aurora/include/magic_enum.hpp

1136 lines
41 KiB
C++

// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.7.2
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2021 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_HPP
#define NEARGYE_MAGIC_ENUM_HPP
#define MAGIC_ENUM_VERSION_MAJOR 0
#define MAGIC_ENUM_VERSION_MINOR 7
#define MAGIC_ENUM_VERSION_PATCH 2
#include <array>
#include <cassert>
#include <cstdint>
#include <cstddef>
#include <iosfwd>
#include <limits>
#include <type_traits>
#include <utility>
#if !defined(MAGIC_ENUM_USING_ALIAS_OPTIONAL)
#include <optional>
#endif
#if !defined(MAGIC_ENUM_USING_ALIAS_STRING)
#include <string>
#endif
#if !defined(MAGIC_ENUM_USING_ALIAS_STRING_VIEW)
#include <string_view>
#endif
#if defined(__clang__)
# pragma clang diagnostic push
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized" // May be used uninitialized 'return {};'.
#elif defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable : 26495) // Variable 'static_string<N>::chars_' is uninitialized.
# pragma warning(disable : 28020) // Arithmetic overflow: Using operator '-' on a 4 byte value and then casting the result to a 8 byte value.
# pragma warning(disable : 26451) // The expression '0<=_Param_(1)&&_Param_(1)<=1-1' is not true at this call.
#endif
// Checks magic_enum compiler compatibility.
#if defined(__clang__) && __clang_major__ >= 5 || defined(__GNUC__) && __GNUC__ >= 9 || defined(_MSC_VER) && _MSC_VER >= 1910
# undef MAGIC_ENUM_SUPPORTED
# define MAGIC_ENUM_SUPPORTED 1
#endif
// Checks magic_enum compiler aliases compatibility.
#if defined(__clang__) && __clang_major__ >= 5 || defined(__GNUC__) && __GNUC__ >= 9 || defined(_MSC_VER) && _MSC_VER >= 1920
# undef MAGIC_ENUM_SUPPORTED_ALIASES
# define MAGIC_ENUM_SUPPORTED_ALIASES 1
#endif
// Enum value must be greater or equals than MAGIC_ENUM_RANGE_MIN. By default MAGIC_ENUM_RANGE_MIN = -128.
// If need another min range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN.
#if !defined(MAGIC_ENUM_RANGE_MIN)
# define MAGIC_ENUM_RANGE_MIN -128
#endif
// Enum value must be less or equals than MAGIC_ENUM_RANGE_MAX. By default MAGIC_ENUM_RANGE_MAX = 128.
// If need another max range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MAX.
#if !defined(MAGIC_ENUM_RANGE_MAX)
# define MAGIC_ENUM_RANGE_MAX 128
#endif
namespace magic_enum {
// If need another optional type, define the macro MAGIC_ENUM_USING_ALIAS_OPTIONAL.
#if defined(MAGIC_ENUM_USING_ALIAS_OPTIONAL)
MAGIC_ENUM_USING_ALIAS_OPTIONAL
#else
using std::optional;
#endif
// If need another string_view type, define the macro MAGIC_ENUM_USING_ALIAS_STRING_VIEW.
#if defined(MAGIC_ENUM_USING_ALIAS_STRING_VIEW)
MAGIC_ENUM_USING_ALIAS_STRING_VIEW
#else
using std::string_view;
#endif
// If need another string type, define the macro MAGIC_ENUM_USING_ALIAS_STRING.
#if defined(MAGIC_ENUM_USING_ALIAS_STRING)
MAGIC_ENUM_USING_ALIAS_STRING
#else
using std::string;
#endif
namespace customize {
// Enum value must be in range [MAGIC_ENUM_RANGE_MIN, MAGIC_ENUM_RANGE_MAX]. By default MAGIC_ENUM_RANGE_MIN = -128, MAGIC_ENUM_RANGE_MAX = 128.
// If need another range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN and MAGIC_ENUM_RANGE_MAX.
