Replace hand-rolled MD5/SHA-1 with faster versions

This commit is contained in:
Luke Street 2025-10-08 18:10:27 -06:00
parent a5c7a9a062
commit ce57eb44a8
5 changed files with 886 additions and 207 deletions

View File

@ -125,6 +125,7 @@ add_executable(wibo
dll/advapi32/winbase.cpp
dll/advapi32/wincrypt.cpp
dll/advapi32/winreg.cpp
dll/advapi32/md5.c
dll/bcrypt.cpp
dll/crt.cpp
dll/kernel32.cpp

291
dll/advapi32/md5.c Normal file
View File

@ -0,0 +1,291 @@
/*
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD5 Message-Digest Algorithm (RFC 1321).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* (This is a heavily cut-down "BSD license".)
*
* This differs from Colin Plumb's older public domain implementation in that
* no exactly 32-bit integer data type is required (any 32-bit or wider
* unsigned integer data type will do), there's no compile-time endianness
* configuration, and the function prototypes match OpenSSL's. No code from
* Colin Plumb's implementation has been reused; this comment merely compares
* the properties of the two independent implementations.
*
* The primary goals of this implementation are portability and ease of use.
* It is meant to be fast, but not as fast as possible. Some known
* optimizations are not included to reduce source code size and avoid
* compile-time configuration.
*/
#ifndef HAVE_OPENSSL
#include <string.h>
#include "md5.h"
/*
* The basic MD5 functions.
*
* F and G are optimized compared to their RFC 1321 definitions for
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
* implementation.
*/
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) (((x) ^ (y)) ^ (z))
#define H2(x, y, z) ((x) ^ ((y) ^ (z)))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
/*
* The MD5 transformation for all four rounds.
*/
#define STEP(f, a, b, c, d, x, t, s) \
(a) += f((b), (c), (d)) + (x) + (t); \
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
(a) += (b);
/*
* SET reads 4 input bytes in little-endian byte order and stores them in a
* properly aligned word in host byte order.
*
* The check for little-endian architectures that tolerate unaligned memory
* accesses is just an optimization. Nothing will break if it fails to detect
* a suitable architecture.
*
* Unfortunately, this optimization may be a C strict aliasing rules violation
* if the caller's data buffer has effective type that cannot be aliased by
* MD5_u32plus. In practice, this problem may occur if these MD5 routines are
* inlined into a calling function, or with future and dangerously advanced
* link-time optimizations. For the time being, keeping these MD5 routines in
* their own translation unit avoids the problem.
*/
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#define SET(n) \
(*(MD5_u32plus *)&ptr[(n) * 4])
#define GET(n) \
SET(n)
#else
#define SET(n) \
(ctx->block[(n)] = \
(MD5_u32plus)ptr[(n) * 4] | \
((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
(ctx->block[(n)])
#endif
/*
* This processes one or more 64-byte data blocks, but does NOT update the bit
* counters. There are no alignment requirements.
