audio: Added ARM NEON versions of audio converters.

These are _much_ faster than the scalar equivalents on the Raspberry Pi that
I tested on. Often 3x to 4x as fast!
This commit is contained in:
Ryan C. Gordon 2018-05-16 02:03:06 -04:00
parent cb0e614fb1
commit b7e88aaae0
3 changed files with 555 additions and 2 deletions

View File

@ -27,6 +27,16 @@ OpenGL ES 2.x, it usually comes pre-installed, but in any case:
sudo apt-get install libraspberrypi0 libraspberrypi-bin libraspberrypi-dev
================================================================================
NEON
================================================================================
If your Pi has NEON support, make sure you add -mfpu=neon to your CFLAGS so
that SDL will select some otherwise-disabled highly-optimized code. The
original Pi units don't have NEON, the Pi2 probably does, and the Pi3
definitely does.
================================================================================
Cross compiling from x86 Linux
================================================================================

View File

@ -57,6 +57,9 @@
#undef bool
#endif
#endif
#if defined(__ARM_NEON__) && !defined(SDL_DISABLE_ARM_NEON_H)
#include <arm_neon.h>
#endif
#if defined(__3dNOW__) && !defined(SDL_DISABLE_MM3DNOW_H)
#include <mm3dnow.h>
#endif

