Files
prime/src/MetroidPrime/CPhysicsActor.cpp
2024-09-25 23:54:05 -06:00

402 lines
14 KiB
C++

#include "MetroidPrime/CPhysicsActor.hpp"
#include "Kyoto/Math/CloseEnough.hpp"
#include "rstl/math.hpp"
const float CPhysicsActor::kGravityAccel = 9.81f * 2.5f;
CPhysicsActor::CPhysicsActor(TUniqueId uid, bool active, const rstl::string& name,
const CEntityInfo& info, const CTransform4f& xf,
const CModelData& mData, const CMaterialList& matList,
const CAABox& aabb, const SMoverData& moverData,
const CActorParameters& actParams, float stepUp, float stepDown)
: CActor(uid, active, name, info, xf, mData, matList, actParams, kInvalidUniqueId)
, xe8_mass(moverData.x30_mass)
, xec_massRecip(moverData.x30_mass > 0.f ? 1.f / moverData.x30_mass : 1.f)
, xf0_inertiaTensor(0.f)
, xf4_inertiaTensorRecip(0.f)
, xf8_24_movable(true)
, xf8_25_angularEnabled(false)
, xf9_standardCollider(false)
, xfc_constantForce(CVector3f(0.f, 0.f, 0.f))
, x108_angularMomentum(CAxisAngle::Identity())
, x114_(CMatrix3f::Identity())
, x138_velocity(CVector3f(0.f, 0.f, 0.f))
, x144_angularVelocity(CAxisAngle::Identity())
, x150_momentum(moverData.x18_momentum)
, x15c_force(CVector3f(0.f, 0.f, 0.f))
, x168_impulse(CVector3f(0.f, 0.f, 0.f))
, x174_torque(CAxisAngle::Identity())
, x180_angularImpulse(CAxisAngle::Identity())
, x18c_moveImpulse(CVector3f(0.f, 0.f, 0.f))
, x198_moveAngularImpulse(CAxisAngle::Identity())
, x1a4_baseBoundingBox(aabb)
, x1c0_collisionPrimitive(aabb, matList)
, x1e8_primitiveOffset(xf.GetTranslation())
, x1f4_lastNonCollidingState(xf.GetTranslation(),
CNUQuaternion::BuildFromMatrix3f(xf.BuildMatrix3f()),
CVector3f::Zero(), CAxisAngle::Identity())
, x238_maximumCollisionVelocity(1000000.0)
, x23c_stepUpHeight(stepUp)
, x240_stepDownHeight(stepDown)
, x244_restitutionCoefModifier(0.f)
, x248_collisionAccuracyModifier(1.f)
, x24c_numTicksStuck(0)
, x250_numTicksPartialUpdate(0) {
SetMass(moverData.x30_mass);
MoveCollisionPrimitive(CVector3f::Zero());
SetVelocityOR(moverData.x0_velocity);
SetAngularVelocityOR(moverData.xc_angularVelocity);
ComputeDerivedQuantities();
}
CPhysicsActor::~CPhysicsActor() {}
void CPhysicsActor::ApplyImpulseWR(const CVector3f& impulse, const CAxisAngle& angularImpulse) {
x168_impulse = x168_impulse + impulse;
x180_angularImpulse = x180_angularImpulse + angularImpulse;
}
void CPhysicsActor::ApplyTorqueWR(const CVector3f& torque) {
x174_torque = x174_torque + CAxisAngle(torque);
}
void CPhysicsActor::ApplyForceWR(const CVector3f& force, const CAxisAngle& torque) {
x15c_force = x15c_force + force;
x174_torque = x174_torque + torque;
}
void CPhysicsActor::ApplyImpulseOR(const CVector3f& impulse, const CAxisAngle& angle) {
x168_impulse = x168_impulse + GetTransform().Rotate(impulse);
CAxisAngle rotatedAngle(GetTransform().Rotate(angle.GetVector()));
x180_angularImpulse = x180_angularImpulse + rotatedAngle;
}
void CPhysicsActor::ApplyForceOR(const CVector3f& force, const CAxisAngle& torque) {
x15c_force = x15c_force + GetTransform().Rotate(force);
CAxisAngle rotatedTorque(GetTransform().Rotate(torque.GetVector()));
x174_torque = x174_torque + rotatedTorque;
}
void CPhysicsActor::ComputeDerivedQuantities() {
x138_velocity = xfc_constantForce * xec_massRecip;
x114_ = GetTransform().BuildMatrix3f();
x144_angularVelocity = CAxisAngle(x108_angularMomentum.GetVector() * xf4_inertiaTensorRecip);
}
CPhysicsState CPhysicsActor::GetPhysicsState() const {
return CPhysicsState(GetTranslation(), GetRotation(), GetConstantForceWR(),
GetAngularMomentumWR(), GetMomentumWR(), GetForceWR(), GetImpulseWR(),