*/
static const void *body(MD5_CTX *ctx, const void *data, unsigned long size)
{
const unsigned char *ptr;
MD5_u32plus a, b, c, d;
MD5_u32plus saved_a, saved_b, saved_c, saved_d;
ptr = (const unsigned char *)data;
a = ctx->a;
b = ctx->b;
c = ctx->c;
d = ctx->d;
do {
saved_a = a;
saved_b = b;
saved_c = c;
saved_d = d;
/* Round 1 */
STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
/* Round 2 */
STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
/* Round 3 */
STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
/* Round 4 */
STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
a += saved_a;
b += saved_b;
c += saved_c;
d += saved_d;
ptr += 64;
} while (size -= 64);
ctx->a = a;
ctx->b = b;
ctx->c = c;
ctx->d = d;
return ptr;
}
void MD5_Init(MD5_CTX *ctx)
{
ctx->a = 0x67452301;
ctx->b = 0xefcdab89;
ctx->c = 0x98badcfe;
ctx->d = 0x10325476;
ctx->lo = 0;
ctx->hi = 0;
}
void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
{
MD5_u32plus saved_lo;
unsigned long used, available;
saved_lo = ctx->lo;
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
ctx->hi++;
ctx->hi += size >> 29;
used = saved_lo & 0x3f;
if (used) {
available = 64 - used;
if (size < available) {
memcpy(&ctx->buffer[used], data, size);
return;
}
memcpy(&ctx->buffer[used], data, available);
data = (const unsigned char *)data + available;
size -= available;
body(ctx, ctx->buffer, 64);
}
if (size >= 64) {
data = body(ctx, data, size & ~(unsigned long)0x3f);
size &= 0x3f;
}
memcpy(ctx->buffer, data, size);
}
#define OUT(dst, src) \
(dst)[0] = (unsigned char)(src); \
(dst)[1] = (unsigned char)((src) >> 8); \
(dst)[2] = (unsigned char)((src) >> 16); \
(dst)[3] = (unsigned char)((src) >> 24);
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
{
unsigned long used, available;
used = ctx->lo & 0x3f;
ctx->buffer[used++] = 0x80;
available = 64 - used;
if (available < 8) {
memset(&ctx->buffer[used], 0, available);
body(ctx, ctx->buffer, 64);
used = 0;
available = 64;
}
memset(&ctx->buffer[used], 0, available - 8);
ctx->lo <<= 3;
OUT(&ctx->buffer[56], ctx->lo)
OUT(&ctx->buffer[60], ctx->hi)
body(ctx, ctx->buffer, 64);
OUT(&result[0], ctx->a)
OUT(&result[4], ctx->b)
OUT(&result[8], ctx->c)
OUT(&result[12], ctx->d)
memset(ctx, 0, sizeof(*ctx));
}
#endif

53
dll/advapi32/md5.h Normal file
View File

@ -0,0 +1,53 @@
/*
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD5 Message-Digest Algorithm (RFC 1321).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* See md5.c for more information.
*/
#ifdef HAVE_OPENSSL
#include <openssl/md5.h>
#elif !defined(_MD5_H)
#define _MD5_H
#ifdef __cplusplus
extern "C" {
#endif
/* Any 32-bit or wider unsigned integer data type will do */
typedef unsigned int MD5_u32plus;
typedef struct {
MD5_u32plus lo, hi;
MD5_u32plus a, b, c, d;
unsigned char buffer[64];
MD5_u32plus block[16];
} MD5_CTX;
extern void MD5_Init(MD5_CTX *ctx);
extern void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size);
extern void MD5_Final(unsigned char *result, MD5_CTX *ctx);
#ifdef __cplusplus
}
#endif
#endif

479
dll/advapi32/sha1.h Normal file
View File

@ -0,0 +1,479 @@
/*
SHA-1 hashing. Choice of public domain or MIT-0. See license statements at the end of this file.
David Reid - mackron@gmail.com
*/
/*
A simple SHA-1 hashing implementation. Usage:
unsigned char digest[SHA1_SIZE];
sha1_context ctx;
sha1_init(&ctx);
{
sha1_update(&ctx, src, sz);
}
sha1_finalize(&ctx, digest);
The above code is the literal implementation of `sha1()` which is a high level helper for hashing
data of a known size:
unsigned char hash[SHA1_SIZE];
sha1(hash, data, dataSize);
Use `sha1_format()` to format the digest as a hex string. The capacity of the output buffer needs to
be at least `SHA1_SIZE_FORMATTED` bytes.
This library does not perform any memory allocations and does not use anything from the standard
library except for `size_t` and `NULL`, both of which are drawn in from stddef.h. No other standard
headers are included.
There is no need to link to anything with this library. You can use SHA1_IMPLEMENTATION to define
the implementation section, or you can use sha1.c if you prefer a traditional header/source pair.
This implements both methods defined in RFC 3174. Method 1 will be used by default. If you want to
use Method 2, define `SHA1_USE_RFC_METHOD_2` at compile time.
#define SHA1_USE_RFC_METHOD_2
#define SHA1_IMPLEMENTATION
#include "sha1.h"
No effort has been made to optimize this beyond the algorithms described in RGC 3174. If you're
looking for the fastest SHA-1 implementation you'll need to look elsewhere. An optimized
implementation may come later.
