mirror of https://github.com/encounter/SDL.git
audio: Replaced the resampler. Again.
This time it's using real math from a real whitepaper instead of my previous amateur, fast-but-low-quality attempt. The new resampler does "bandlimited interpolation," as described here: https://ccrma.stanford.edu/~jos/resample/ The output appears to sound cleaner, especially at high frequencies, and of course works with non-power-of-two rate conversions. There are some obvious optimizations to be done to this still, and there is other fallout: this doesn't resample a buffer in-place, the 2-channels-Sint16 fast path is gone because this resampler does a _lot_ of floating point math. There is a nasty hack to make it work with SDL_AudioCVT. It's possible these issues are solvable, but they aren't solved as of yet. Still, I hope this effort is slouching in the right direction.
This commit is contained in:
parent
3c45e662f5
commit
1a3b95a11e
|
@ -1543,6 +1543,8 @@ SDL_AudioQuit(void)
|
|||
#ifdef HAVE_LIBSAMPLERATE_H
|
||||
UnloadLibSampleRate();
|
||||
#endif
|
||||
|
||||
SDL_FreeResampleFilter();
|
||||
}
|
||||
|
||||
#define NUM_FORMATS 10
|
||||
|
|
|
@ -69,6 +69,11 @@ extern SDL_AudioFilter SDL_Convert_F32_to_S16;
|
|||
extern SDL_AudioFilter SDL_Convert_F32_to_U16;
|
||||
extern SDL_AudioFilter SDL_Convert_F32_to_S32;
|
||||
|
||||
/* You need to call SDL_PrepareResampleFilter() before using the internal resampler.
|
||||
SDL_AudioQuit() calls SDL_FreeResamplerFilter(), you should never call it yourself. */
|
||||
int SDL_PrepareResampleFilter(void);
|
||||
void SDL_FreeResampleFilter(void);
|
||||
|
||||
|
||||
/* SDL_AudioStream is a new audio conversion interface. It
|
||||
might eventually become a public API.
|
||||
|
|
|
@ -369,228 +369,157 @@ SDL_Convert51To71(SDL_AudioCVT * cvt, SDL_AudioFormat format)
|
|||
}
|
||||
}
|
||||
|
||||
/* SDL's resampler uses a "bandlimited interpolation" algorithm:
|
||||
https://ccrma.stanford.edu/~jos/resample/ */
|
||||
|
||||
#define RESAMPLER_ZERO_CROSSINGS 5
|
||||
#define RESAMPLER_BITS_PER_SAMPLE 16
|
||||
#define RESAMPLER_SAMPLES_PER_ZERO_CROSSING (1 << ((RESAMPLER_BITS_PER_SAMPLE / 2) + 1))
|
||||
#define RESAMPLER_FILTER_SIZE ((RESAMPLER_SAMPLES_PER_ZERO_CROSSING * RESAMPLER_ZERO_CROSSINGS) + 1)
|
||||
|
||||
/* This is a "modified" bessel function, so you can't use POSIX j0() */
|
||||
static double
|
||||
bessel(const double x)
|
||||
{
|
||||
const double xdiv2 = x / 2.0;
|
||||
double i0 = 1.0f;
|
||||
double f = 1.0f;
|
||||
int i = 1;
|
||||
|
||||
while (SDL_TRUE) {
|
||||
const double diff = SDL_pow(xdiv2, i * 2) / SDL_pow(f, 2);
|
||||
if (diff < 1.0e-21f) {
|
||||
break;
|
||||
}
|
||||
i0 += diff;
|
||||
i++;
|
||||
f *= (double) i;
|
||||
}
|
||||
|
||||
return i0;
|
||||
}
|
||||
|
||||
/* build kaiser table with cardinal sine applied to it, and array of differences between elements. */
|
||||
static void
|
||||
kaiser_and_sinc(float *table, float *diffs, const int tablelen, const double beta)
|
||||
{
|
||||
const int lenm1 = tablelen - 1;
|
||||
const int lenm1div2 = lenm1 / 2;
|
||||
int i;
|
||||
|
||||
table[0] = 1.0f;
|
||||
for (i = 1; i < tablelen; i++) {
|
||||
const double kaiser = bessel(beta * SDL_sqrt(1.0 - SDL_pow(((i - lenm1) / 2.0) / lenm1div2, 2.0))) / bessel(beta);
|
||||
table[tablelen - i] = (float) kaiser;
|
||||
}
|
||||
|
||||
for (i = 1; i < tablelen; i++) {
|
||||
const float x = (((float) i) / ((float) RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) * ((float) M_PI);
|
||||
table[i] *= SDL_sinf(x) / x;
|
||||
diffs[i - 1] = table[i] - table[i - 1];
|
||||
}
|
||||
diffs[lenm1] = 0.0f;
|
||||
}
|
||||
|
||||
|
||||
static SDL_SpinLock ResampleFilterSpinlock = 0;
|
||||
static float *ResamplerFilter = NULL;
|
||||
static float *ResamplerFilterDifference = NULL;
|
||||
|
||||
int
|
||||
SDL_PrepareResampleFilter(void)
|
||||
{
|
||||
SDL_AtomicLock(&ResampleFilterSpinlock);
|
||||
if (!ResamplerFilter) {
|
||||
/* if dB > 50, beta=(0.1102 * (dB - 8.7)), according to Matlab. */
|
||||
const double dB = 80.0;
|
||||
const double beta = 0.1102 * (dB - 8.7);