// If need another range for specific enum type, add specialization enum_range for necessary enum type.
template <typename E>
struct enum_range {
static_assert(std::is_enum_v<E>, "magic_enum::customize::enum_range requires enum type.");
inline static constexpr int min = MAGIC_ENUM_RANGE_MIN;
inline static constexpr int max = MAGIC_ENUM_RANGE_MAX;
static_assert(max > min, "magic_enum::customize::enum_range requires max > min.");
};
static_assert(MAGIC_ENUM_RANGE_MIN <= 0, "MAGIC_ENUM_RANGE_MIN must be less or equals than 0.");
static_assert(MAGIC_ENUM_RANGE_MIN > (std::numeric_limits<std::int16_t>::min)(), "MAGIC_ENUM_RANGE_MIN must be greater than INT16_MIN.");
static_assert(MAGIC_ENUM_RANGE_MAX > 0, "MAGIC_ENUM_RANGE_MAX must be greater than 0.");
static_assert(MAGIC_ENUM_RANGE_MAX < (std::numeric_limits<std::int16_t>::max)(), "MAGIC_ENUM_RANGE_MAX must be less than INT16_MAX.");
static_assert(MAGIC_ENUM_RANGE_MAX > MAGIC_ENUM_RANGE_MIN, "MAGIC_ENUM_RANGE_MAX must be greater than MAGIC_ENUM_RANGE_MIN.");
// If need custom names for enum, add specialization enum_name for necessary enum type.
template <typename E>
constexpr string_view enum_name(E) noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::customize::enum_name requires enum type.");
return {};
}
} // namespace magic_enum::customize
namespace detail {
template <typename T>
struct supported
#if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED || defined(MAGIC_ENUM_NO_CHECK_SUPPORT)
: std::true_type {};
#else
: std::false_type {};
#endif
struct char_equal_to {
constexpr bool operator()(char lhs, char rhs) const noexcept {
return lhs == rhs;
}
};
template <std::size_t N>
class static_string {
public:
constexpr explicit static_string(string_view str) noexcept : static_string{str, std::make_index_sequence<N>{}} {
assert(str.size() == N);
}
constexpr const char* data() const noexcept { return chars_; }
constexpr std::size_t size() const noexcept { return N; }
constexpr operator string_view() const noexcept { return {data(), size()}; }
private:
template <std::size_t... I>
constexpr static_string(string_view str, std::index_sequence<I...>) noexcept : chars_{str[I]..., '\0'} {}
char chars_[N + 1];
};
template <>
class static_string<0> {
public:
constexpr explicit static_string(string_view) noexcept {}
constexpr const char* data() const noexcept { return nullptr; }
constexpr std::size_t size() const noexcept { return 0; }
constexpr operator string_view() const noexcept { return {}; }
};
constexpr string_view pretty_name(string_view name) noexcept {
for (std::size_t i = name.size(); i > 0; --i) {
if (!((name[i - 1] >= '0' && name[i - 1] <= '9') ||
(name[i - 1] >= 'a' && name[i - 1] <= 'z') ||
(name[i - 1] >= 'A' && name[i - 1] <= 'Z') ||
(name[i - 1] == '_'))) {
name.remove_prefix(i);
break;
}
}
if (name.size() > 0 && ((name.front() >= 'a' && name.front() <= 'z') ||
(name.front() >= 'A' && name.front() <= 'Z') ||
(name.front() == '_'))) {
return name;
}
return {}; // Invalid name.
}
constexpr std::size_t find(string_view str, char c) noexcept {
#if defined(__clang__) && __clang_major__ < 9 && defined(__GLIBCXX__) || defined(_MSC_VER) && _MSC_VER < 1920 && !defined(__clang__)
// https://stackoverflow.com/questions/56484834/constexpr-stdstring-viewfind-last-of-doesnt-work-on-clang-8-with-libstdc
// https://developercommunity.visualstudio.com/content/problem/360432/vs20178-regression-c-failed-in-test.html
constexpr bool workaround = true;
#else
constexpr bool workaround = false;
#endif
if constexpr (workaround) {
for (std::size_t i = 0; i < str.size(); ++i) {
if (str[i] == c) {
return i;
}
}
return string_view::npos;
} else {
return str.find_first_of(c);
}
}
template <typename T, std::size_t N, std::size_t... I>
constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N], std::index_sequence<I...>) {
return {{a[I]...}};
}
template <typename BinaryPredicate>
constexpr bool cmp_equal(string_view lhs, string_view rhs, BinaryPredicate&& p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) {
#if defined(_MSC_VER) && _MSC_VER < 1920 && !defined(__clang__)
// https://developercommunity.visualstudio.com/content/problem/360432/vs20178-regression-c-failed-in-test.html
// https://developercommunity.visualstudio.com/content/problem/232218/c-constexpr-string-view.html
constexpr bool workaround = true;
#else
constexpr bool workaround = false;
#endif
constexpr bool default_predicate = std::is_same_v<std::decay_t<BinaryPredicate>, char_equal_to>;
if constexpr (default_predicate && !workaround) {
static_cast<void>(p);
return lhs == rhs;
} else {
if (lhs.size() != rhs.size()) {
return false;
}
const auto size = lhs.size();
for (std::size_t i = 0; i < size; ++i) {
if (!p(lhs[i], rhs[i])) {
return false;
}
}
return true;
}
}
template <typename L, typename R>
constexpr bool cmp_less(L lhs, R rhs) noexcept {
static_assert(std::is_integral_v<L> && std::is_integral_v<R>, "magic_enum::detail::cmp_less requires integral type.");
if constexpr (std::is_signed_v<L> == std::is_signed_v<R>) {
// If same signedness (both signed or both unsigned).