*/
#ifndef sha1_h
#define sha1_h
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h> /* For size_t and NULL. */
#if defined(_MSC_VER)
typedef unsigned __int64 sha1_uint64;
#else
typedef unsigned long long sha1_uint64;
#endif
#if !defined(SHA1_API)
#define SHA1_API
#endif
#define SHA1_SIZE 20
#define SHA1_SIZE_FORMATTED 41
typedef struct
{
unsigned int h[5];
sha1_uint64 sz;
unsigned char cache[64];
unsigned int cacheLen;
} sha1_context;
SHA1_API void sha1_init(sha1_context* ctx);
SHA1_API void sha1_update(sha1_context* ctx, const void* src, size_t sz);
SHA1_API void sha1_finalize(sha1_context* ctx, unsigned char* digest);
SHA1_API void sha1(unsigned char* digest, const void* src, size_t sz);
SHA1_API void sha1_format(char* dst, size_t dstCap, const unsigned char* hash);
#ifdef __cplusplus
}
#endif
#endif /* sha1_h */
#if defined(SHA1_IMPLEMENTATION)
#ifndef sha1_c
#define sha1_c
#define SHA1_ALGORITHM_RFC_METHOD_1 1
#define SHA1_ALGORITHM_RFC_METHOD_2 2
#define SHA1_ALGORITHM_DEFAULT SHA1_ALGORITHM_RFC_METHOD_1
# if defined(SHA1_USE_RFC_METHOD_1)
#define SHA1_ALGORITHM SHA1_ALGORITHM_RFC_METHOD_1
#elif defined(SHA1_USE_RFC_METHOD_2)
#define SHA1_ALGORITHM SHA1_ALGORITHM_RFC_METHOD_2
#else
#define SHA1_ALGORITHM SHA1_ALGORITHM_DEFAULT
#endif
static void sha1_zero_memory(void* p, size_t sz)
{
size_t i;
for (i = 0; i < sz; i += 1) {
((unsigned char*)p)[i] = 0;
}
}
static void sha1_copy_memory(void* dst, const void* src, size_t sz)
{
size_t i;
for (i = 0; i < sz; i += 1) {
((unsigned char*)dst)[i] = ((unsigned char*)src)[i];
}
}
#define SHA1_ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define SHA1_F00(b, c, d) (((b) & (c)) | ((~(b)) & (d))) /* (B AND C) OR ((NOT B) AND D) */
#define SHA1_F20(b, c, d) ((b) ^ (c) ^ (d)) /* B XOR C XOR D */
#define SHA1_F40(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) /* (B AND C) OR (B AND D) OR (C AND D) */
#define SHA1_F60(b, c, d) ((b) ^ (c) ^ (d)) /* B XOR C XOR D */
/*
This is the main SHA-1 function. Everything is processed in blocks of 64 bytes.
