prime/tools/elf2rel.c

867 lines
29 KiB
C

#include <assert.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
#define ARRAY_COUNT(arr) (sizeof(arr)/sizeof((arr)[0]))
#define IS_LITTLE_ENDIAN (((char *)((uint32_t[]){1}))[0] == 1)
// Relevant portions of elf.h
typedef uint32_t Elf32_Addr;
typedef uint32_t Elf32_Off;
typedef uint32_t Elf32_Word;
typedef int32_t Elf32_Sword;
typedef uint16_t Elf32_Half;
typedef uint16_t Elf32_Section;
#define EI_NIDENT (16)
typedef struct
{
unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32_Addr e_entry; /* Entry point virtual address */
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize; /* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize; /* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;
#define EI_CLASS 4 /* File class byte index */
#define ELFCLASS32 1 /* 32-bit objects */
#define EI_DATA 5 /* Data encoding byte index */
#define ELFDATA2MSB 2 /* 2's complement, big endian */
#define EM_PPC 20 /* PowerPC */
typedef struct
{
Elf32_Word sh_name; /* Section name (string tbl index) */
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr at execution */
Elf32_Off sh_offset; /* Section file offset */
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section information */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds table */
} Elf32_Shdr;
#define SHT_PROGBITS 1 /* Program data */
#define SHT_SYMTAB 2 /* Symbol table */
#define SHT_STRTAB 3 /* String table */
#define SHT_RELA 4 /* Relocation entries with addends */
#define SHT_NOBITS 8 /* Program space with no data (bss) */
#define SHF_ALLOC (1 << 1) /* Occupies memory during execution */
#define SHF_EXECINSTR (1 << 2) /* Executable */
typedef struct
{
Elf32_Word st_name; /* Symbol name (string tbl index) */
Elf32_Addr st_value; /* Symbol value */
Elf32_Word st_size; /* Symbol size */
unsigned char st_info; /* Symbol type and binding */
unsigned char st_other; /* Symbol visibility */
Elf32_Section st_shndx; /* Section index */
} Elf32_Sym;
#define ELF32_ST_TYPE(val) ((val) & 0xf)
/* Legal values for ST_TYPE subfield of st_info (symbol type). */
#define STT_NOTYPE 0 /* Symbol type is unspecified */
#define STT_FUNC 2 /* Symbol is a code object */
typedef struct
{
Elf32_Addr r_offset; /* Address */
Elf32_Word r_info; /* Relocation type and symbol index */
Elf32_Sword r_addend; /* Addend */
} Elf32_Rela;
/* How to extract and insert information held in the r_info field. */
#define ELF32_R_SYM(val) ((val) >> 8)
#define ELF32_R_TYPE(val) ((val) & 0xff)
#define R_PPC_NONE 0
#define R_PPC_ADDR32 1 /* 32bit absolute address */
#define R_PPC_ADDR24 2 /* 26bit address, 2 bits ignored. */
#define R_PPC_ADDR16 3 /* 16bit absolute address */
#define R_PPC_ADDR16_LO 4 /* lower 16bit of absolute address */
#define R_PPC_ADDR16_HI 5 /* high 16bit of absolute address */
#define R_PPC_ADDR16_HA 6 /* adjusted high 16bit */
#define R_PPC_ADDR14 7 /* 16bit address, 2 bits ignored */
#define R_PPC_ADDR14_BRTAKEN 8
#define R_PPC_ADDR14_BRNTAKEN 9
#define R_PPC_REL24 10 /* PC relative 26 bit */
#define R_PPC_REL14 11 /* PC relative 16 bit */
#define R_DOLPHIN_SECTION 202
#define R_DOLPHIN_END 203
// end elf.h
struct RelHeader
{
uint32_t moduleId; // unique module identifier
uint32_t nextModule; // always 0; filled in at runtime
uint32_t prevModule; // always 0; filled in at runtime
uint32_t sectionCount; // number of sections in the section table
uint32_t sectionTableOffset; // file position of section table
uint32_t moduleNameOffset; // offset of the module name in the string table (not in this file)
uint32_t moduleNameSize; // size of the module name in the string table (not in this file)