View File

@ -25,8 +25,9 @@
#include "SDL_cpuinfo.h"
#include "SDL_assert.h"
/* !!! FIXME: write NEON code. */
#define HAVE_NEON_INTRINSICS 0
#ifdef __ARM_NEON__
#define HAVE_NEON_INTRINSICS 1
#endif
#ifdef __SSE2__
#define HAVE_SSE2_INTRINSICS 1
@ -850,6 +851,538 @@ SDL_Convert_F32_to_S32_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
#endif
#if HAVE_NEON_INTRINSICS
static void SDLCALL
SDL_Convert_S8_to_F32_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Sint8 *src = ((const Sint8 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 4)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_S8", "AUDIO_F32 (using NEON)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt; i && (((size_t) (dst-15)) & 15); --i, --src, --dst) {
*dst = ((float) *src) * DIVBY128;
}
src -= 15; dst -= 15; /* adjust to read NEON blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const int8_t *mmsrc = (const int8_t *) src;
const float32x4_t divby128 = vdupq_n_f32(DIVBY128);
while (i >= 16) { /* 16 * 8-bit */
const int8x16_t bytes = vld1q_s8(mmsrc); /* get 16 sint8 into a NEON register. */
const int16x8_t int16hi = vmovl_s8(vget_high_s8(bytes)); /* convert top 8 bytes to 8 int16 */
const int16x8_t int16lo = vmovl_s8(vget_low_s8(bytes)); /* convert bottom 8 bytes to 8 int16 */
/* split int16 to two int32, then convert to float, then multiply to normalize, store. */
vst1q_f32(dst, vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(int16hi))), divby128));
vst1q_f32(dst+4, vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(int16hi))), divby128));
vst1q_f32(dst+8, vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(int16lo))), divby128));
vst1q_f32(dst+12, vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(int16lo))), divby128));
i -= 16; mmsrc -= 16; dst -= 16;
}
src = (const Sint8 *) mmsrc;
}
src += 15; dst += 15; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = ((float) *src) * DIVBY128;
i--; src--; dst--;
}
cvt->len_cvt *= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_U8_to_F32_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Uint8 *src = ((const Uint8 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 4)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_U8", "AUDIO_F32 (using NEON)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt; i && (((size_t) (dst-15)) & 15); --i, --src, --dst) {
*dst = (((float) *src) * DIVBY128) - 1.0f;
}
src -= 15; dst -= 15; /* adjust to read NEON blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const uint8_t *mmsrc = (const uint8_t *) src;
const float32x4_t divby128 = vdupq_n_f32(DIVBY128);
const float32x4_t one = vdupq_n_f32(1.0f);
while (i >= 16) { /* 16 * 8-bit */
const uint8x16_t bytes = vld1q_u8(mmsrc); /* get 16 uint8 into a NEON register. */
const uint16x8_t uint16hi = vmovl_u8(vget_high_u8(bytes)); /* convert top 8 bytes to 8 uint16 */
const uint16x8_t uint16lo = vmovl_u8(vget_low_u8(bytes)); /* convert bottom 8 bytes to 8 uint16 */
/* split uint16 to two uint32, then convert to float, then multiply to normalize, subtract to adjust for sign, store. */
vst1q_f32(dst, vmlsq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(uint16hi))), divby128, one));
vst1q_f32(dst+4, vmlsq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(uint16hi))), divby128, one));
vst1q_f32(dst+8, vmlsq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(uint16lo))), divby128, one));
vst1q_f32(dst+12, vmlsq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(uint16lo))), divby128, one));
i -= 16; mmsrc -= 16; dst -= 16;
}
src = (const Uint8 *) mmsrc;
}
src += 15; dst += 15; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (((float) *src) * DIVBY128) - 1.0f;
i--; src--; dst--;
}
cvt->len_cvt *= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_S16_to_F32_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Sint16 *src = ((const Sint16 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 2)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_S16", "AUDIO_F32 (using NEON)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt / sizeof (Sint16); i && (((size_t) (dst-7)) & 15); --i, --src, --dst) {
*dst = ((float) *src) * DIVBY32768;
}
src -= 7; dst -= 7; /* adjust to read NEON blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t divby32768 = vdupq_n_f32(DIVBY32768);
while (i >= 8) { /* 8 * 16-bit */
const int16x8_t ints = vld1q_s16((int16_t const *) src); /* get 8 sint16 into a NEON register. */
/* split int16 to two int32, then convert to float, then multiply to normalize, store. */
vst1q_f32(dst, vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(ints))), divby32768));
vst1q_f32(dst+4, vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(ints))), divby32768));
i -= 8; src -= 8; dst -= 8;
}
}
src += 7; dst += 7; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = ((float) *src) * DIVBY32768;
i--; src--; dst--;
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_U16_to_F32_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Uint16 *src = ((const Uint16 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 2)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_U16", "AUDIO_F32 (using NEON)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt / sizeof (Sint16); i && (((size_t) (dst-7)) & 15); --i, --src, --dst) {