return lhs < rhs;
} else if constexpr (std::is_signed_v<R>) {
// If 'right' is negative, then result is 'false', otherwise cast & compare.
return rhs > 0 && lhs < static_cast<std::make_unsigned_t<R>>(rhs);
} else {
// If 'left' is negative, then result is 'true', otherwise cast & compare.
return lhs < 0 || static_cast<std::make_unsigned_t<L>>(lhs) < rhs;
}
}
template <typename I>
constexpr I log2(I value) noexcept {
static_assert(std::is_integral_v<I>, "magic_enum::detail::log2 requires integral type.");
auto ret = I{0};
for (; value > I{1}; value >>= I{1}, ++ret) {}
return ret;
}
template <typename I>
constexpr bool is_pow2(I x) noexcept {
static_assert(std::is_integral_v<I>, "magic_enum::detail::is_pow2 requires integral type.");
return x != 0 && (x & (x - 1)) == 0;
}
template <typename T>
inline constexpr bool is_enum_v = std::is_enum_v<T> && std::is_same_v<T, std::decay_t<T>>;
template <typename E>
constexpr auto n() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::n requires enum type.");
#if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED
# if defined(__clang__)
constexpr string_view name{__PRETTY_FUNCTION__ + 34, sizeof(__PRETTY_FUNCTION__) - 36};
# elif defined(__GNUC__)
constexpr string_view name{__PRETTY_FUNCTION__ + 49, sizeof(__PRETTY_FUNCTION__) - 51};
# elif defined(_MSC_VER)
constexpr string_view name{__FUNCSIG__ + 40, sizeof(__FUNCSIG__) - 57};
# endif
return static_string<name.size()>{name};
#else
return string_view{}; // Unsupported compiler.
#endif
}
template <typename E>
inline constexpr auto type_name_v = n<E>();
template <typename E, E V>
constexpr auto n() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::n requires enum type.");
constexpr auto custom_name = customize::enum_name<E>(V);
if constexpr (custom_name.empty()) {
static_cast<void>(custom_name);
#if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED
# if defined(__clang__) || defined(__GNUC__)
constexpr auto name = pretty_name({__PRETTY_FUNCTION__, sizeof(__PRETTY_FUNCTION__) - 2});
# elif defined(_MSC_VER)
constexpr auto name = pretty_name({__FUNCSIG__, sizeof(__FUNCSIG__) - 17});
# endif
return static_string<name.size()>{name};
#else
return string_view{}; // Unsupported compiler.
#endif
} else {
return static_string<custom_name.size()>{custom_name};
}
}
template <typename E, E V>
inline constexpr auto enum_name_v = n<E, V>();
template <typename E, auto V>
constexpr bool is_valid() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::is_valid requires enum type.");
return n<E, static_cast<E>(V)>().size() != 0;
}
template <typename E, int O, bool IsFlags = false, typename U = std::underlying_type_t<E>>
constexpr E value(std::size_t i) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::value requires enum type.");
if constexpr (IsFlags) {
return static_cast<E>(U{1} << static_cast<U>(static_cast<int>(i) + O));
} else {
return static_cast<E>(static_cast<int>(i) + O);
}
}
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr int reflected_min() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::reflected_min requires enum type.");
if constexpr (IsFlags) {
return 0;
} else {
constexpr auto lhs = customize::enum_range<E>::min;
static_assert(lhs > (std::numeric_limits<std::int16_t>::min)(), "magic_enum::enum_range requires min must be greater than INT16_MIN.");
constexpr auto rhs = (std::numeric_limits<U>::min)();
if constexpr (cmp_less(lhs, rhs)) {
return rhs;
} else {
static_assert(!is_valid<E, value<E, lhs - 1, IsFlags>(0)>(), "magic_enum::enum_range detects enum value smaller than min range size.");
return lhs;
}
}
}
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr int reflected_max() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::reflected_max requires enum type.");
if constexpr (IsFlags) {
return std::numeric_limits<U>::digits - 1;
} else {
constexpr auto lhs = customize::enum_range<E>::max;
static_assert(lhs < (std::numeric_limits<std::int16_t>::max)(), "magic_enum::enum_range requires max must be less than INT16_MAX.");
constexpr auto rhs = (std::numeric_limits<U>::max)();
if constexpr (cmp_less(lhs, rhs)) {
static_assert(!is_valid<E, value<E, lhs + 1, IsFlags>(0)>(), "magic_enum::enum_range detects enum value larger than max range size.");