uint32_t formatVersion; // REL format version
uint32_t bssSize; // size of the BSS section
uint32_t relocationTableOffset; // file position of relocation entries
uint32_t importTableOffset; // file position of import table
uint32_t importTableSize; // size of import table
uint8_t prologSection; // section in which the _prolog function is in, or 0 if absent
uint8_t epilogSection; // section in which the _epilog function is in, or 0 if absent
uint8_t unresolvedSection; // section in which the _unresolved function is in, or 0 if absent
uint8_t pad33;
uint32_t prologOffset; // offset of the _prolog function in its section
uint32_t epilogOffset; // offset of the _epilog function in its section
uint32_t unresolvedOffset; // offset of the _unresolved function in its section
};
struct RelRelocEntry
{
int type; // relocation type
int patchSection; // section which relocation patch applies to
uint32_t patchOffset; // offset where this relocation patch applies
int symbolSection; // section of symbol
uint32_t symbolAddr; // for dol symbols, absolute address. for rel symbols, section offset
};
struct RelImportEntry
{
int moduleId; // ID of module from which the relocation symbols are imported from
struct RelRelocEntry *relocs; // relocation entries
int relocsCount; // number of relocation entries
size_t relocsOffset; // file offset to relocation entries
};
struct Module
{
int moduleId; // unique identifier of the module; the id of the DOL is always 0
const char *filename; // name of the module's ELF file
FILE *file; // ELF file
Elf32_Ehdr ehdr; // ELF header
Elf32_Sym *symtab; // ELF symbol table entries
int symtabCount; // number of ELF symbol table entries
char *strtab; // ELF string table
size_t strtabSize; // size of ELF string table
};
static struct Module dolModule;
static struct Module relModule;
static struct RelImportEntry *imports;
static int importsCount = 0;
static int minSectionCount = 0;
static int undefinedSymError = 0;
static void fatal_error(const char *msg, ...)
{
va_list args;
va_start(args, msg);
vfprintf(stderr, msg, args);
va_end(args);
exit(1);
}
// Swaps byte order if the system is little endian
static void bswap32(uint32_t *ptr)
{
if (IS_LITTLE_ENDIAN)
*ptr = (((*ptr >> 24) & 0xFF) << 0)
| (((*ptr >> 16) & 0xFF) << 8)
| (((*ptr >> 8) & 0xFF) << 16)
| (((*ptr >> 0) & 0xFF) << 24);
}
static void bswap16(uint16_t *ptr)
{
if (IS_LITTLE_ENDIAN)
*ptr = (((*ptr >> 8) & 0xFF) << 0)
| (((*ptr >> 0) & 0xFF) << 8);
}
static int read_checked(FILE *f, size_t offset, void *out, size_t size)
{
return fseek(f, offset, SEEK_SET) == 0
&& fread(out, size, 1, f) == 1;
}
static int write_checked(FILE *f, size_t offset, const void *in, size_t size)
{
return fseek(f, offset, SEEK_SET) == 0
&& fwrite(in, size, 1, f) == 1;
}
static uint32_t align(uint32_t n, unsigned int alignment)
{
if (alignment == 0 || n % alignment == 0)
return n;
return n + alignment - (n % alignment);
}
static int is_supported_reloc_type(int type)
{
switch (type)
{
case R_PPC_ADDR32:
case R_PPC_ADDR24:
case R_PPC_ADDR16_LO:
case R_PPC_ADDR16_HA:
case R_PPC_REL24:
case R_PPC_REL14:
return 1;
}
return 0;
}
static const char *symbol_name(const struct Module *module, const Elf32_Sym *sym)
{
if (sym->st_name >= module->strtabSize)
return NULL;
return module->strtab + sym->st_name;
}
static int get_symtab_entry(const struct Module *module, int index, Elf32_Sym *sym)
{
if (index >= module->symtabCount)
return 0;
*sym = module->symtab[index];
bswap32(&sym->st_name);
bswap32(&sym->st_value);
bswap32(&sym->st_size);
bswap16(&sym->st_shndx);
return 1;
}