*/
static void sha1_update_block(sha1_context* ctx, const unsigned char* src)
{
size_t i;
unsigned int w[80];
unsigned int a, b, c, d, e;
unsigned int temp;
/* assert(ctx != NULL); */
/* assert(src != NULL); */
for (i = 0; i < 16; i += 1) {
w[i] = (src[i*4 + 0] << 24);
w[i] |= (src[i*4 + 1] << 16);
w[i] |= (src[i*4 + 2] << 8);
w[i] |= (src[i*4 + 3] << 0);
}
a = ctx->h[0];
b = ctx->h[1];
c = ctx->h[2];
d = ctx->h[3];
e = ctx->h[4];
#if SHA1_ALGORITHM == SHA1_ALGORITHM_RFC_METHOD_1
{
for (i = 16; i < 80; i += 1) {
w[i] = SHA1_ROTATE_LEFT((w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]), 1);
}
for (i = 0; i < 20; i += 1) {
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F00(b, c, d) + e + w[i] + 0x5A827999;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
for (i = 20; i < 40; i += 1) {
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F20(b, c, d) + e + w[i] + 0x6ED9EBA1;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
for (i = 40; i < 60; i += 1) {
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F40(b, c, d) + e + w[i] + 0x8F1BBCDC;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
for (i = 60; i < 80; i += 1) {
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F60(b, c, d) + e + w[i] + 0xCA62C1D6;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
}
#endif
#if SHA1_ALGORITHM == SHA1_ALGORITHM_RFC_METHOD_2
{
unsigned int mask = 0x0000000F;
unsigned int s;
for (i = 0; i < 16; i += 1) {
s = i & mask;
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F00(b, c, d) + e + w[s] + 0x5A827999;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
for (i = 16; i < 20; i += 1) {
s = i & mask;
w[s] = SHA1_ROTATE_LEFT(w[(s + 13) & mask] ^ w[(s + 8) & mask] ^ w[(s + 2) & mask] ^ w[s], 1);
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F00(b, c, d) + e + w[s] + 0x5A827999;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
for (i = 20; i < 40; i += 1) {
s = i & mask;
w[s] = SHA1_ROTATE_LEFT(w[(s + 13) & mask] ^ w[(s + 8) & mask] ^ w[(s + 2) & mask] ^ w[s], 1);
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F20(b, c, d) + e + w[s] + 0x6ED9EBA1;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
for (i = 40; i < 60; i += 1) {
s = i & mask;
w[s] = SHA1_ROTATE_LEFT(w[(s + 13) & mask] ^ w[(s + 8) & mask] ^ w[(s + 2) & mask] ^ w[s], 1);
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F40(b, c, d) + e + w[s] + 0x8F1BBCDC;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
for (i = 60; i < 80; i += 1) {
s = i & mask;
w[s] = SHA1_ROTATE_LEFT(w[(s + 13) & mask] ^ w[(s + 8) & mask] ^ w[(s + 2) & mask] ^ w[s], 1);
temp = SHA1_ROTATE_LEFT(a, 5) + SHA1_F60(b, c, d) + e + w[s] + 0xCA62C1D6;
e = d;
d = c;
c = SHA1_ROTATE_LEFT(b, 30);
b = a;
a = temp;
}
}
#endif
ctx->h[0] += a;
ctx->h[1] += b;
ctx->h[2] += c;
ctx->h[3] += d;
ctx->h[4] += e;
/* We'll only ever be calling this if the context's cache is full. At this point the cache will also be empty. */
ctx->cacheLen = 0;
}
SHA1_API void sha1_init(sha1_context* ctx)
{
if (ctx == NULL) {
return;
}
sha1_zero_memory(ctx, sizeof(*ctx));
ctx->h[0] = 0x67452301;
ctx->h[1] = 0xEFCDAB89;
ctx->h[2] = 0x98BADCFE;
ctx->h[3] = 0x10325476;
ctx->h[4] = 0xC3D2E1F0;
}
SHA1_API void sha1_update(sha1_context* ctx, const void* src, size_t sz)
{
const unsigned char* bytes = (const unsigned char*)src;
size_t totalBytesProcessed = 0;
if (ctx == NULL || (src == NULL && sz > 0)) {
return;
}
/* Keep processing until all data has been exhausted. */
while (totalBytesProcessed < sz) {
/* Optimization. Bypass the cache if there's nothing in it and the number of bytes remaining to process is larger than 64. */
size_t bytesRemainingToProcess = sz - totalBytesProcessed;
if (ctx->cacheLen == 0 && bytesRemainingToProcess > sizeof(ctx->cache)) {
/* Fast path. Bypass the cache and just process directly. */
sha1_update_block(ctx, bytes + totalBytesProcessed);
totalBytesProcessed += sizeof(ctx->cache);
} else {
/* Slow path. Need to store in the cache. */
size_t cacheRemaining = sizeof(ctx->cache) - ctx->cacheLen;
if (cacheRemaining > 0) {
/* There's still some room left in the cache. Write as much data to it as we can. */
size_t bytesToProcess = bytesRemainingToProcess;
if (bytesToProcess > cacheRemaining) {
bytesToProcess = cacheRemaining;
}
sha1_copy_memory(ctx->cache + ctx->cacheLen, bytes + totalBytesProcessed, bytesToProcess);
ctx->cacheLen += (unsigned int)bytesToProcess; /* Safe cast. bytesToProcess will always be <= sizeof(ctx->cache) which is 64. */
totalBytesProcessed += bytesToProcess;
/* Update the number of bytes remaining in the cache so we can use it later. */
cacheRemaining = sizeof(ctx->cache) - ctx->cacheLen;
}
/* If the cache is full, get it processed. */
if (cacheRemaining == 0) {
sha1_update_block(ctx, ctx->cache);
}
}
}
ctx->sz += sz;
}
SHA1_API void sha1_finalize(sha1_context* ctx, unsigned char* digest)
{
size_t cacheRemaining;
unsigned int szLo;
unsigned int szHi;
if (digest == NULL) {
return;
}
if (ctx == NULL) {
sha1_zero_memory(digest, SHA1_SIZE);
return;
}
/*
Padding must be applied. First thing to do is clear the cache if there's no room for at least
one byte. This should never happen, but leaving this logic here for safety.