GetTorqueWR(), GetAngularImpulseWR());
}
void CPhysicsActor::SetPhysicsState(const CPhysicsState& state) {
SetTranslation(state.GetTranslation());
const CQuaternion& quat = state.GetOrientationWR();
const CVector3f& translation = GetTranslation();
SetTransform(quat.BuildTransform4f(translation));
SetConstantForceWR(state.GetConstantForceWR());
SetAngularMomentumWR(state.GetAngularMomentumWR());
SetMomentumWR(state.GetMomentumWR());
SetForceWR(state.GetForceWR());
SetImpulseWR(state.GetImpulseWR());
SetTorqueWR(state.GetTorque());
SetAngularImpulseWR(state.GetAngularImpulseWR());
ComputeDerivedQuantities();
}
CVector3f CPhysicsActor::CalculateNewVelocityWR_UsingImpulses() const {
return x138_velocity + xec_massRecip * (x168_impulse + x18c_moveImpulse);
}
CMotionState CPhysicsActor::PredictMotion(float dt) const {
const CMotionState& msl = PredictLinearMotion(dt);
CVector3f translation = msl.GetTranslation();
CVector3f velocity = msl.GetVelocity();
const CMotionState& msa = PredictAngularMotion(dt);
CNUQuaternion orientation = msa.GetOrientation();
CAxisAngle angularMomentum = msa.GetAngularMomentum();
return CMotionState(translation, orientation, velocity, angularMomentum);
}
CMotionState CPhysicsActor::PredictAngularMotion(float dt) const {
CVector3f v1 = (x180_angularImpulse.GetVector() + x198_moveAngularImpulse.GetVector()) *
xf4_inertiaTensorRecip;
CVector3f v2 = x144_angularVelocity.GetVector() + v1;
CNUQuaternion q3 = (0.5f * CNUQuaternion(0.f, v2)) *
CNUQuaternion::BuildFromQuaternion(CQuaternion::FromMatrix(GetTransform()));
CAxisAngle torque = x174_torque;
return CMotionState(CVector3f::Zero(), q3 * dt, CVector3f::Zero(),
(torque * dt) + x180_angularImpulse);
}
CMotionState CPhysicsActor::PredictLinearMotion(float dt) const {
CVector3f velocity = CalculateNewVelocityWR_UsingImpulses();
CVector3f sum = x15c_force + x150_momentum;
return CMotionState(dt * velocity, CNUQuaternion(0.0f, CVector3f::Zero()),
dt * sum + x168_impulse, CAxisAngle::Identity());
}
CMotionState CPhysicsActor::PredictMotion_Internal(float dt) const {
if (!xf8_25_angularEnabled) {
const CMotionState& msl = PredictLinearMotion(dt);
CVector3f translation = msl.GetTranslation();
CVector3f velocity = msl.GetVelocity();
const CMotionState& msa = PredictAngularMotion(dt);
CNUQuaternion orientation = msa.GetOrientation();
CAxisAngle angularMomentum = msa.GetAngularMomentum();
return CMotionState(translation, orientation, velocity, angularMomentum);
} else {
return PredictLinearMotion(dt);
}
}
void CPhysicsActor::SetMotionState(const CMotionState& state) {
const CQuaternion& q = CQuaternion::FromNUQuaternion(state.GetOrientation());
SetTransform(q.BuildTransform4f(GetTransform().GetTranslation()));
SetTranslation(state.GetTranslation());
xfc_constantForce = state.GetVelocity();
x108_angularMomentum = state.GetAngularMomentum();
ComputeDerivedQuantities();
}
CMotionState CPhysicsActor::GetMotionState() const {
const CNUQuaternion& nquat = CNUQuaternion::BuildFromQuaternion(GetRotation());
return CMotionState(GetTranslation(), nquat, GetConstantForceWR(), GetAngularMomentumWR());
}
void CPhysicsActor::AddMotionState(const CMotionState& state) {
CNUQuaternion q(CNUQuaternion::BuildFromMatrix3f(GetTransform().BuildMatrix3f()));
q += state.GetOrientation();
const CQuaternion& quat = CQuaternion::FromNUQuaternion(q);
CVector3f transPos = GetTransform().GetTranslation();
SetTransform(quat.BuildTransform4f(transPos));
transPos += state.GetTranslation();
SetTranslation(transPos);
xfc_constantForce += state.GetVelocity();