static int lookup_symbol_by_name(const struct Module *module, const char *name, Elf32_Sym *sym)
{
int i;
for (i = 0; i < module->symtabCount; i++)
{
get_symtab_entry(module, i, sym);
const char *n = symbol_name(module, sym);
if (n != NULL && strcmp(name, n) == 0)
return 1;
}
return 0;
}
static struct RelImportEntry *get_import_for_module_id(int moduleId)
{
int i;
for (i = 0; i < importsCount; i++)
{
if (imports[i].moduleId == moduleId)
return &imports[i];
}
return NULL;
}
static void add_reloc_entry(const struct Module *module, const Elf32_Rela *reloc, int relocSection)
{
Elf32_Sym sym;
int symIdx = ELF32_R_SYM(reloc->r_info);
int relocType = ELF32_R_TYPE(reloc->r_info);
struct RelRelocEntry rentry;
struct RelImportEntry *import;
int moduleId; // module containing the symbol
if (!is_supported_reloc_type(relocType))
fatal_error("relocation type %i not supported\n", relocType);
rentry.patchSection = relocSection;
rentry.patchOffset = reloc->r_offset;
rentry.type = relocType;
// look for symbol in this module
if (!get_symtab_entry(module, symIdx, &sym))
fatal_error("couldn't find symbol index %i\n", symIdx);
if (sym.st_shndx != 0) // symbol is in this module
{
rentry.symbolSection = sym.st_shndx;
rentry.symbolAddr = sym.st_value + reloc->r_addend;
moduleId = module->moduleId;
}
else // symbol is in another module (the DOL)
{
const char *name = symbol_name(&relModule, &sym);
if (!lookup_symbol_by_name(&dolModule, name, &sym))
{
undefinedSymError = 1;
fprintf(stderr, "could not find symbol '%s' in any module\n", name);
return;
}
if (sym.st_shndx >= dolModule.ehdr.e_shnum)
fatal_error("bad section index %i\n", sym.st_shndx);
rentry.symbolSection = sym.st_shndx;
rentry.symbolAddr = sym.st_value + reloc->r_addend;
moduleId = dolModule.moduleId;
}
import = get_import_for_module_id(moduleId);
// add import entry if it does not exist.
if (import == NULL)
{
imports = realloc(imports, (importsCount + 1) * sizeof(*imports));
import = &imports[importsCount++];
import->moduleId = moduleId;
import->relocs = NULL;
import->relocsCount = 0;
}
// add relocation entry
import->relocs = realloc(import->relocs, (import->relocsCount + 1) * sizeof(*import->relocs));
import->relocs[import->relocsCount++] = rentry;
}
static void module_get_section_header(const struct Module *module, int secNum, Elf32_Shdr *shdr)
{
size_t offset = module->ehdr.e_shoff + secNum * module->ehdr.e_shentsize;
if (secNum >= module->ehdr.e_shnum)
fatal_error("no such section index %i\n", secNum);
if (!read_checked(module->file, offset, shdr, sizeof(*shdr)))
fatal_error("error reading section header\n");
// convert from big endian
bswap32(&shdr->sh_name);
bswap32(&shdr->sh_type);
bswap32(&shdr->sh_flags);
bswap32(&shdr->sh_addr);
bswap32(&shdr->sh_offset);
bswap32(&shdr->sh_size);
bswap32(&shdr->sh_link);
bswap32(&shdr->sh_info);
bswap32(&shdr->sh_addralign);
bswap32(&shdr->sh_entsize);
}
static void module_read_relocs(struct Module *module)
{
int i;
int j;
undefinedSymError = 0;
for (i = 0; i < (int)module->ehdr.e_shnum; i++)
{
Elf32_Shdr shdr;
Elf32_Shdr forSection;
module_get_section_header(module, i, &shdr);
if (shdr.sh_type == SHT_RELA)
{
module_get_section_header(module, shdr.sh_info, &forSection);
if (!(forSection.sh_flags & SHF_ALLOC))
continue;
for (j = 0; j < shdr.sh_size / sizeof(Elf32_Rela); j++)
{
Elf32_Rela reloc;
read_checked(module->file, shdr.sh_offset + j * sizeof(Elf32_Rela), &reloc, sizeof(reloc));
// convert from big endian
bswap32(&reloc.r_offset);
bswap32(&reloc.r_info);
bswap32((uint32_t *)&reloc.r_addend);
add_reloc_entry(&relModule, &reloc, shdr.sh_info);
}
}
}
if (undefinedSymError)
exit(1);
}