|
||||
const size_t alloclen = RESAMPLER_FILTER_SIZE * sizeof (float);
|
||||
|
||||
ResamplerFilter = (float *) SDL_malloc(alloclen);
|
||||
if (!ResamplerFilter) {
|
||||
SDL_AtomicUnlock(&ResampleFilterSpinlock);
|
||||
return SDL_OutOfMemory();
|
||||
}
|
||||
|
||||
ResamplerFilterDifference = (float *) SDL_malloc(alloclen);
|
||||
if (!ResamplerFilterDifference) {
|
||||
SDL_free(ResamplerFilter);
|
||||
ResamplerFilter = NULL;
|
||||
SDL_AtomicUnlock(&ResampleFilterSpinlock);
|
||||
return SDL_OutOfMemory();
|
||||
}
|
||||
kaiser_and_sinc(ResamplerFilter, ResamplerFilterDifference, RESAMPLER_FILTER_SIZE, beta);
|
||||
}
|
||||
SDL_AtomicUnlock(&ResampleFilterSpinlock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void
|
||||
SDL_FreeResampleFilter(void)
|
||||
{
|
||||
SDL_free(ResamplerFilter);
|
||||
SDL_free(ResamplerFilterDifference);
|
||||
ResamplerFilter = NULL;
|
||||
ResamplerFilterDifference = NULL;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
SDL_ResampleAudioSimple(const int chans, const double rate_incr,
|
||||
SDL_ResampleAudio(const int chans, const int inrate, const int outrate,
|
||||
float *last_sample, const float *inbuf,
|
||||
const int inbuflen, float *outbuf, const int outbuflen)
|
||||
{
|
||||
const float outtimeincr = 1.0f / ((float) outrate);
|
||||
const float ratio = ((float) outrate) / ((float) inrate);
|
||||
/*const int padding_len = (ratio < 1.0f) ? (int) SDL_ceilf(((float) (RESAMPLER_SAMPLES_PER_ZERO_CROSSING * inrate) / ((float) outrate))) : RESAMPLER_SAMPLES_PER_ZERO_CROSSING;*/
|
||||
const int framelen = chans * (int)sizeof (float);
|
||||
const int total = (inbuflen / framelen);
|
||||
const int finalpos = (total * chans) - chans;
|
||||
const int dest_samples = (int)(((double)total) * rate_incr);
|
||||
const double src_incr = 1.0 / rate_incr;
|
||||
float *dst;
|
||||
double idx;
|
||||
int i;
|
||||
const int inframes = inbuflen / framelen;
|
||||
const int wantedoutframes = (int) ((inbuflen / framelen) * ratio); /* outbuflen isn't total to write, it's total available. */
|
||||
const int maxoutframes = outbuflen / framelen;
|
||||
const int outframes = (wantedoutframes < maxoutframes) ? wantedoutframes : maxoutframes;
|
||||
float *dst = outbuf;
|
||||
float outtime = 0.0f;
|
||||
int i, j, chan;
|
||||
|
||||
SDL_assert((dest_samples * framelen) <= outbuflen);
|
||||
SDL_assert((inbuflen % framelen) == 0);
|
||||
for (i = 0; i < outframes; i++) {
|
||||
const int srcindex = (int) (outtime * inrate);
|
||||
const float finrate = (float) inrate;
|
||||
const float intime = ((float) srcindex) / finrate;
|
||||
const float innexttime = ((float) (srcindex + 1)) / finrate;
|
||||
|
||||
if (rate_incr > 1.0) { /* upsample */
|
||||
float *target = (outbuf + chans);
|
||||
dst = outbuf + (dest_samples * chans);
|
||||
idx = (double) total;
|
||||
const float interpolation1 = 1.0f - (innexttime - outtime) / (innexttime - intime);
|
||||
const int filterindex1 = (int) (interpolation1 * RESAMPLER_SAMPLES_PER_ZERO_CROSSING);
|
||||
const float interpolation2 = 1.0f - interpolation1;
|
||||
const int filterindex2 = interpolation2 * RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
|
||||
|
||||
if (chans == 1) {
|
||||
const float final_sample = inbuf[finalpos];
|
||||
float earlier_sample = inbuf[finalpos];
|
||||
while (dst > target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const float *src = &inbuf[pos];
|
||||
const float val = *(--src);
|
||||
SDL_assert(pos >= 0.0);
|
||||
*(--dst) = (val + earlier_sample) * 0.5f;
|
||||
earlier_sample = val;
|
||||
idx -= src_incr;
|
||||
for (chan = 0; chan < chans; chan++) {
|
||||
float outsample = 0.0f;
|
||||
|
||||
/* do this twice to calculate the sample, once for the "left wing" and then same for the right. */
|
||||
/* !!! FIXME: do both wings in one loop */
|
||||
for (j = 0; (filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
|
||||
/* !!! FIXME: insample uses zero for padding samples, but it should use prior state from last_sample. */
|
||||
const int srcframe = srcindex - j;
|