return lhs;
} else {
return rhs;
}
}
}
template <typename E, bool IsFlags = false>
inline constexpr auto reflected_min_v = reflected_min<E, IsFlags>();
template <typename E, bool IsFlags = false>
inline constexpr auto reflected_max_v = reflected_max<E, IsFlags>();
template <std::size_t N>
constexpr std::size_t values_count(const bool (&valid)[N]) noexcept {
auto count = std::size_t{0};
for (std::size_t i = 0; i < N; ++i) {
if (valid[i]) {
++count;
}
}
return count;
}
template <typename E, bool IsFlags, int Min, std::size_t... I>
constexpr auto values(std::index_sequence<I...>) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::values requires enum type.");
constexpr bool valid[sizeof...(I)] = {is_valid<E, value<E, Min, IsFlags>(I)>()...};
constexpr std::size_t count = values_count(valid);
if constexpr (count > 0) {
E values[count] = {};
for (std::size_t i = 0, v = 0; v < count; ++i) {
if (valid[i]) {
values[v++] = value<E, Min, IsFlags>(i);
}
}
return to_array(values, std::make_index_sequence<count>{});
} else {
return std::array<E, 0>{};
}
}
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr auto values() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::values requires enum type.");
constexpr auto min = reflected_min_v<E, IsFlags>;
constexpr auto max = reflected_max_v<E, IsFlags>;
constexpr auto range_size = max - min + 1;
static_assert(range_size > 0, "magic_enum::enum_range requires valid size.");
static_assert(range_size < (std::numeric_limits<std::uint16_t>::max)(), "magic_enum::enum_range requires valid size.");
return values<E, IsFlags, reflected_min_v<E, IsFlags>>(std::make_index_sequence<range_size>{});
}
template <typename E, bool IsFlags = false>
inline constexpr auto values_v = values<E, IsFlags>();
template <typename E, bool IsFlags = false, typename D = std::decay_t<E>>
using values_t = decltype((values_v<D, IsFlags>));
template <typename E, bool IsFlags = false>
inline constexpr auto count_v = values_v<E, IsFlags>.size();
template <typename E, bool IsFlags = false, typename U = std::underlying_type_t<E>>
inline constexpr auto min_v = (count_v<E, IsFlags> > 0) ? static_cast<U>(values_v<E, IsFlags>.front()) : U{0};
template <typename E, bool IsFlags = false, typename U = std::underlying_type_t<E>>
inline constexpr auto max_v = (count_v<E, IsFlags> > 0) ? static_cast<U>(values_v<E, IsFlags>.back()) : U{0};
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr std::size_t range_size() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::range_size requires enum type.");
constexpr auto max = IsFlags ? log2(max_v<E, IsFlags>) : max_v<E, IsFlags>;
constexpr auto min = IsFlags ? log2(min_v<E, IsFlags>) : min_v<E, IsFlags>;
constexpr auto range_size = max - min + U{1};
static_assert(range_size > 0, "magic_enum::enum_range requires valid size.");
static_assert(range_size < (std::numeric_limits<std::uint16_t>::max)(), "magic_enum::enum_range requires valid size.");
return static_cast<std::size_t>(range_size);
}
template <typename E, bool IsFlags = false>
inline constexpr auto range_size_v = range_size<E, IsFlags>();
template <typename E, bool IsFlags = false>
using index_t = std::conditional_t<range_size_v<E, IsFlags> < (std::numeric_limits<std::uint8_t>::max)(), std::uint8_t, std::uint16_t>;
template <typename E, bool IsFlags = false>
inline constexpr auto invalid_index_v = (std::numeric_limits<index_t<E, IsFlags>>::max)();
template <typename E, bool IsFlags, std::size_t... I>
constexpr auto indexes(std::index_sequence<I...>) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::indexes requires enum type.");
constexpr auto min = IsFlags ? log2(min_v<E, IsFlags>) : min_v<E, IsFlags>;
[[maybe_unused]] auto i = index_t<E, IsFlags>{0};
return std::array<decltype(i), sizeof...(I)>{{(is_valid<E, value<E, min, IsFlags>(I)>() ? i++ : invalid_index_v<E, IsFlags>)...}};
}
template <typename E, bool IsFlags = false>
inline constexpr auto indexes_v = indexes<E, IsFlags>(std::make_index_sequence<range_size_v<E, IsFlags>>{});
template <typename E, bool IsFlags, std::size_t... I>
constexpr auto names(std::index_sequence<I...>) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::names requires enum type.");