static int open_module(struct Module *module)
{
int i;
// open file
module->file = fopen(module->filename, "rb");
if (module->file == NULL)
fatal_error("could not open %s for reading: %s\n", module->filename, strerror(errno));
// read and verify ELF header
if (!read_checked(module->file, 0, &module->ehdr, sizeof(module->ehdr)))
fatal_error("error reading ELF header\n");
if (memcmp(module->ehdr.e_ident, "\x7F""ELF", 4) != 0)
fatal_error("%s is not a valid ELF file\n", module->filename);
// convert from big endian
bswap16(&module->ehdr.e_type);
bswap16(&module->ehdr.e_machine);
bswap32(&module->ehdr.e_version);
bswap32(&module->ehdr.e_entry);
bswap32(&module->ehdr.e_phoff);
bswap32(&module->ehdr.e_shoff);
bswap32(&module->ehdr.e_flags);
bswap16(&module->ehdr.e_ehsize);
bswap16(&module->ehdr.e_phentsize);
bswap16(&module->ehdr.e_phnum);
bswap16(&module->ehdr.e_shentsize);
bswap16(&module->ehdr.e_shnum);
bswap16(&module->ehdr.e_shstrndx);
if (module->ehdr.e_shentsize < sizeof(Elf32_Shdr))
fatal_error("invalid section header size");
// Verify architecture
if (module->ehdr.e_ident[EI_CLASS] != ELFCLASS32
|| module->ehdr.e_ident[EI_DATA] != ELFDATA2MSB
|| module->ehdr.e_machine != EM_PPC)
fatal_error("%s: wrong architecture. expected PowerPC 32-bit big endian.\n", module->filename);
// Read symbol table and string table
for (i = 0; i < (int)module->ehdr.e_shnum; i++)
{
Elf32_Shdr shdr;
module_get_section_header(module, i, &shdr);
if (shdr.sh_type == SHT_SYMTAB && module->symtab == NULL)
{
module->symtabCount = shdr.sh_size / sizeof(Elf32_Sym);
module->symtab = malloc(shdr.sh_size);
if (!read_checked(module->file, shdr.sh_offset, module->symtab, shdr.sh_size))
fatal_error("error reading symbol table\n");
}
else if (shdr.sh_type == SHT_STRTAB && i != module->ehdr.e_shstrndx && module->strtab == NULL)
{
module->strtabSize = shdr.sh_size;
module->strtab = malloc(shdr.sh_size);
if (!read_checked(module->file, shdr.sh_offset, module->strtab, shdr.sh_size))
fatal_error("error reading string table\n");
}
}
if (module->symtab == NULL)
fatal_error("%s does not have a symbol table.\n", module->filename);
if (module->strtab == NULL)
fatal_error("%s does not have a string table.\n", module->filename);
return 1;
}
// searches for the special functions "_prolog", "_epliog", and "_unresolved"
static void find_rel_entry_functions(const struct Module *module, struct RelHeader *relHdr)
{
int i;
//puts("finding entry points");
for (i = 0; i < module->symtabCount; i++)
{
Elf32_Sym sym;
Elf32_Shdr shdr;
const char *name;
get_symtab_entry(module, i, &sym);
name = symbol_name(module, &sym);
if (name == NULL)
continue;
if (strcmp(name, "_prolog") == 0)
{
module_get_section_header(module, sym.st_shndx, &shdr);
relHdr->prologSection = sym.st_shndx;
relHdr->prologOffset = sym.st_value - shdr.sh_addr;
}
else if (strcmp(name, "_epilog") == 0)
{
module_get_section_header(module, sym.st_shndx, &shdr);
relHdr->epilogSection = sym.st_shndx;
relHdr->epilogOffset = sym.st_value - shdr.sh_addr;
}
else if (strcmp(name, "_unresolved") == 0)
{
module_get_section_header(module, sym.st_shndx, &shdr);
relHdr->unresolvedSection = sym.st_shndx;
relHdr->unresolvedOffset = sym.st_value - shdr.sh_addr;
}
}
}
// patches the bl instruction at insnp to jump to offset
static void patch_rel24_branch_offset(uint8_t *insnp, int32_t branchOffset)
{
const uint32_t offsetMask = 0x03FFFFFC; // bits of instruction that contain the offset
uint32_t insn = (insnp[0] << 24) // read instruction
| (insnp[1] << 16)
| (insnp[2] << 8)
| (insnp[3] << 0);
assert(((insn >> 26) & 0x3F) == 18); // TODO: do other instructions besides bl use R_PPC_REL24?