||||
const float insample = (srcframe < 0) ? 0.0f : inbuf[(srcframe * chans) + chan]; /* !!! FIXME: we can bubble this conditional out of here by doing a pre loop. */
|
||||
outsample += (insample * (ResamplerFilter[filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)] + (interpolation1 * ResamplerFilterDifference[filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)])));
|
||||
}
|
||||
/* do last sample, interpolated against previous run's state. */
|
||||
*(--dst) = (inbuf[0] + last_sample[0]) * 0.5f;
|
||||
*last_sample = final_sample;
|
||||
} else if (chans == 2) {
|
||||
const float final_sample2 = inbuf[finalpos+1];
|
||||
const float final_sample1 = inbuf[finalpos];
|
||||
float earlier_sample2 = inbuf[finalpos];
|
||||
float earlier_sample1 = inbuf[finalpos-1];
|
||||
while (dst > target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const float *src = &inbuf[pos];
|
||||
const float val2 = *(--src);
|
||||
const float val1 = *(--src);
|
||||
SDL_assert(pos >= 0.0);
|
||||
*(--dst) = (val2 + earlier_sample2) * 0.5f;
|
||||
*(--dst) = (val1 + earlier_sample1) * 0.5f;
|
||||
earlier_sample2 = val2;
|
||||
earlier_sample1 = val1;
|
||||
idx -= src_incr;
|
||||
|
||||
for (j = 0; (filterindex2 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
|
||||
const int srcframe = srcindex + 1 + j;
|
||||
/* !!! FIXME: insample uses zero for padding samples, but it should use prior state from last_sample. */
|
||||
const float insample = (srcframe >= inframes) ? 0.0f : inbuf[(srcframe * chans) + chan]; /* !!! FIXME: we can bubble this conditional out of here by doing a post loop. */
|
||||
outsample += (insample * (ResamplerFilter[filterindex2 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)] + (interpolation2 * ResamplerFilterDifference[filterindex2 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)])));
|
||||
}
|
||||
/* do last sample, interpolated against previous run's state. */
|
||||
*(--dst) = (inbuf[1] + last_sample[1]) * 0.5f;
|
||||
*(--dst) = (inbuf[0] + last_sample[0]) * 0.5f;
|
||||
last_sample[1] = final_sample2;
|
||||
last_sample[0] = final_sample1;
|
||||
} else {
|
||||
const float *earlier_sample = &inbuf[finalpos];
|
||||
float final_sample[8];
|
||||
SDL_memcpy(final_sample, &inbuf[finalpos], framelen);
|
||||
while (dst > target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const float *src = &inbuf[pos];
|
||||
SDL_assert(pos >= 0.0);
|
||||
for (i = chans - 1; i >= 0; i--) {
|
||||
const float val = *(--src);
|
||||
*(--dst) = (val + earlier_sample[i]) * 0.5f;
|
||||
}
|
||||
earlier_sample = src;
|
||||
idx -= src_incr;
|
||||
}
|
||||
/* do last sample, interpolated against previous run's state. */
|
||||
for (i = chans - 1; i >= 0; i--) {
|
||||
const float val = inbuf[i];
|
||||
*(--dst) = (val + last_sample[i]) * 0.5f;
|
||||
}
|
||||
SDL_memcpy(last_sample, final_sample, framelen);
|
||||
*(dst++) = outsample;
|
||||
}
|
||||
|
||||
dst = (outbuf + (dest_samples * chans));
|
||||
} else { /* downsample */
|
||||
float *target = (outbuf + (dest_samples * chans));
|
||||
dst = outbuf;
|
||||
idx = 0.0;
|
||||
if (chans == 1) {
|
||||
float last = *last_sample;
|
||||
while (dst < target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const float val = inbuf[pos];
|
||||
SDL_assert(pos <= finalpos);
|
||||
*(dst++) = (val + last) * 0.5f;
|
||||
last = val;
|
||||
idx += src_incr;
|
||||
}
|
||||
*last_sample = last;
|
||||
} else if (chans == 2) {
|
||||
float last1 = last_sample[0];
|
||||
float last2 = last_sample[1];
|
||||
while (dst < target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const float val1 = inbuf[pos];
|
||||
const float val2 = inbuf[pos+1];
|
||||
SDL_assert(pos <= finalpos);
|
||||
*(dst++) = (val1 + last1) * 0.5f;
|
||||
*(dst++) = (val2 + last2) * 0.5f;
|
||||
last1 = val1;
|
||||
last2 = val2;
|
||||
idx += src_incr;
|
||||
}
|
||||
last_sample[0] = last1;
|
||||
last_sample[1] = last2;
|
||||
} else {
|
||||
while (dst < target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const float *src = &inbuf[pos];
|
||||