*/
cacheRemaining = sizeof(ctx->cache) - ctx->cacheLen;
if (cacheRemaining == 0) {
sha1_update_block(ctx, ctx->cache);
}
/* Now we need to write a byte with the most significant bit set (0x80). */
ctx->cache[ctx->cacheLen] = 0x80;
ctx->cacheLen += 1;
/* If there isn't enough room for 8 bytes we need to padd with zeroes and get the block processed. */
cacheRemaining = sizeof(ctx->cache) - ctx->cacheLen;
if (cacheRemaining < 8) {
sha1_zero_memory(ctx->cache + ctx->cacheLen, cacheRemaining);
sha1_update_block(ctx, ctx->cache);
cacheRemaining = sizeof(ctx->cache);
}
/* Now we need to fill the buffer with zeros until we've filled 56 bytes (8 bytes left over for the length). */
sha1_zero_memory(ctx->cache + ctx->cacheLen, cacheRemaining - 8);
szLo = (unsigned int)(((ctx->sz >> 0) & 0xFFFFFFFF) << 3);
szHi = (unsigned int)(((ctx->sz >> 32) & 0xFFFFFFFF) << 3);
ctx->cache[56] = (unsigned char)((szHi >> 24) & 0xFF);
ctx->cache[57] = (unsigned char)((szHi >> 16) & 0xFF);
ctx->cache[58] = (unsigned char)((szHi >> 8) & 0xFF);
ctx->cache[59] = (unsigned char)((szHi >> 0) & 0xFF);
ctx->cache[60] = (unsigned char)((szLo >> 24) & 0xFF);
ctx->cache[61] = (unsigned char)((szLo >> 16) & 0xFF);
ctx->cache[62] = (unsigned char)((szLo >> 8) & 0xFF);
ctx->cache[63] = (unsigned char)((szLo >> 0) & 0xFF);
sha1_update_block(ctx, ctx->cache);
/* Now write out the digest. */
digest[ 0] = (unsigned char)(ctx->h[0] >> 24); digest[ 1] = (unsigned char)(ctx->h[0] >> 16); digest[ 2] = (unsigned char)(ctx->h[0] >> 8); digest[ 3] = (unsigned char)(ctx->h[0] >> 0);
digest[ 4] = (unsigned char)(ctx->h[1] >> 24); digest[ 5] = (unsigned char)(ctx->h[1] >> 16); digest[ 6] = (unsigned char)(ctx->h[1] >> 8); digest[ 7] = (unsigned char)(ctx->h[1] >> 0);
digest[ 8] = (unsigned char)(ctx->h[2] >> 24); digest[ 9] = (unsigned char)(ctx->h[2] >> 16); digest[10] = (unsigned char)(ctx->h[2] >> 8); digest[11] = (unsigned char)(ctx->h[2] >> 0);
digest[12] = (unsigned char)(ctx->h[3] >> 24); digest[13] = (unsigned char)(ctx->h[3] >> 16); digest[14] = (unsigned char)(ctx->h[3] >> 8); digest[15] = (unsigned char)(ctx->h[3] >> 0);
digest[16] = (unsigned char)(ctx->h[4] >> 24); digest[17] = (unsigned char)(ctx->h[4] >> 16); digest[18] = (unsigned char)(ctx->h[4] >> 8); digest[19] = (unsigned char)(ctx->h[4] >> 0);
}
SHA1_API void sha1(unsigned char* digest, const void* src, size_t sz)
{
sha1_context ctx;
sha1_init(&ctx);
{
sha1_update(&ctx, src, sz);
}
sha1_finalize(&ctx, digest);
}
static void sha1_format_byte(char* dst, unsigned char byte)
{
const char* hex = "0123456789abcdef";
dst[0] = hex[(byte & 0xF0) >> 4];
dst[1] = hex[(byte & 0x0F) ];
}
SHA1_API void sha1_format(char* dst, size_t dstCap, const unsigned char* hash)
{
size_t i;
if (dst == NULL) {
return;
}
if (dstCap < SHA1_SIZE_FORMATTED) {