insn = (insn & ~offsetMask) | (branchOffset & offsetMask); // patch instruction
// write instruction
insnp[0] = (insn >> 24) & 0xFF;
insnp[1] = (insn >> 16) & 0xFF;
insnp[2] = (insn >> 8) & 0xFF;
insnp[3] = (insn >> 0) & 0xFF;
}
static void patch_code_relocs(struct RelHeader *relHdr, int sectionId, uint8_t *code, size_t size)
{
struct RelImportEntry *import;
struct RelRelocEntry *reloc;
int i;
// Remove redundant R_PPC_REL24 relocations for calls to functions within
// the same module
import = get_import_for_module_id(relModule.moduleId);
assert(import != NULL);
for (i = 0, reloc = &import->relocs[0]; i < import->relocsCount; i++, reloc++)
{
if (reloc->patchSection == sectionId && reloc->type == R_PPC_REL24)
{
assert(reloc->patchOffset < size);
patch_rel24_branch_offset(
code + reloc->patchOffset,
reloc->symbolAddr - reloc->patchOffset);
// remove the relocation
reloc->type = R_PPC_NONE;
}
}
// Patch all calls to functions outside this module to jump to _unresolved
// by default.
if (relHdr->unresolvedSection == 0)
return;
import = get_import_for_module_id(0);
assert(import != NULL);
for (i = 0, reloc = &import->relocs[0]; i < import->relocsCount; i++, reloc++)
{
if (reloc->patchSection == sectionId && reloc->type == R_PPC_REL24)
{
assert(reloc->patchOffset < size);
patch_rel24_branch_offset(
code + reloc->patchOffset,
relHdr->unresolvedOffset - reloc->patchOffset);
}
}
}
static int compare_relocs(const void *a, const void *b)
{
const struct RelRelocEntry *relocA = a;
const struct RelRelocEntry *relocB = b;
// Sort by sections to which these relocations apply
if (relocA->patchSection != relocB->patchSection)
return relocA->patchSection - relocB->patchSection;
// Sort by patch offset
if (relocA->patchOffset != relocB->patchOffset)
return relocA->patchOffset - relocB->patchOffset;
// Otherwise, leave the order alone
return (uintptr_t)a - (uintptr_t)b;
}
static int compare_imports(const void *a, const void *b)
{
const struct RelImportEntry *impA = a;
const struct RelImportEntry *impB = b;
return impA->moduleId - impB->moduleId;
}
static void write_rel_file(struct Module *module, struct RelHeader *relHdr, const char *filename)
{
int i, j;
size_t filePos = sizeof(struct RelHeader); // skip over header for now
struct RelImportEntry *imp;
FILE *fout = fopen(filename, "wb");
if (fout == NULL)
fatal_error("could not open %s for writing: %s\n", filename, strerror(errno));
relHdr->moduleId = module->moduleId;
relHdr->formatVersion = 1;
find_rel_entry_functions(module, relHdr);
// 1. Write section table and section contents
relHdr->sectionTableOffset = filePos;
relHdr->sectionCount = MAX(module->ehdr.e_shnum, minSectionCount);
// section contents follow section info table
filePos = relHdr->sectionTableOffset + relHdr->sectionCount * 8;
relHdr->bssSize = 0;
for (i = 0; i < module->ehdr.e_shnum; i++)
{
Elf32_Shdr shdr;
struct { uint32_t offset; uint32_t size; } secEntry = {0};
module_get_section_header(module, i, &shdr);
// write section contents
if (shdr.sh_type == SHT_PROGBITS && (shdr.sh_flags & SHF_ALLOC))
{
size_t sizeAligned = align(shdr.sh_size, 4);