SDL_assert(pos <= finalpos);
|
||||
for (i = 0; i < chans; i++) {
|
||||
const float val = *(src++);
|
||||
*(dst++) = (val + last_sample[i]) * 0.5f;
|
||||
last_sample[i] = val;
|
||||
}
|
||||
idx += src_incr;
|
||||
}
|
||||
}
|
||||
outtime += outtimeincr;
|
||||
}
|
||||
|
||||
return (int) ((dst - outbuf) * ((int) sizeof (float)));
|
||||
return outframes * chans * sizeof (float);
|
||||
}
|
||||
|
||||
/* We keep one special-case fast path around for an extremely common audio format. */
|
||||
static int
|
||||
SDL_ResampleAudioSimple_si16_c2(const double rate_incr,
|
||||
Sint16 *last_sample, const Sint16 *inbuf,
|
||||
const int inbuflen, Sint16 *outbuf, const int outbuflen)
|
||||
{
|
||||
const int chans = 2;
|
||||
const int framelen = 4; /* stereo 16 bit */
|
||||
const int total = (inbuflen / framelen);
|
||||
const int finalpos = (total * chans) - chans;
|
||||
const int dest_samples = (int)(((double)total) * rate_incr);
|
||||
const double src_incr = 1.0 / rate_incr;
|
||||
Sint16 *dst;
|
||||
double idx;
|
||||
|
||||
SDL_assert((dest_samples * framelen) <= outbuflen);
|
||||
SDL_assert((inbuflen % framelen) == 0);
|
||||
|
||||
if (rate_incr > 1.0) {
|
||||
Sint16 *target = (outbuf + chans);
|
||||
const Sint16 final_right = inbuf[finalpos+1];
|
||||
const Sint16 final_left = inbuf[finalpos];
|
||||
Sint16 earlier_right = inbuf[finalpos-1];
|
||||
Sint16 earlier_left = inbuf[finalpos-2];
|
||||
dst = outbuf + (dest_samples * chans);
|
||||
idx = (double) total;
|
||||
|
||||
while (dst > target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const Sint16 *src = &inbuf[pos];
|
||||
const Sint16 right = *(--src);
|
||||
const Sint16 left = *(--src);
|
||||
SDL_assert(pos >= 0.0);
|
||||
*(--dst) = (((Sint32) right) + ((Sint32) earlier_right)) >> 1;
|
||||
*(--dst) = (((Sint32) left) + ((Sint32) earlier_left)) >> 1;
|
||||
earlier_right = right;
|
||||
earlier_left = left;
|
||||
idx -= src_incr;
|
||||
}
|
||||
|
||||
/* do last sample, interpolated against previous run's state. */
|
||||
*(--dst) = (((Sint32) inbuf[1]) + ((Sint32) last_sample[1])) >> 1;
|
||||
*(--dst) = (((Sint32) inbuf[0]) + ((Sint32) last_sample[0])) >> 1;
|
||||
last_sample[1] = final_right;
|
||||
last_sample[0] = final_left;
|
||||
|
||||
dst = (outbuf + (dest_samples * chans));
|
||||
} else {
|
||||
Sint16 *target = (outbuf + (dest_samples * chans));
|
||||
dst = outbuf;
|
||||
idx = 0.0;
|
||||
while (dst < target) {
|
||||
const int pos = ((int) idx) * chans;
|
||||
const Sint16 *src = &inbuf[pos];
|
||||
const Sint16 left = *(src++);
|
||||
const Sint16 right = *(src++);
|
||||
SDL_assert(pos <= finalpos);
|
||||
*(dst++) = (((Sint32) left) + ((Sint32) last_sample[0])) >> 1;
|
||||
*(dst++) = (((Sint32) right) + ((Sint32) last_sample[1])) >> 1;
|
||||
last_sample[0] = left;
|
||||
last_sample[1] = right;
|
||||
idx += src_incr;
|
||||
}
|
||||
}
|
||||
|
||||
return (int) ((dst - outbuf) * ((int) sizeof (Sint16)));
|
||||
}
|
||||
|
||||
static void SDLCALL
|
||||
SDL_ResampleCVT_si16_c2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
|
||||
{
|
||||
const Sint16 *src = (const Sint16 *) cvt->buf;
|
||||
const int srclen = cvt->len_cvt;
|
||||
Sint16 *dst = (Sint16 *) cvt->buf;
|
||||
const int dstlen = (cvt->len * cvt->len_mult);
|
||||
Sint16 state[2];
|
||||
|
||||
state[0] = src[0];
|
||||
state[1] = src[1];
|
||||
|
||||
SDL_assert(format == AUDIO_S16SYS);
|
||||
|
||||
cvt->len_cvt = SDL_ResampleAudioSimple_si16_c2(cvt->rate_incr, state, src, srclen, dst, dstlen);
|
||||
if (cvt->filters[++cvt->filter_index]) {
|
||||
cvt->filters[cvt->filter_index](cvt, format);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
SDL_ConvertAudio(SDL_AudioCVT * cvt)
|
||||
{
|
||||
|
@ -761,17 +690,28 @@ SDL_BuildAudioTypeCVTFromFloat(SDL_AudioCVT *cvt, const SDL_AudioFormat dst_fmt)
|
|||
static void
|
||||
SDL_ResampleCVT(SDL_AudioCVT *cvt, const int chans, const SDL_AudioFormat format)
|
||||
{
|
||||
/* !!! FIXME in 2.1: there are ten slots in the filter list, and the theoretical maximum we use is six (seven with NULL terminator).