*dst = (((float) *src) * DIVBY32768) - 1.0f;
}
src -= 7; dst -= 7; /* adjust to read NEON blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t divby32768 = vdupq_n_f32(DIVBY32768);
const float32x4_t one = vdupq_n_f32(1.0f);
while (i >= 8) { /* 8 * 16-bit */
const uint16x8_t uints = vld1q_u16((uint16_t const *) src); /* get 8 uint16 into a NEON register. */
/* split uint16 to two int32, then convert to float, then multiply to normalize, subtract for sign, store. */
vst1q_f32(dst, vmlsq_f32(one, vcvtq_f32_u32(vmovl_u16(vget_low_u16(uints))), divby32768));
vst1q_f32(dst+4, vmlsq_f32(one, vcvtq_f32_u32(vmovl_u16(vget_high_u16(uints))), divby32768));
i -= 8; src -= 8; dst -= 8;
}
}
src += 7; dst += 7; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (((float) *src) * DIVBY32768) - 1.0f;
i--; src--; dst--;
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_S32_to_F32_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Sint32 *src = (const Sint32 *) cvt->buf;
float *dst = (float *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_S32", "AUDIO_F32 (using NEON)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (Sint32); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
*dst = ((float) (*src>>8)) * DIVBY8388607;
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
SDL_assert(!i || ((((size_t) src) & 15) == 0));
{
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t divby8388607 = vdupq_n_f32(DIVBY8388607);
const int32_t *mmsrc = (const int32_t *) src;
while (i >= 4) { /* 4 * sint32 */
/* shift out lowest bits so int fits in a float32. Small precision loss, but much faster. */
vst1q_f32(dst, vmulq_f32(vcvtq_f32_s32(vshrq_n_s32(vld1q_s32(mmsrc), 8)), divby8388607));
i -= 4; mmsrc += 4; dst += 4;
}
src = (const Sint32 *) mmsrc;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = ((float) (*src>>8)) * DIVBY8388607;
i--; src++; dst++;
}
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_F32_to_S8_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Sint8 *dst = (Sint8 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S8 (using NEON)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 127;
} else if (sample <= -1.0f) {
*dst = -128;
} else {
*dst = (Sint8)(sample * 127.0f);
}
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t one = vdupq_n_f32(1.0f);
const float32x4_t negone = vdupq_n_f32(-1.0f);
const float32x4_t mulby127 = vdupq_n_f32(127.0f);
int8_t *mmdst = (int8_t *) dst;
while (i >= 16) { /* 16 * float32 */
const int32x4_t ints1 = vcvtq_s32_f32(vmulq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src)), one), mulby127)); /* load 4 floats, clamp, convert to sint32 */
const int32x4_t ints2 = vcvtq_s32_f32(vmulq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+4)), one), mulby127)); /* load 4 floats, clamp, convert to sint32 */
const int32x4_t ints3 = vcvtq_s32_f32(vmulq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+8)), one), mulby127)); /* load 4 floats, clamp, convert to sint32 */
const int32x4_t ints4 = vcvtq_s32_f32(vmulq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+12)), one), mulby127)); /* load 4 floats, clamp, convert to sint32 */
const int8x8_t i8lo = vmovn_s16(vcombine_s16(vmovn_s32(ints1), vmovn_s32(ints2))); /* narrow to sint16, combine, narrow to sint8 */
const int8x8_t i8hi = vmovn_s16(vcombine_s16(vmovn_s32(ints3), vmovn_s32(ints4))); /* narrow to sint16, combine, narrow to sint8 */
vst1q_s8(mmdst, vcombine_s8(i8lo, i8hi)); /* combine to int8x16_t, store out */
i -= 16; src += 16; mmdst += 16;
}
dst = (Sint8 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 127;
} else if (sample <= -1.0f) {
*dst = -128;
} else {
*dst = (Sint8)(sample * 127.0f);
}
i--; src++; dst++;
}
cvt->len_cvt /= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_S8);
}
}
static void SDLCALL
SDL_Convert_F32_to_U8_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Uint8 *dst = (Uint8 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_U8 (using NEON)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 255;
} else if (sample <= -1.0f) {
*dst = 0;
} else {
*dst = (Uint8)((sample + 1.0f) * 127.0f);
}
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t one = vdupq_n_f32(1.0f);
const float32x4_t negone = vdupq_n_f32(-1.0f);
const float32x4_t mulby127 = vdupq_n_f32(127.0f);
uint8_t *mmdst = (uint8_t *) dst;
while (i >= 16) { /* 16 * float32 */
const uint32x4_t uints1 = vcvtq_u32_f32(vmulq_f32(vaddq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src)), one), one), mulby127)); /* load 4 floats, clamp, convert to uint32 */
const uint32x4_t uints2 = vcvtq_u32_f32(vmulq_f32(vaddq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+4)), one), one), mulby127)); /* load 4 floats, clamp, convert to uint32 */
const uint32x4_t uints3 = vcvtq_u32_f32(vmulq_f32(vaddq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+8)), one), one), mulby127)); /* load 4 floats, clamp, convert to uint32 */