uint32_t execflg = (shdr.sh_flags & SHF_EXECINSTR) ? 1 : 0;
filePos = align(filePos, shdr.sh_addralign);
if (shdr.sh_size > 0)
{
uint8_t *data = calloc(sizeAligned, 1);
if (!read_checked(module->file, shdr.sh_offset, data, shdr.sh_size))
fatal_error("error reading section\n");
if (execflg)
patch_code_relocs(relHdr, i, data, sizeAligned);
if (!write_checked(fout, filePos, data, shdr.sh_size))
fatal_error("error writing rel section\n");
free(data);
}
secEntry.offset = filePos | execflg;
filePos += shdr.sh_size;
}
if (shdr.sh_flags & SHF_ALLOC)
secEntry.size = shdr.sh_size;
// write section table entry
bswap32(&secEntry.offset);
bswap32(&secEntry.size);
write_checked(fout, relHdr->sectionTableOffset + i * 8, &secEntry, sizeof(secEntry));
// calculate total BSS size
if ((shdr.sh_flags & SHF_ALLOC) && shdr.sh_type == SHT_NOBITS)
relHdr->bssSize += shdr.sh_size;
}
// 2. Write relocation data
relHdr->relocationTableOffset = filePos;
// sort imports by module id
qsort(imports, importsCount, sizeof(struct RelImportEntry), compare_imports);
for (i = 0, imp = &imports[0]; i < importsCount; i++, imp++)
{
struct RelRelocEntry *reloc;
int currSection = -1;
uint32_t prevOffset = 0;
struct
{
uint16_t offset;
uint8_t type;
uint8_t section;
uint32_t symaddr;
} ent;
imp->relocsOffset = filePos;
// sort relocation entries by section
qsort(imp->relocs, imp->relocsCount, sizeof(struct RelRelocEntry), compare_relocs);
for (j = 0, reloc = &imp->relocs[0]; j < imp->relocsCount; j++, reloc++)
{
if (reloc->type == R_PPC_NONE) // ignore null relocations
continue;
if (reloc->patchSection != currSection) // section changed
{
currSection = reloc->patchSection;
// write section change
ent.offset = 0;
ent.type = R_DOLPHIN_SECTION;
ent.section = reloc->patchSection;
ent.symaddr = 0;
bswap16(&ent.offset);
bswap32(&ent.symaddr);
if (!write_checked(fout, filePos, &ent, sizeof(ent)))
fatal_error("error writing relocation entry");
filePos += sizeof(ent);
prevOffset = 0;
}
// write relocation
assert(reloc->patchOffset >= prevOffset);
ent.offset = reloc->patchOffset - prevOffset;
ent.type = reloc->type;
ent.section = reloc->symbolSection;
ent.symaddr = reloc->symbolAddr;
bswap16(&ent.offset);
bswap32(&ent.symaddr);
if (!write_checked(fout, filePos, &ent, sizeof(ent)))
fatal_error("error writing relocation entry");
filePos += sizeof(ent);
prevOffset = reloc->patchOffset;
}
// write end
ent.offset = 0;
ent.type = R_DOLPHIN_END;
ent.section = 0;
ent.symaddr = 0;
bswap16(&ent.offset);
bswap32(&ent.symaddr);
if (!write_checked(fout, filePos, &ent, sizeof(ent)))
fatal_error("error writing relocation entry");
filePos += sizeof(ent);
}
// 3. Write module import table
relHdr->importTableOffset = filePos;
for (i = 0, imp = &imports[0]; i < importsCount; i++, imp++)
{
// write import table entry
struct { uint32_t moduleId; uint32_t relocsOffset; } ent;
ent.moduleId = imp->moduleId;
ent.relocsOffset = imp->relocsOffset;
bswap32(&ent.moduleId);
bswap32(&ent.relocsOffset);
write_checked(fout, relHdr->importTableOffset + i * 8, &ent, sizeof(ent));
}
relHdr->importTableSize = importsCount * 8;
// 4. Write REL header.