|
||||
!!! FIXME in 2.1: We need to store data for this resampler, because the cvt structure doesn't store the original sample rates,
|
||||
!!! FIXME in 2.1: so we steal the ninth and tenth slot. :( */
|
||||
const int srcrate = (int) (size_t) cvt->filters[SDL_AUDIOCVT_MAX_FILTERS-1];
|
||||
const int dstrate = (int) (size_t) cvt->filters[SDL_AUDIOCVT_MAX_FILTERS];
|
||||
const float *src = (const float *) cvt->buf;
|
||||
const int srclen = cvt->len_cvt;
|
||||
float *dst = (float *) cvt->buf;
|
||||
const int dstlen = (cvt->len * cvt->len_mult);
|
||||
/*float *dst = (float *) cvt->buf;
|
||||
const int dstlen = (cvt->len * cvt->len_mult);*/
|
||||
/* !!! FIXME: remove this if we can get the resampler to work in-place again. */
|
||||
float *dst = (float *) (cvt->buf + srclen);
|
||||
const int dstlen = (cvt->len * cvt->len_mult) - srclen;
|
||||
float state[8];
|
||||
|
||||
SDL_assert(format == AUDIO_F32SYS);
|
||||
|
||||
SDL_memcpy(state, src, chans*sizeof(*src));
|
||||
SDL_zero(state);
|
||||
|
||||
cvt->len_cvt = SDL_ResampleAudio(chans, srcrate, dstrate, state, src, srclen, dst, dstlen);
|
||||
|
||||
SDL_memcpy(cvt->buf, dst, cvt->len_cvt); /* !!! FIXME: remove this if we can get the resampler to work in-place again. */
|
||||
|
||||
cvt->len_cvt = SDL_ResampleAudioSimple(chans, cvt->rate_incr, state, src, srclen, dst, dstlen);
|
||||
if (cvt->filters[++cvt->filter_index]) {
|
||||
cvt->filters[cvt->filter_index](cvt, format);
|
||||
}
|
||||
|
@ -823,10 +763,24 @@ SDL_BuildAudioResampleCVT(SDL_AudioCVT * cvt, const int dst_channels,
|
|||
return SDL_SetError("No conversion available for these rates");
|
||||
}
|
||||
|
||||
if (SDL_PrepareResampleFilter() < 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Update (cvt) with filter details... */
|
||||
if (SDL_AddAudioCVTFilter(cvt, filter) < 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* !!! FIXME in 2.1: there are ten slots in the filter list, and the theoretical maximum we use is six (seven with NULL terminator).
|
||||
!!! FIXME in 2.1: We need to store data for this resampler, because the cvt structure doesn't store the original sample rates,
|
||||
!!! FIXME in 2.1: so we steal the ninth and tenth slot. :( */
|
||||
if (cvt->filter_index >= (SDL_AUDIOCVT_MAX_FILTERS-2)) {
|
||||
return SDL_SetError("Too many filters needed for conversion, exceeded maximum of %d", SDL_AUDIOCVT_MAX_FILTERS-2);
|
||||
}
|
||||
cvt->filters[SDL_AUDIOCVT_MAX_FILTERS-1] = (SDL_AudioFilter) (size_t) src_rate;
|
||||
cvt->filters[SDL_AUDIOCVT_MAX_FILTERS] = (SDL_AudioFilter) (size_t) dst_rate;
|
||||
|
||||
if (src_rate < dst_rate) {
|
||||
const double mult = ((double) dst_rate) / ((double) src_rate);
|
||||
cvt->len_mult *= (int) SDL_ceil(mult);
|
||||
|
@ -835,6 +789,11 @@ SDL_BuildAudioResampleCVT(SDL_AudioCVT * cvt, const int dst_channels,
|
|||
cvt->len_ratio /= ((double) src_rate) / ((double) dst_rate);
|
||||
}
|
||||
|
||||
/* !!! FIXME: remove this if we can get the resampler to work in-place again. */
|
||||
/* the buffer is big enough to hold the destination now, but
|
||||
we need it large enough to hold a separate scratch buffer. */
|
||||
cvt->len_mult *= 2;
|
||||
|
||||
return 1; /* added a converter. */
|
||||
}
|
||||
|
||||
|
@ -922,7 +881,7 @@ SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
|
|||
cvt->dst_format = dst_fmt;
|
||||
cvt->needed = 0;
|
||||
cvt->filter_index = 0;
|
||||
cvt->filters[0] = NULL;
|
||||
SDL_zero(cvt->filters);
|
||||
cvt->len_mult = 1;
|
||||
cvt->len_ratio = 1.0;
|
||||
cvt->rate_incr = ((double) dst_rate) / ((double) src_rate);
|
||||
|
@ -930,32 +889,6 @@ SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
|
|||
/* Make sure we've chosen audio conversion functions (MMX, scalar, etc.) */
|
||||
SDL_ChooseAudioConverters();
|
||||
|
||||
/* SDL now favors float32 as its preferred internal format, and considers
|
||||
everything else to be a degenerate case that we might have to make
|
||||
multiple passes over the data to convert to and from float32 as
|
||||
necessary. That being said, we keep one special case around for
|
||||
efficiency: stereo data in Sint16 format, in the native byte order,
|
||||
that only needs resampling. This is likely to be the most popular
|
||||
legacy format, that apps, hardware and the OS are likely to be able
|
||||
to process directly, so we handle this one case directly without
|
||||
unnecessary conversions. This means that apps on embedded devices
|
||||
without floating point hardware should consider aiming for this
|
||||
format as well. */
|
||||
if ((src_channels == 2) && (dst_channels == 2) && (src_fmt == AUDIO_S16SYS) && (dst_fmt == AUDIO_S16SYS) && (src_rate != dst_rate)) {
|
||||
cvt->needed = 1;
|
||||
if (SDL_AddAudioCVTFilter(cvt, SDL_ResampleCVT_si16_c2) < 0) {
|
||||
return -1;
|
||||
}
|
||||
if (src_rate < dst_rate) {
|
||||
const double mult = ((double) dst_rate) / ((double) src_rate);
|
||||
cvt->len_mult *= (int) SDL_ceil(mult);
|
||||
cvt->len_ratio *= mult;
|
||||
} else {
|
||||
cvt->len_ratio /= ((double) src_rate) / ((double) dst_rate);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Type conversion goes like this now:
|
||||
- byteswap to CPU native format first if necessary.