x108_angularMomentum += state.GetAngularMomentum();
ComputeDerivedQuantities();
}
bool CPhysicsActor::WillMove(const CStateManager& mgr) {
if (close_enough(x138_velocity, CVector3f::Zero()) &&
close_enough(x168_impulse, CVector3f::Zero()) &&
close_enough(x174_torque.GetVector(), CVector3f::Zero()) &&
close_enough(x18c_moveImpulse, CVector3f::Zero()) &&
close_enough(x144_angularVelocity.GetVector(), CVector3f::Zero()) &&
close_enough(x180_angularImpulse.GetVector(), CVector3f::Zero()) &&
close_enough(x198_moveAngularImpulse.GetVector(), CVector3f::Zero()) &&
close_enough(GetTotalForceWR(), CVector3f::Zero())) {
return false;
}
return true;
}
void CPhysicsActor::Stop() {
ClearForcesAndTorques();
xfc_constantForce = CVector3f::Zero();
x108_angularMomentum = CAxisAngle::Identity();
ComputeDerivedQuantities();
}
void CPhysicsActor::ClearForcesAndTorques() {
x15c_force = x168_impulse = x18c_moveImpulse = CVector3f::Zero();
x174_torque = x180_angularImpulse = x198_moveAngularImpulse = CAxisAngle::Identity();
}
void CPhysicsActor::ClearImpulses() {
x168_impulse = x18c_moveImpulse = CVector3f::Zero();
x180_angularImpulse = x198_moveAngularImpulse = CAxisAngle::Identity();
}
void CPhysicsActor::UseCollisionImpulses() {
xfc_constantForce += x168_impulse;
x108_angularMomentum += x180_angularImpulse;
x168_impulse = CVector3f::Zero();
x180_angularImpulse = CAxisAngle::Identity();
ComputeDerivedQuantities();
}
void CPhysicsActor::MoveToWR(const CVector3f& trans, float d) {
xfc_constantForce = (trans - GetTransform().GetTranslation()) * GetMass() / d;
ComputeDerivedQuantities();
}
void CPhysicsActor::MoveToInOneFrameWR(const CVector3f& trans, float d) {
x18c_moveImpulse += (trans - GetTranslation()) * GetMass() / d;
}
CVector3f CPhysicsActor::GetMoveToORImpulseWR(const CVector3f& trans, float d) const {
CVector3f impulse = GetTransform().Rotate(trans);
return (GetMass() * impulse) / d;
}
CVector3f CPhysicsActor::GetRotateToORAngularMomentumWR(const CQuaternion& q, float d) const {
if (q.GetW() > 0.99999976f) {
return CVector3f::Zero();
} else {
const CVector3f rotated = GetTransform().Rotate(q.GetImaginary());
float ac = acos(q.GetW());
return rotated.AsNormalized() * ((ac * 2.0f) * (1.0f / d)) * xf0_inertiaTensor;
}
}
void CPhysicsActor::MoveToOR(const CVector3f& trans, float d) {
xfc_constantForce = GetMoveToORImpulseWR(trans, d);
ComputeDerivedQuantities();
}
void CPhysicsActor::RotateToOR(const CQuaternion& q, float d) {
const CVector3f& vec = GetRotateToORAngularMomentumWR(q, d);
x108_angularMomentum = CAxisAngle(vec);
ComputeDerivedQuantities();
}
void CPhysicsActor::MoveInOneFrameOR(const CVector3f& trans, float d) {
x18c_moveImpulse += GetMoveToORImpulseWR(trans, d);
}
void CPhysicsActor::RotateInOneFrameOR(const CQuaternion& q, float d) {
const CVector3f& vec = GetRotateToORAngularMomentumWR(q, d);
x198_moveAngularImpulse += CAxisAngle(vec);
}
void CPhysicsActor::SetVelocityOR(const CVector3f& vel) {
SetVelocityWR(GetTransform().Rotate(vel));
}
CVector3f CPhysicsActor::GetTotalForceWR() const { return x15c_force + x150_momentum; }
void CPhysicsActor::SetVelocityWR(const CVector3f& vel) {
x138_velocity = vel;
xfc_constantForce = xe8_mass * x138_velocity;
}
void CPhysicsActor::SetAngularVelocityWR(const CAxisAngle& angVel) {
x144_angularVelocity = angVel;
x108_angularMomentum = CAxisAngle(x144_angularVelocity.GetVector() * xf0_inertiaTensor);
}
CAxisAngle CPhysicsActor::GetAngularVelocityOR() const {
return CAxisAngle(GetTransform().TransposeRotate(x144_angularVelocity.GetVector()));