if (dstCap > 0) {
dst[0] = '\0';
}
return;
}
for (i = 0; i < SHA1_SIZE; i += 1) {
sha1_format_byte(dst + (i*2), hash[i]);
}
/* Always null terminate. */
dst[SHA1_SIZE_FORMATTED-1] = '\0';
}
#endif /* sha1_c */
#endif /* SHA1_IMPLEMENTATION */
/*
This software is available as a choice of the following licenses. Choose
whichever you prefer.
===============================================================================
ALTERNATIVE 1 - Public Domain (www.unlicense.org)
===============================================================================
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
===============================================================================
ALTERNATIVE 2 - MIT No Attribution
===============================================================================
Copyright 2022 David Reid
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/

View File

@ -4,189 +4,31 @@
#include "context.h"
#include "errors.h"
#include "md5.h"
#define SHA1_IMPLEMENTATION
#include "sha1.h"
#include <cstring>
#include <sys/random.h>
#include <vector>
namespace {
struct HashObject {
ALG_ID algid = 0;
std::vector<uint8_t> data;
std::vector<uint8_t> digest;
bool digestComputed = false;
unsigned char digest[20]{};
union {
MD5_CTX md5{};
sha1_context sha1;
};
};
uint32_t leftRotate(uint32_t value, uint32_t bits) { return (value << bits) | (value >> (32 - bits)); }
std::vector<uint8_t> computeMD5(const std::vector<uint8_t> &input) {
static const uint32_t s[64] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};
static const uint32_t K[64] = {
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391};
std::vector<uint8_t> data = input;
uint64_t bitLen = static_cast<uint64_t>(data.size()) * 8ULL;
data.push_back(0x80);
while ((data.size() % 64) != 56) {
data.push_back(0);
}
for (int i = 0; i < 8; ++i) {
data.push_back(static_cast<uint8_t>((bitLen >> (8 * i)) & 0xFF));
}
uint32_t A = 0x67452301;
uint32_t B = 0xEFCDAB89;
uint32_t C = 0x98BADCFE;
uint32_t D = 0x10325476;
for (size_t offset = 0; offset < data.size(); offset += 64) {
uint32_t M[16];
for (int i = 0; i < 16; ++i) {
M[i] = static_cast<uint32_t>(data[offset + i * 4]) |
(static_cast<uint32_t>(data[offset + i * 4 + 1]) << 8) |
(static_cast<uint32_t>(data[offset + i * 4 + 2]) << 16) |
(static_cast<uint32_t>(data[offset + i * 4 + 3]) << 24);
}
uint32_t a = A;
uint32_t b = B;
uint32_t c = C;
uint32_t d = D;
for (int i = 0; i < 64; ++i) {
uint32_t F;
int g;
if (i < 16) {
F = (b & c) | ((~b) & d);
g = i;
} else if (i < 32) {
F = (d & b) | ((~d) & c);
g = (5 * i + 1) % 16;
} else if (i < 48) {
F = b ^ c ^ d;
g = (3 * i + 5) % 16;
} else {
F = c ^ (b | (~d));
g = (7 * i) % 16;
}
uint32_t temp = d;
d = c;
c = b;
uint32_t rotateVal = a + F + K[i] + M[g];
b = b + leftRotate(rotateVal, s[i]);