|
||||
- convert to native Float32 if necessary.
|
||||
|
@ -1282,30 +1215,23 @@ SDL_ResampleAudioStream(SDL_AudioStream *stream, const void *_inbuf, const int i
|
|||
|
||||
SDL_assert(chans <= SDL_arraysize(state->resampler_state.f));
|
||||
|
||||
if (inbuf == ((const float *) outbuf)) { /* !!! FIXME can't work in-place (for now!). */
|
||||
Uint8 *ptr = EnsureStreamBufferSize(stream, inbuflen + outbuflen);
|
||||
if (ptr == NULL) {
|
||||
SDL_OutOfMemory();
|
||||
return 0;
|
||||
}
|
||||
SDL_memcpy(ptr + outbuflen, ptr, inbuflen);
|
||||
inbuf = (const float *) (ptr + outbuflen);
|
||||
outbuf = (float *) ptr;
|
||||
}
|
||||
|
||||
if (!state->resampler_seeded) {
|
||||
SDL_memcpy(state->resampler_state.f, inbuf, chans * sizeof (float));
|
||||
SDL_zero(state->resampler_state.f);
|
||||
state->resampler_seeded = SDL_TRUE;
|
||||
}
|
||||
|
||||
return SDL_ResampleAudioSimple(chans, stream->rate_incr, state->resampler_state.f, inbuf, inbuflen, outbuf, outbuflen);
|
||||
}
|
||||
|
||||
static int
|
||||
SDL_ResampleAudioStream_si16_c2(SDL_AudioStream *stream, const void *_inbuf, const int inbuflen, void *_outbuf, const int outbuflen)
|
||||
{
|
||||
const Sint16 *inbuf = (const Sint16 *) _inbuf;
|
||||
Sint16 *outbuf = (Sint16 *) _outbuf;
|
||||
SDL_AudioStreamResamplerState *state = (SDL_AudioStreamResamplerState*)stream->resampler_state;
|
||||
|
||||
SDL_assert(((int)stream->pre_resample_channels) <= SDL_arraysize(state->resampler_state.si16));
|
||||
|
||||
if (!state->resampler_seeded) {
|
||||
state->resampler_state.si16[0] = inbuf[0];
|
||||
state->resampler_state.si16[1] = inbuf[1];
|
||||
state->resampler_seeded = SDL_TRUE;
|
||||
}
|
||||
|
||||
return SDL_ResampleAudioSimple_si16_c2(stream->rate_incr, state->resampler_state.si16, inbuf, inbuflen, outbuf, outbuflen);
|
||||
return SDL_ResampleAudio(chans, stream->src_rate, stream->dst_rate, state->resampler_state.f, inbuf, inbuflen, outbuf, outbuflen);
|
||||
}
|
||||
|
||||
static void
|
||||
|
@ -1332,9 +1258,6 @@ SDL_NewAudioStream(const SDL_AudioFormat src_format,
|
|||
const int packetlen = 4096; /* !!! FIXME: good enough for now. */
|
||||
Uint8 pre_resample_channels;
|
||||
SDL_AudioStream *retval;
|
||||
#ifndef HAVE_LIBSAMPLERATE_H
|
||||
const SDL_bool SRC_available = SDL_FALSE;
|
||||
#endif
|
||||
|
||||
retval = (SDL_AudioStream *) SDL_calloc(1, sizeof (SDL_AudioStream));
|
||||
if (!retval) {
|
||||
|
@ -1366,18 +1289,6 @@ SDL_NewAudioStream(const SDL_AudioFormat src_format,
|
|||
SDL_FreeAudioStream(retval);
|
||||
return NULL; /* SDL_BuildAudioCVT should have called SDL_SetError. */
|
||||
}
|
||||
/* fast path special case for stereo Sint16 data that just needs resampling. */
|
||||
} else if ((!SRC_available) && (src_channels == 2) && (dst_channels == 2) && (src_format == AUDIO_S16SYS) && (dst_format == AUDIO_S16SYS)) {
|
||||
SDL_assert(src_rate != dst_rate);
|
||||
retval->resampler_state = SDL_calloc(1, sizeof(SDL_AudioStreamResamplerState));
|
||||
if (!retval->resampler_state) {
|
||||
SDL_FreeAudioStream(retval);
|
||||
SDL_OutOfMemory();
|
||||
return NULL;
|
||||
}
|
||||
retval->resampler_func = SDL_ResampleAudioStream_si16_c2;
|
||||
retval->reset_resampler_func = SDL_ResetAudioStreamResampler;
|
||||
retval->cleanup_resampler_func = SDL_CleanupAudioStreamResampler;
|
||||
} else {
|
||||
/* Don't resample at first. Just get us to Float32 format. */
|
||||
/* !!! FIXME: convert to int32 on devices without hardware float. */
|
||||
|
@ -1397,6 +1308,14 @@ SDL_NewAudioStream(const SDL_AudioFormat src_format,
|
|||
SDL_OutOfMemory();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (SDL_PrepareResampleFilter() < 0) {
|
||||
SDL_free(retval->resampler_state);
|
||||
retval->resampler_state = NULL;
|
||||
SDL_FreeAudioStream(retval);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
retval->resampler_func = SDL_ResampleAudioStream;
|
||||
retval->reset_resampler_func = SDL_ResetAudioStreamResampler;
|
||||
retval->cleanup_resampler_func = SDL_CleanupAudioStreamResampler;
|
||||
|
|
|
@ -0,0 +1,210 @@
|
|||
#!/usr/bin/perl -w
|
||||
|
||||
use warnings;
|
||||
use strict;