return std::array<string_view, sizeof...(I)>{{enum_name_v<E, values_v<E, IsFlags>[I]>...}};
}
template <typename E, bool IsFlags = false>
inline constexpr auto names_v = names<E, IsFlags>(std::make_index_sequence<count_v<E, IsFlags>>{});
template <typename E, bool IsFlags = false, typename D = std::decay_t<E>>
using names_t = decltype((names_v<D, IsFlags>));
template <typename E, bool IsFlags, std::size_t... I>
constexpr auto entries(std::index_sequence<I...>) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::entries requires enum type.");
return std::array<std::pair<E, string_view>, sizeof...(I)>{{{values_v<E, IsFlags>[I], enum_name_v<E, values_v<E, IsFlags>[I]>}...}};
}
template <typename E, bool IsFlags = false>
inline constexpr auto entries_v = entries<E, IsFlags>(std::make_index_sequence<count_v<E, IsFlags>>{});
template <typename E, bool IsFlags = false, typename D = std::decay_t<E>>
using entries_t = decltype((entries_v<D, IsFlags>));
template <typename E, bool IsFlags, typename U = std::underlying_type_t<E>>
constexpr bool is_sparse() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::is_sparse requires enum type.");
return range_size_v<E, IsFlags> != count_v<E, IsFlags>;
}
template <typename E, bool IsFlags = false>
inline constexpr bool is_sparse_v = is_sparse<E, IsFlags>();
template <typename E, typename U = std::underlying_type_t<E>>
constexpr std::size_t undex(U value) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::undex requires enum type.");
if (const auto i = static_cast<std::size_t>(value - min_v<E>); value >= min_v<E> && value <= max_v<E>) {
if constexpr (is_sparse_v<E>) {
if (const auto idx = indexes_v<E>[i]; idx != invalid_index_v<E>) {
return idx;
}
} else {
return i;
}
}
return invalid_index_v<E>; // Value out of range.
}
template <typename E, typename U = std::underlying_type_t<E>>
constexpr std::size_t endex(E value) noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::endex requires enum type.");
return undex<E>(static_cast<U>(value));
}
template <typename E, typename U = std::underlying_type_t<E>>
constexpr U value_ors() noexcept {
static_assert(is_enum_v<E>, "magic_enum::detail::endex requires enum type.");
auto value = U{0};
for (std::size_t i = 0; i < count_v<E, true>; ++i) {
value |= static_cast<U>(values_v<E, true>[i]);
}
return value;
}
template <bool, typename T, typename R>
struct enable_if_enum {};
template <typename T, typename R>
struct enable_if_enum<true, T, R> {
using type = R;
using D = std::decay_t<T>;
static_assert(supported<D>::value, "magic_enum unsupported compiler (https://github.com/Neargye/magic_enum#compiler-compatibility).");
};
template <typename T, typename R = void>
using enable_if_enum_t = std::enable_if_t<std::is_enum_v<std::decay_t<T>>, R>;
template <typename T, typename Enable = std::enable_if_t<std::is_enum_v<std::decay_t<T>>>>
using enum_concept = T;
template <typename T, bool = std::is_enum_v<T>>
struct is_scoped_enum : std::false_type {};
template <typename T>
struct is_scoped_enum<T, true> : std::bool_constant<!std::is_convertible_v<T, std::underlying_type_t<T>>> {};
template <typename T, bool = std::is_enum_v<T>>
struct is_unscoped_enum : std::false_type {};
template <typename T>
struct is_unscoped_enum<T, true> : std::bool_constant<std::is_convertible_v<T, std::underlying_type_t<T>>> {};
template <typename T, bool = std::is_enum_v<std::decay_t<T>>>
struct underlying_type {};
template <typename T>
struct underlying_type<T, true> : std::underlying_type<std::decay_t<T>> {};
} // namespace magic_enum::detail
// Checks is magic_enum supported compiler.
inline constexpr bool is_magic_enum_supported = detail::supported<void>::value;
template <typename T>
using Enum = detail::enum_concept<T>;
// Checks whether T is an Unscoped enumeration type.
// Provides the member constant value which is equal to true, if T is an [Unscoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Unscoped_enumeration) type. Otherwise, value is equal to false.
template <typename T>
struct is_unscoped_enum : detail::is_unscoped_enum<T> {};
template <typename T>
inline constexpr bool is_unscoped_enum_v = is_unscoped_enum<T>::value;
// Checks whether T is an Scoped enumeration type.