a = temp;
}
A += a;
B += b;
C += c;
D += d;
}
std::vector<uint8_t> digest(16);
uint32_t output[4] = {A, B, C, D};
for (int i = 0; i < 4; ++i) {
digest[i * 4] = static_cast<uint8_t>(output[i] & 0xFF);
digest[i * 4 + 1] = static_cast<uint8_t>((output[i] >> 8) & 0xFF);
digest[i * 4 + 2] = static_cast<uint8_t>((output[i] >> 16) & 0xFF);
digest[i * 4 + 3] = static_cast<uint8_t>((output[i] >> 24) & 0xFF);
}
return digest;
}
std::vector<uint8_t> computeSHA1(const std::vector<uint8_t> &input) {
std::vector<uint8_t> data = input;
uint64_t bitLen = static_cast<uint64_t>(data.size()) * 8ULL;
data.push_back(0x80);
while ((data.size() % 64) != 56) {
data.push_back(0);
}
for (int i = 7; i >= 0; --i) {
data.push_back(static_cast<uint8_t>((bitLen >> (8 * i)) & 0xFF));
}
uint32_t h0 = 0x67452301;
uint32_t h1 = 0xEFCDAB89;
uint32_t h2 = 0x98BADCFE;
uint32_t h3 = 0x10325476;
uint32_t h4 = 0xC3D2E1F0;
for (size_t offset = 0; offset < data.size(); offset += 64) {
uint32_t w[80];
for (int i = 0; i < 16; ++i) {
w[i] = (static_cast<uint32_t>(data[offset + i * 4]) << 24) |
(static_cast<uint32_t>(data[offset + i * 4 + 1]) << 16) |
(static_cast<uint32_t>(data[offset + i * 4 + 2]) << 8) |
static_cast<uint32_t>(data[offset + i * 4 + 3]);
}
for (int i = 16; i < 80; ++i) {
w[i] = leftRotate(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
}
uint32_t a = h0;
uint32_t b = h1;
uint32_t c = h2;
uint32_t d = h3;
uint32_t e = h4;
for (int i = 0; i < 80; ++i) {
uint32_t f;
uint32_t k;
if (i < 20) {
f = (b & c) | ((~b) & d);
k = 0x5A827999;
} else if (i < 40) {
f = b ^ c ^ d;
k = 0x6ED9EBA1;
} else if (i < 60) {
f = (b & c) | (b & d) | (c & d);
k = 0x8F1BBCDC;
} else {
f = b ^ c ^ d;
k = 0xCA62C1D6;
}
uint32_t temp = leftRotate(a, 5) + f + e + k + w[i];
e = d;
d = c;
c = leftRotate(b, 30);
b = a;
a = temp;
}
h0 += a;
h1 += b;
h2 += c;
h3 += d;
h4 += e;
}
std::vector<uint8_t> digest(20);
uint32_t output[5] = {h0, h1, h2, h3, h4};
for (int i = 0; i < 5; ++i) {
digest[i * 4] = static_cast<uint8_t>((output[i] >> 24) & 0xFF);
digest[i * 4 + 1] = static_cast<uint8_t>((output[i] >> 16) & 0xFF);
digest[i * 4 + 2] = static_cast<uint8_t>((output[i] >> 8) & 0xFF);
digest[i * 4 + 3] = static_cast<uint8_t>(output[i] & 0xFF);
}
return digest;
}
bool computeDigest(HashObject &hash) {
if (hash.digestComputed) {
return true;
}
switch (hash.algid) {
case CALG_MD5:
hash.digest = computeMD5(hash.data);
hash.digestComputed = true;
MD5_Final(hash.digest, &hash.md5);
return true;
case CALG_SHA1:
hash.digest = computeSHA1(hash.data);
hash.digestComputed = true;
sha1_finalize(&hash.sha1, hash.digest);
return true;
default:
return false;
@ -202,6 +44,17 @@ HashObject *hashObjectFromHandle(HCRYPTHASH hHash) {
HCRYPTHASH hashHandleFromObject(HashObject *hash) { return static_cast<HCRYPTHASH>(reinterpret_cast<uintptr_t>(hash)); }