|
||||
|
||||
# The resampling algorithm: https://ccrma.stanford.edu/~jos/resample/
|
||||
# https://www.mathworks.com/help/signal/ref/kaiser.html
|
||||
# "Thus kaiser(L,beta) is equivalent to
|
||||
# besseli(0,beta*sqrt(1-(((0:L-1)-(L-1)/2)/((L-1)/2)).^2))/besseli(0,beta)."
|
||||
# Matlab kaiser calls besseli():
|
||||
# https://www.mathworks.com/help/matlab/ref/besseli.htm
|
||||
# https://en.wikipedia.org/wiki/Bessel_function
|
||||
|
||||
sub print_table {
|
||||
my $tableref = shift;
|
||||
my $name = shift;
|
||||
my @table = @{$tableref};
|
||||
my $comma = '';
|
||||
my $count = 0;
|
||||
print("static const float $name = {\n ");
|
||||
foreach (@table) {
|
||||
print("$comma$_");
|
||||
#print(sprintf("%.6f\n", $_));
|
||||
if (++$count > 4) {
|
||||
$count = 0;
|
||||
print(",\n ");
|
||||
$comma = '';
|
||||
} else {
|
||||
$comma = ', ';
|
||||
}
|
||||
}
|
||||
print("\n};\n\n");
|
||||
}
|
||||
|
||||
|
||||
use POSIX ();
|
||||
|
||||
# This is a "modified" bessel function, so you can't use POSIX j0()
|
||||
sub bessel {
|
||||
my $x = shift;
|
||||
|
||||
my $i0 = 1;
|
||||
my $f = 1;
|
||||
my $i = 1;
|
||||
|
||||
while (1) {
|
||||
my $diff = POSIX::pow($x / 2.0, $i * 2) / POSIX::pow($f, 2);
|
||||
last if ($diff < 1.0e-21);
|
||||
$i0 += $diff;
|
||||
$i++;
|
||||
$f *= $i;
|
||||
}
|
||||
|
||||
return $i0;
|
||||
}
|
||||
|
||||
sub kaiser {
|
||||
my $L = shift;
|
||||
my $beta = shift;
|
||||
my @retval;
|
||||
|
||||
#print("L=$L, beta=$beta\n"); exit(0);
|
||||
|
||||
for (my $i = 0; $i < $L; $i++) {
|
||||
my $val = bessel($beta * sqrt(1.0 -
|
||||
POSIX::pow(
|
||||
(
|
||||
(
|
||||
($i-($L-1.0))
|
||||
) / 2.0
|
||||
) / (($L-1)/2.0), 2.0 ))
|
||||
) / bessel($beta);
|
||||
|
||||
unshift @retval, $val;
|
||||
}
|
||||
return @retval;
|
||||
}
|
||||
|
||||
|
||||
my $zero_crossings = 5;
|
||||
my $bits_per_sample = 16;
|
||||
my $samples_per_zero_crossing = 1 << (($bits_per_sample / 2) + 1);
|
||||
my $kaiser_window_table_size = ($samples_per_zero_crossing * $zero_crossings) + 1;
|
||||
|
||||
# if dB > 50: 0.1102 * ($db - 8.7)
|
||||
my $db = 80.0;
|
||||
my $beta = 0.1102 * ($db - 8.7);
|
||||
|
||||
my @table = kaiser($kaiser_window_table_size, $beta);
|
||||
|
||||
print_table(\@table, 'kaiser_window');
|
||||
|
||||
# Kaiser window has "sinc function" ("cardinal sine") applied to it:
|
||||
# sin(pi * x) / (pi * x)
|
||||
# "For example, to use the ideal lowpass filter, the table would contain
|
||||
# h(l) = sinc(l/L)."
|
||||
|
||||
use Math::Trig ':pi';
|
||||
for (my $i = 1; $i < $kaiser_window_table_size; $i++) {
|
||||
my $x = $i / $samples_per_zero_crossing;
|
||||
$table[$i] *= sin($x * pi) / ($x * pi);
|
||||
}
|
||||
|
||||
print_table(\@table, 'with_sinc');