// Provides the member constant value which is equal to true, if T is an [Scoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Scoped_enumerations) type. Otherwise, value is equal to false.
template <typename T>
struct is_scoped_enum : detail::is_scoped_enum<T> {};
template <typename T>
inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;
// If T is a complete enumeration type, provides a member typedef type that names the underlying type of T.
// Otherwise, if T is not an enumeration type, there is no member type. Otherwise (T is an incomplete enumeration type), the program is ill-formed.
template <typename T>
struct underlying_type : detail::underlying_type<T> {};
template <typename T>
using underlying_type_t = typename underlying_type<T>::type;
// Returns type name of enum.
template <typename E>
[[nodiscard]] constexpr auto enum_type_name() noexcept -> detail::enable_if_enum_t<E, string_view> {
using D = std::decay_t<E>;
constexpr string_view name = detail::type_name_v<D>;
static_assert(name.size() > 0, "Enum type does not have a name.");
return name;
}
// Returns number of enum values.
template <typename E>
[[nodiscard]] constexpr auto enum_count() noexcept -> detail::enable_if_enum_t<E, std::size_t> {
using D = std::decay_t<E>;
return detail::count_v<D>;
}
// Returns enum value at specified index.
// No bounds checking is performed: the behavior is undefined if index >= number of enum values.
template <typename E>
[[nodiscard]] constexpr auto enum_value(std::size_t index) noexcept -> detail::enable_if_enum_t<E, std::decay_t<E>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min.");
if constexpr (detail::is_sparse_v<D>) {
return assert((index < detail::count_v<D>)), detail::values_v<D>[index];
} else {
return assert((index < detail::count_v<D>)), detail::value<D, detail::min_v<D>>(index);
}
}
// Returns std::array with enum values, sorted by enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_values() noexcept -> detail::enable_if_enum_t<E, detail::values_t<E>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min.");
return detail::values_v<D>;
}
// Returns name from static storage enum variable.
// This version is much lighter on the compile times and is not restricted to the enum_range limitation.
template <auto V>
[[nodiscard]] constexpr auto enum_name() noexcept -> detail::enable_if_enum_t<decltype(V), string_view> {
using D = std::decay_t<decltype(V)>;
constexpr string_view name = detail::enum_name_v<D, V>;
static_assert(name.size() > 0, "Enum value does not have a name.");
return name;
}
// Returns name from enum value.
// If enum value does not have name or value out of range, returns empty string.
template <typename E>
[[nodiscard]] constexpr auto enum_name(E value) noexcept -> detail::enable_if_enum_t<E, string_view> {
using D = std::decay_t<E>;
if (const auto i = detail::endex<D>(value); i != detail::invalid_index_v<D>) {
return detail::names_v<D>[i];
}
return {}; // Invalid value or out of range.
}
// Returns std::array with names, sorted by enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_names() noexcept -> detail::enable_if_enum_t<E, detail::names_t<E>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min.");
return detail::names_v<D>;
}
// Returns std::array with pairs (value, name), sorted by enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_entries() noexcept -> detail::enable_if_enum_t<E, detail::entries_t<E>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D> > 0, "magic_enum requires enum implementation and valid max and min.");
return detail::entries_v<D>;
}
// Obtains enum value from integer value.
// Returns optional with enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_cast(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
if (detail::undex<D>(value) != detail::invalid_index_v<D>) {
return static_cast<D>(value);
}
return {}; // Invalid value or out of range.
}
// Obtains enum value from name.
// Returns optional with enum value.
template <typename E, typename BinaryPredicate>
[[nodiscard]] constexpr auto enum_cast(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_cast requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
for (std::size_t i = 0; i < detail::count_v<D>; ++i) {
if (detail::cmp_equal(value, detail::names_v<D>[i], p)) {
return enum_value<D>(i);
}
}
return {}; // Invalid value or out of range.
}
// Obtains enum value from name.
// Returns optional with enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_cast(string_view value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
return enum_cast<D>(value, detail::char_equal_to{});
}
// Returns integer value from enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_integer(E value) noexcept -> detail::enable_if_enum_t<E, underlying_type_t<E>> {
return static_cast<underlying_type_t<E>>(value);
}
// Obtains index in enum values from enum value.
// Returns optional with index.
template <typename E>
[[nodiscard]] constexpr auto enum_index(E value) noexcept -> detail::enable_if_enum_t<E, optional<std::size_t>> {
using D = std::decay_t<E>;
if (const auto i = detail::endex<D>(value); i != detail::invalid_index_v<D>) {
return i;
}
return {}; // Invalid value or out of range.