const uint32x4_t uints4 = vcvtq_u32_f32(vmulq_f32(vaddq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+12)), one), one), mulby127)); /* load 4 floats, clamp, convert to uint32 */
const uint8x8_t ui8lo = vmovn_u16(vcombine_u16(vmovn_u32(uints1), vmovn_u32(uints2))); /* narrow to uint16, combine, narrow to uint8 */
const uint8x8_t ui8hi = vmovn_u16(vcombine_u16(vmovn_u32(uints3), vmovn_u32(uints4))); /* narrow to uint16, combine, narrow to uint8 */
vst1q_u8(mmdst, vcombine_u8(ui8lo, ui8hi)); /* combine to uint8x16_t, store out */
i -= 16; src += 16; mmdst += 16;
}
dst = (Uint8 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 255;
} else if (sample <= -1.0f) {
*dst = 0;
} else {
*dst = (Uint8)((sample + 1.0f) * 127.0f);
}
i--; src++; dst++;
}
cvt->len_cvt /= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_U8);
}
}
static void SDLCALL
SDL_Convert_F32_to_S16_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Sint16 *dst = (Sint16 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S16 (using NEON)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 32767;
} else if (sample <= -1.0f) {
*dst = -32768;
} else {
*dst = (Sint16)(sample * 32767.0f);
}
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t one = vdupq_n_f32(1.0f);
const float32x4_t negone = vdupq_n_f32(-1.0f);
const float32x4_t mulby32767 = vdupq_n_f32(32767.0f);
int16_t *mmdst = (int16_t *) dst;
while (i >= 8) { /* 8 * float32 */
const int32x4_t ints1 = vcvtq_s32_f32(vmulq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src)), one), mulby32767)); /* load 4 floats, clamp, convert to sint32 */
const int32x4_t ints2 = vcvtq_s32_f32(vmulq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+4)), one), mulby32767)); /* load 4 floats, clamp, convert to sint32 */
vst1q_s16(mmdst, vcombine_s16(vmovn_s32(ints1), vmovn_s32(ints2))); /* narrow to sint16, combine, store out. */
i -= 8; src += 8; mmdst += 8;
}
dst = (Sint16 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 32767;
} else if (sample <= -1.0f) {
*dst = -32768;
} else {
*dst = (Sint16)(sample * 32767.0f);
}
i--; src++; dst++;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_S16SYS);
}
}
static void SDLCALL
SDL_Convert_F32_to_U16_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Uint16 *dst = (Uint16 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_U16 (using NEON)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 65535;
} else if (sample <= -1.0f) {
*dst = 0;
} else {
*dst = (Uint16)((sample + 1.0f) * 32767.0f);
}
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t one = vdupq_n_f32(1.0f);
const float32x4_t negone = vdupq_n_f32(-1.0f);
const float32x4_t mulby32767 = vdupq_n_f32(32767.0f);
uint16_t *mmdst = (uint16_t *) dst;
while (i >= 8) { /* 8 * float32 */
const uint32x4_t uints1 = vcvtq_u32_f32(vmulq_f32(vaddq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src)), one), one), mulby32767)); /* load 4 floats, clamp, convert to uint32 */
const uint32x4_t uints2 = vcvtq_u32_f32(vmulq_f32(vaddq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src+4)), one), one), mulby32767)); /* load 4 floats, clamp, convert to uint32 */
vst1q_u16(mmdst, vcombine_u16(vmovn_u32(uints1), vmovn_u32(uints2))); /* narrow to uint16, combine, store out. */
i -= 8; src += 8; mmdst += 8;
}
dst = (Uint16 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 65535;
} else if (sample <= -1.0f) {
*dst = 0;
} else {
*dst = (Uint16)((sample + 1.0f) * 32767.0f);
}
i--; src++; dst++;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_U16SYS);
}
}
static void SDLCALL
SDL_Convert_F32_to_S32_NEON(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Sint32 *dst = (Sint32 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S32 (using NEON)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 2147483647;
} else if (sample <= -1.0f) {
*dst = -2147483648;
} else {
*dst = ((Sint32)(sample * 8388607.0f)) << 8;
}
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
SDL_assert(!i || ((((size_t) src) & 15) == 0));
{
/* Aligned! Do NEON blocks as long as we have 16 bytes available. */
const float32x4_t one = vdupq_n_f32(1.0f);
const float32x4_t negone = vdupq_n_f32(-1.0f);
const float32x4_t mulby8388607 = vdupq_n_f32(8388607.0f);
int32_t *mmdst = (int32_t *) dst;
while (i >= 4) { /* 4 * float32 */
vst1q_s32(mmdst, vshlq_n_s32(vcvtq_s32_f32(vmulq_f32(vminq_f32(vmaxq_f32(negone, vld1q_f32(src)), one), mulby8388607)), 8));
i -= 4; src += 4; mmdst += 4;
}
dst = (Sint32 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float sample = *src;
if (sample >= 1.0f) {
*dst = 2147483647;
} else if (sample <= -1.0f) {
*dst = -2147483648;
} else {
*dst = ((Sint32)(sample * 8388607.0f)) << 8;
}
i--; src++; dst++;
}
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_S32SYS);
}
}
#endif
void SDL_ChooseAudioConverters(void)
{
static SDL_bool converters_chosen = SDL_FALSE;
@ -878,6 +1411,13 @@ void SDL_ChooseAudioConverters(void)
}
#endif
#if HAVE_NEON_INTRINSICS
if (SDL_HasNEON()) {
SET_CONVERTER_FUNCS(NEON);
return;
}
#endif
#if NEED_SCALAR_CONVERTER_FALLBACKS
SET_CONVERTER_FUNCS(Scalar);
#endif