DWORD hashSizeForAlgid(ALG_ID algid) {
switch (algid) {
case CALG_MD5:
return 16;
case CALG_SHA1:
return 20;
default:
return 0;
}
}
} // namespace
namespace advapi32 {
@ -270,9 +123,11 @@ BOOL WIN_FUNC CryptCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DW
}
auto *hash = new HashObject;
hash->algid = Algid;
hash->digestComputed = false;
hash->data.clear();
hash->digest.clear();
if (Algid == CALG_MD5) {
MD5_Init(&hash->md5);
} else if (Algid == CALG_SHA1) {
sha1_init(&hash->sha1);
}
*phHash = hashHandleFromObject(hash);
return TRUE;
}
@ -291,9 +146,11 @@ BOOL WIN_FUNC CryptHashData(HCRYPTHASH hHash, const BYTE *pbData, DWORD dwDataLe
return FALSE;
}
if (pbData && dwDataLen) {
hash->data.insert(hash->data.end(), pbData, pbData + dwDataLen);
hash->digestComputed = false;
hash->digest.clear();
if (hash->algid == CALG_MD5) {
MD5_Update(&hash->md5, pbData, dwDataLen);
} else if (hash->algid == CALG_SHA1) {
sha1_update(&hash->sha1, pbData, dwDataLen);
}
}
return TRUE;
}
@ -328,37 +185,7 @@ BOOL WIN_FUNC CryptGetHashParam(HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, D
return TRUE;
}
case HP_HASHSIZE: {
DWORD size = 0;
switch (hash->algid) {
case CALG_MD5:
size = 16;
break;
case CALG_SHA1:
size = 20;
break;
default:
wibo::lastError = ERROR_NOT_SUPPORTED;
return FALSE;
}
if (!pbData) {
*pdwDataLen = sizeof(DWORD);
return TRUE;
}
if (*pdwDataLen < sizeof(DWORD)) {
*pdwDataLen = sizeof(DWORD);
wibo::lastError = ERROR_INSUFFICIENT_BUFFER;
return FALSE;
}
memcpy(pbData, &size, sizeof(DWORD));
*pdwDataLen = sizeof(DWORD);
return TRUE;
}
case HP_HASHVAL: {
if (!computeDigest(*hash)) {
wibo::lastError = ERROR_NOT_SUPPORTED;
return FALSE;
}
DWORD required = static_cast<DWORD>(hash->digest.size());
DWORD required = sizeof(DWORD);
if (!pbData) {
*pdwDataLen = required;
return TRUE;
@ -368,10 +195,38 @@ BOOL WIN_FUNC CryptGetHashParam(HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData, D
wibo::lastError = ERROR_INSUFFICIENT_BUFFER;
return FALSE;
}
memcpy(pbData, hash->digest.data(), required);
DWORD size = hashSizeForAlgid(hash->algid);
if (size == 0) {
wibo::lastError = ERROR_NOT_SUPPORTED;
return FALSE;
}
memcpy(pbData, &size, required);
*pdwDataLen = required;
return TRUE;
}
case HP_HASHVAL: {
if (!computeDigest(*hash)) {
wibo::lastError = ERROR_NOT_SUPPORTED;
return FALSE;
}
DWORD size = hashSizeForAlgid(hash->algid);
if (size == 0) {
wibo::lastError = ERROR_NOT_SUPPORTED;
return FALSE;
}
if (!pbData) {
*pdwDataLen = size;
return TRUE;
}
if (*pdwDataLen < size) {
*pdwDataLen = size;
wibo::lastError = ERROR_INSUFFICIENT_BUFFER;
return FALSE;
}
memcpy(pbData, hash->digest, size);
*pdwDataLen = size;
return TRUE;
}
default:
wibo::lastError = ERROR_NOT_SUPPORTED;
return FALSE;