}
// Checks whether enum contains enumerator with such enum value.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(E value) noexcept -> detail::enable_if_enum_t<E, bool> {
using D = std::decay_t<E>;
return detail::endex<D>(value) != detail::invalid_index_v<D>;
}
// Checks whether enum contains enumerator with such integer value.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, bool> {
using D = std::decay_t<E>;
return detail::undex<D>(value) != detail::invalid_index_v<D>;
}
// Checks whether enum contains enumerator with such name.
template <typename E, typename BinaryPredicate>
[[nodiscard]] constexpr auto enum_contains(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, bool> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::enum_contains requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
return enum_cast<D>(value, std::move_if_noexcept(p)).has_value();
}
// Checks whether enum contains enumerator with such name.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(string_view value) noexcept -> detail::enable_if_enum_t<E, bool> {
using D = std::decay_t<E>;
return enum_cast<D>(value).has_value();
}
namespace ostream_operators {
template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, E value) {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
#if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED
if (const auto name = magic_enum::enum_name<D>(value); !name.empty()) {
for (const auto c : name) {
os.put(c);
}
return os;
}
#endif
return (os << static_cast<U>(value));
}
template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, optional<E> value) {
return value.has_value() ? (os << value.value()) : os;
}
} // namespace magic_enum::ostream_operators
namespace bitwise_operators {
template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
constexpr E operator~(E rhs) noexcept {
return static_cast<E>(~static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
constexpr E operator|(E lhs, E rhs) noexcept {
return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) | static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
constexpr E operator&(E lhs, E rhs) noexcept {
return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) & static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
constexpr E operator^(E lhs, E rhs) noexcept {
return static_cast<E>(static_cast<underlying_type_t<E>>(lhs) ^ static_cast<underlying_type_t<E>>(rhs));
}
template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
constexpr E& operator|=(E& lhs, E rhs) noexcept {
return lhs = (lhs | rhs);
}
template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
constexpr E& operator&=(E& lhs, E rhs) noexcept {
return lhs = (lhs & rhs);
}
template <typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
constexpr E& operator^=(E& lhs, E rhs) noexcept {
return lhs = (lhs ^ rhs);
}
} // namespace magic_enum::bitwise_operators
namespace flags {
// Returns type name of enum.
using magic_enum::enum_type_name;
// Returns number of enum-flags values.
template <typename E>
[[nodiscard]] constexpr auto enum_count() noexcept -> detail::enable_if_enum_t<E, std::size_t> {
using D = std::decay_t<E>;
return detail::count_v<D, true>;
}
// Returns enum-flags value at specified index.
// No bounds checking is performed: the behavior is undefined if index >= number of enum-flags values.
template <typename E>
[[nodiscard]] constexpr auto enum_value(std::size_t index) noexcept -> detail::enable_if_enum_t<E, std::decay_t<E>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation.");
if constexpr (detail::is_sparse_v<D, true>) {
return assert((index < detail::count_v<D, true>)), detail::values_v<D, true>[index];
} else {
constexpr auto min = detail::log2(detail::min_v<D, true>);
return assert((index < detail::count_v<D, true>)), detail::value<D, min, true>(index);
}
}
// Returns std::array with enum-flags values, sorted by enum-flags value.
template <typename E>
[[nodiscard]] constexpr auto enum_values() noexcept -> detail::enable_if_enum_t<E, detail::values_t<E, true>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation.");
return detail::values_v<D, true>;
}
// Returns name from enum-flags value.
// If enum-flags value does not have name or value out of range, returns empty string.
template <typename E>
[[nodiscard]] auto enum_name(E value) -> detail::enable_if_enum_t<E, string> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
string name;
auto check_value = U{0};
for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) {
if (const auto v = static_cast<U>(enum_value<D>(i)); (static_cast<U>(value) & v) != 0) {
check_value |= v;
const auto n = detail::names_v<D, true>[i];
if (!name.empty()) {
name.append(1, '|');
}
name.append(n.data(), n.size());
}
}
if (check_value != 0 && check_value == static_cast<U>(value)) {
return name;
}
return {}; // Invalid value or out of range.
}
// Returns std::array with string names, sorted by enum-flags value.
template <typename E>
[[nodiscard]] constexpr auto enum_names() noexcept -> detail::enable_if_enum_t<E, detail::names_t<E, true>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation.");
return detail::names_v<D, true>;
}
// Returns std::array with pairs (value, name), sorted by enum-flags value.
template <typename E>
[[nodiscard]] constexpr auto enum_entries() noexcept -> detail::enable_if_enum_t<E, detail::entries_t<E, true>> {
using D = std::decay_t<E>;
static_assert(detail::count_v<D, true> > 0, "magic_enum::flags requires enum-flags implementation.");
return detail::entries_v<D, true>;
}
// Obtains enum-flags value from integer value.
