif // _RSTL_VECTOR