|
||||
|
||||
# "Our implementation also stores a table of differences ¯h(l) = h(l + 1) − h(l) between successive
|
||||
# FIR sample values in order to speed up the linear interpolation. The length of each table is
|
||||
# Nh = LNz + 1, including the endpoint definition ¯h(Nh) = 0."
|
||||
|
||||
my @differences = ();
|
||||
for (my $i = 1; $i < $kaiser_window_table_size; $i++) {
|
||||
push @differences, $table[$i] - $table[$i - 1];
|
||||
}
|
||||
push @differences, 0;
|
||||
|
||||
print_table(\@differences, 'differences');
|
||||
|
||||
|
||||
# Might as well use this code as a test harness...
|
||||
|
||||
use autodie;
|
||||
my $fnamein = shift @ARGV;
|
||||
my $fnameout = shift @ARGV;
|
||||
my $inrate = shift @ARGV;
|
||||
my $outrate = shift @ARGV;
|
||||
|
||||
print("Resampling $fnamein (freq=$inrate) to $fnameout (freq=$outrate).\n");
|
||||
|
||||
open(IN, '<:raw', $fnamein);
|
||||
my @src = ();
|
||||
|
||||
# this assumes mono Sint16 raw data since we aren't parsing .wav files.
|
||||
# !!! FIXME: deal with multichannel audio.
|
||||
my $channels = 1;
|
||||
|
||||
# this is inefficient, but this is just throwaway code...
|
||||
while (read(IN, my $bytes, 2) == 2) {
|
||||
my ($samp) = unpack('s', $bytes);
|
||||
push @src, $samp;
|
||||
}
|
||||
|
||||
close(IN);
|
||||
|
||||
my $ratio = $outrate / $inrate;
|
||||
my $sample_frames_in = scalar(@src) / $channels;
|
||||
my $sample_frames_out = $sample_frames_in * $ratio;
|
||||
|
||||
my $outsamples = $sample_frames_out * $channels;
|
||||
#my @dst = (0) x ($outsamples);
|
||||
my @dst = ();
|
||||
print("Resampling $sample_frames_in input frames to $sample_frames_out output (ratio=$ratio).\n");
|
||||
|
||||
|
||||
my $inv_spzc = int(POSIX::ceil(($samples_per_zero_crossing * $inrate) / $outrate));
|
||||
my $padding_len;
|
||||
if ($ratio < 1.0) {
|
||||
$padding_len = int(POSIX::ceil(($samples_per_zero_crossing * $inrate) / $outrate));
|
||||
} else {
|
||||
$padding_len = $samples_per_zero_crossing;
|
||||
}
|
||||
|
||||
# You need to pad the input or we'll get buffer overflows.
|
||||
# !!! FIXME: deal with multichannel audio.
|
||||
for (my $i = 0; $i < $padding_len; $i++) {
|
||||
push @src, 0;
|
||||
unshift @src, 0;
|
||||
}
|
||||
|
||||
# !!! FIXME: deal with multichannel audio.
|
||||
my $time = 0.0;
|
||||
for (my $i = 0; $i < $outsamples; $i++) {
|
||||
my $srcindex = int($time * $inrate); # !!! FIXME: truncate or round?
|
||||
|
||||
my $ftime = $srcindex / $inrate; # this would be $time if we didn't convert $srcindex to int.
|
||||
my $fnexttime = ($srcindex + 1) / $inrate;
|
||||
|
||||
# do this twice to calculate the sample, once for the "left wing" and then same for the right.
|
||||
my $sample = 0;
|
||||
my $interpolation = 1.0 - ($fnexttime - $time) / ($fnexttime - $ftime);
|
||||
my $filterindex = int($interpolation * $samples_per_zero_crossing);
|
||||
|
||||
$srcindex += $padding_len;
|
||||
|
||||
for (my $j = 0; ($filterindex + ($j * $samples_per_zero_crossing)) < $kaiser_window_table_size; $j++) {
|
||||
$sample += int($src[$srcindex - $j] * ($table[$filterindex + $j * $samples_per_zero_crossing] + $interpolation * $differences[$filterindex + $j * $samples_per_zero_crossing]));
|
||||
}
|
||||
|
||||
$interpolation = 1 - $interpolation;
|
||||
$filterindex = $interpolation * $samples_per_zero_crossing;
|
||||
for (my $j = 0; ($filterindex + ($j * $samples_per_zero_crossing)) < $kaiser_window_table_size; $j++) {
|
||||
$sample += int($src[$srcindex + 1 + $j] * ($table[$filterindex + $j * $samples_per_zero_crossing] + $interpolation * $differences[$filterindex + $j * $samples_per_zero_crossing]));
|
||||
}
|
||||
|
||||
push @dst, $sample;
|
||||
|
||||
# "After each output sample is computed, the time register is incremented by 2nl+nη /Ï (i.e., time is incremented by 1/Ï in fixed-point format)."
|
||||
$time += 1.0 / $outrate;
|
||||
}
|
||||
|
||||
open(OUT, '>:raw', $fnameout);
|
||||
|
||||
# this is inefficient, but this is just throwaway code...
|
||||
foreach (@dst) {
|
||||
print OUT pack('s', $_);
|
||||
}
|
||||
|
||||
close(OUT);
|
||||
|
||||
print("Done.\n");
|
||||
|
Loading…
Reference in New Issue