}
void CPhysicsActor::SetAngularVelocityOR(const CAxisAngle& angVel) {
x144_angularVelocity = CAxisAngle(GetTransform().Rotate(angVel.GetVector()));
x108_angularMomentum = CAxisAngle(x144_angularVelocity.GetVector() * xf0_inertiaTensor);
}
void CPhysicsActor::SetMass(float mass) {
xe8_mass = mass;
xec_massRecip = (xe8_mass > 0.0f) ? (1.0f / xe8_mass) : 1.0f;
SetInertiaTensorScalar(0.16666667f * xe8_mass);
}
void CPhysicsActor::SetInertiaTensorScalar(float tensor) {
xf0_inertiaTensor = (tensor > 0.0f) ? tensor : 1.0f;
xf4_inertiaTensorRecip = 1.0f / xf0_inertiaTensor;
}
const CCollisionPrimitive* CPhysicsActor::GetCollisionPrimitive() const {
return &x1c0_collisionPrimitive;
}
void CPhysicsActor::MoveCollisionPrimitive(const CVector3f& offset) {
x1e8_primitiveOffset = offset;
}
CTransform4f CPhysicsActor::GetPrimitiveTransform() const {
return CTransform4f::Translate(GetTransform().GetTranslation() + x1e8_primitiveOffset);
}
void CPhysicsActor::CollidedWith(const TUniqueId& id, const CCollisionInfoList& list,
CStateManager& mgr) {}
const CAABox& CPhysicsActor::GetBaseBoundingBox() const { return x1a4_baseBoundingBox; }
CAABox CPhysicsActor::GetBoundingBox() const {
CVector3f off = x1e8_primitiveOffset + GetTransform().GetTranslation();
return CAABox(x1a4_baseBoundingBox.GetMinPoint() + off, x1a4_baseBoundingBox.GetMaxPoint() + off);
}
CAABox CPhysicsActor::GetMotionVolume(float dt) const {
CAABox aabox = GetCollisionPrimitive()->CalculateAABox(GetPrimitiveTransform());
CVector3f velocity = CalculateNewVelocityWR_UsingImpulses();
const CVector3f dv = (dt * velocity);
aabox.AccumulateBounds(aabox.GetMaxPoint() + dv);
aabox.AccumulateBounds(aabox.GetMinPoint() + dv);
float up = rstl::max_val(GetStepUpHeight(), 0.f);
aabox.AccumulateBounds(aabox.GetMaxPoint() + CVector3f(0.5f, 0.5f, up + 1.f));
float down = rstl::max_val(GetStepDownHeight(), 0.f);
aabox.AccumulateBounds(aabox.GetMinPoint() - CVector3f(0.5f, 0.5f, down + 1.5f));
return aabox;
}
void CPhysicsActor::SetBoundingBox(const CAABox& box) {
x1a4_baseBoundingBox = box;
MoveCollisionPrimitive(CVector3f::Zero());
}
float CPhysicsActor::GetWeight() const { return CPhysicsActor::GravityConstant() * GetMass(); }
CVector3f CPhysicsActor::GetPrimitiveOffset() const { return x1e8_primitiveOffset; }
float CPhysicsActor::GetStepDownHeight() const { return x240_stepDownHeight; }
float CPhysicsActor::GetStepUpHeight() const { return x23c_stepUpHeight; }
CVector3f CPhysicsActor::GetOrbitPosition(const CStateManager&) const {
return GetBoundingBox().GetCenterPoint();
}
CVector3f CPhysicsActor::GetAimPosition(const CStateManager&, float dt) const {
if (dt > 0.0f) {
CVector3f trans = PredictMotion(dt).GetTranslation();
return GetBoundingBox().GetCenterPoint() + trans;
} else {
return GetBoundingBox().GetCenterPoint();
}
}
void CPhysicsActor::Render(const CStateManager& mgr) const { CActor::Render(mgr); }
void CPhysicsActor::SetCoefficientOfRestitutionModifier(float modifier) {
x244_restitutionCoefModifier = modifier;
}
float CPhysicsActor::GetCoefficientOfRestitutionModifier() const {
return x244_restitutionCoefModifier;
}
float CPhysicsActor::GetCollisionAccuracyModifier() const { return x248_collisionAccuracyModifier; }
void CPhysicsActor::SetCollisionAccuracyModifier(float modifier) {
x248_collisionAccuracyModifier = modifier;
}
float CPhysicsActor::GetMaximumCollisionVelocity() const { return x238_maximumCollisionVelocity; }
void CPhysicsActor::SetMaxVelocityAfterCollision(float velocity) {
x238_maximumCollisionVelocity = velocity;
}