// Returns optional with enum-flags value.
template <typename E>
[[nodiscard]] constexpr auto enum_cast(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if constexpr (detail::is_sparse_v<D, true>) {
auto check_value = U{0};
for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) {
if (const auto v = static_cast<U>(enum_value<D>(i)); (value & v) != 0) {
check_value |= v;
}
}
if (check_value != 0 && check_value == value) {
return static_cast<D>(value);
}
} else {
constexpr auto min = detail::min_v<D, true>;
constexpr auto max = detail::value_ors<D>();
if (value >= min && value <= max) {
return static_cast<D>(value);
}
}
return {}; // Invalid value or out of range.
}
// Obtains enum-flags value from name.
// Returns optional with enum-flags value.
template <typename E, typename BinaryPredicate>
[[nodiscard]] constexpr auto enum_cast(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::flags::enum_cast requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
auto result = U{0};
while (!value.empty()) {
const auto d = detail::find(value, '|');
const auto s = (d == string_view::npos) ? value : value.substr(0, d);
auto f = U{0};
for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) {
if (detail::cmp_equal(s, detail::names_v<D, true>[i], p)) {
f = static_cast<U>(enum_value<D>(i));
result |= f;
break;
}
}
if (f == U{0}) {
return {}; // Invalid value or out of range.
}
value.remove_prefix((d == string_view::npos) ? value.size() : d + 1);
}
if (result == U{0}) {
return {}; // Invalid value or out of range.
} else {
return static_cast<D>(result);
}
}
// Obtains enum-flags value from name.
// Returns optional with enum-flags value.
template <typename E>
[[nodiscard]] constexpr auto enum_cast(string_view value) noexcept -> detail::enable_if_enum_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
return enum_cast<D>(value, detail::char_equal_to{});
}
// Returns integer value from enum value.
using magic_enum::enum_integer;
// Obtains index in enum-flags values from enum-flags value.
// Returns optional with index.
template <typename E>
[[nodiscard]] constexpr auto enum_index(E value) noexcept -> detail::enable_if_enum_t<E, optional<std::size_t>> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if (detail::is_pow2(static_cast<U>(value))) {
for (std::size_t i = 0; i < detail::count_v<D, true>; ++i) {
if (enum_value<D>(i) == value) {
return i;
}
}
}
return {}; // Invalid value or out of range.
}
// Checks whether enum-flags contains enumerator with such enum-flags value.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(E value) noexcept -> detail::enable_if_enum_t<E, bool> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
return enum_cast<D>(static_cast<U>(value)).has_value();
}
// Checks whether enum-flags contains enumerator with such integer value.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(underlying_type_t<E> value) noexcept -> detail::enable_if_enum_t<E, bool> {
using D = std::decay_t<E>;
return enum_cast<D>(value).has_value();
}
// Checks whether enum-flags contains enumerator with such name.
template <typename E, typename BinaryPredicate>
[[nodiscard]] constexpr auto enum_contains(string_view value, BinaryPredicate p) noexcept(std::is_nothrow_invocable_r_v<bool, BinaryPredicate, char, char>) -> detail::enable_if_enum_t<E, bool> {
static_assert(std::is_invocable_r_v<bool, BinaryPredicate, char, char>, "magic_enum::flags::enum_contains requires bool(char, char) invocable predicate.");
using D = std::decay_t<E>;
return enum_cast<D>(value, std::move_if_noexcept(p)).has_value();
}
// Checks whether enum-flags contains enumerator with such name.
template <typename E>
[[nodiscard]] constexpr auto enum_contains(string_view value) noexcept -> detail::enable_if_enum_t<E, bool> {
using D = std::decay_t<E>;
return enum_cast<D>(value).has_value();
}
} // namespace magic_enum::flags
namespace flags::ostream_operators {
template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, E value) {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
#if defined(MAGIC_ENUM_SUPPORTED) && MAGIC_ENUM_SUPPORTED
if (const auto name = magic_enum::flags::enum_name<D>(value); !name.empty()) {
for (const auto c : name) {
os.put(c);
}
return os;
}
#endif
return (os << static_cast<U>(value));
}
template <typename Char, typename Traits, typename E, std::enable_if_t<std::is_enum_v<E>, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, optional<E> value) {
return value.has_value() ? (os << value.value()) : os;
}
} // namespace magic_enum::flags::ostream_operators
namespace flags::bitwise_operators {
using namespace magic_enum::bitwise_operators;
} // namespace magic_enum::flags::bitwise_operators
} // namespace magic_enum
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#elif defined(_MSC_VER)
# pragma warning(pop)
#endif
#endif // NEARGYE_MAGIC_ENUM_HPP