// convert to big endian
bswap32(&relHdr->moduleId);
bswap32(&relHdr->sectionCount);
bswap32(&relHdr->sectionTableOffset);
bswap32(&relHdr->moduleNameOffset);
bswap32(&relHdr->moduleNameSize);
bswap32(&relHdr->formatVersion);
bswap32(&relHdr->bssSize);
bswap32(&relHdr->relocationTableOffset);
bswap32(&relHdr->importTableOffset);
bswap32(&relHdr->importTableSize);
bswap32(&relHdr->prologOffset);
bswap32(&relHdr->epilogOffset);
bswap32(&relHdr->unresolvedOffset);
write_checked(fout, 0, relHdr, sizeof(*relHdr));
fclose(fout);
}
static int parse_number(const char *str, int *n)
{
char *end;
*n = strtol(str, &end, 0);
return end > str && *end == 0;
}
int main(int argc, char **argv)
{
int i;
int moduleId = -1;
int nameOffset = 0;
int nameLen = 0;
const char *relName = NULL;
struct RelHeader relHdr = {0};
// Read command-line args
for (i = 1; i < argc; i++)
{
if (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--pad-section-count") == 0)
{
if (i + 1 < argc && parse_number(argv[i + 1], &minSectionCount))
i++;
else
goto usage;
}
else if (strcmp(argv[i], "-i") == 0 || strcmp(argv[i], "--module-id") == 0)
{
if (i + 1 < argc && parse_number(argv[i + 1], &moduleId))
i++;
else
goto usage;
}
else if (strcmp(argv[i], "-o") == 0 || strcmp(argv[i], "--name-offset") == 0)
{
if (i + 1 < argc && parse_number(argv[i + 1], &nameOffset))
i++;
else
goto usage;
}
else if (strcmp(argv[i], "-l") == 0 || strcmp(argv[i], "--name-length") == 0)
{
if (i + 1 < argc && parse_number(argv[i + 1], &nameLen))
i++;
else
goto usage;
}
else
{
if (relModule.filename == NULL)
relModule.filename = argv[i];
else if (dolModule.filename == NULL)
dolModule.filename = argv[i];
else if (relName == NULL)
relName = argv[i];
else
goto usage;
}
}
if (relModule.filename == NULL || dolModule.filename == NULL || relName == NULL)
goto usage;
open_module(&relModule);
open_module(&dolModule);
dolModule.moduleId = 0;
relModule.moduleId = moduleId;
module_read_relocs(&relModule);
// TODO: Read this information from string table
relHdr.moduleNameOffset = nameOffset;
relHdr.moduleNameSize = nameLen;
write_rel_file(&relModule, &relHdr, relName);
fclose(relModule.file);
fclose(dolModule.file);
free(dolModule.strtab);
free(dolModule.symtab);
for (i = 0; i < importsCount; i++)
free(imports[i].relocs);
free(imports);
return 0;
usage:
fprintf(stderr,
"usage: %s reloc_elf static_elf rel_file\n"
"options:\n"
" -i, --module-id <n> sets the module ID in the rel header to <n>\n"
" -c, --pad-section-count <n> ensures that the rel will have at least <n>\n"
" sections\n"
" -o, --name-offset <offset> sets the name offset in the rel header to\n"
" <offset>\n"
" -l, --name-length <len> sets the name length in the rel header to <len>\n",
argv[0]);
return 1;
}