283 lines
9.7 KiB
C++
283 lines
9.7 KiB
C++
|
// Copyright 2017 The Abseil Authors.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cstdint>
|
||
|
#include <limits>
|
||
|
#include <random>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "benchmark/benchmark.h"
|
||
|
#include "absl/base/config.h"
|
||
|
#include "absl/numeric/int128.h"
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
constexpr size_t kSampleSize = 1000000;
|
||
|
|
||
|
std::mt19937 MakeRandomEngine() {
|
||
|
std::random_device r;
|
||
|
std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()});
|
||
|
return std::mt19937(seed);
|
||
|
}
|
||
|
|
||
|
template <typename T,
|
||
|
typename H = typename std::conditional<
|
||
|
std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
|
||
|
std::vector<std::pair<T, T>> GetRandomClass128SampleUniformDivisor() {
|
||
|
std::vector<std::pair<T, T>> values;
|
||
|
std::mt19937 random = MakeRandomEngine();
|
||
|
std::uniform_int_distribution<H> uniform_h;
|
||
|
values.reserve(kSampleSize);
|
||
|
for (size_t i = 0; i < kSampleSize; ++i) {
|
||
|
T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
|
||
|
T b{absl::MakeUint128(uniform_h(random), uniform_h(random))};
|
||
|
values.emplace_back(std::max(a, b), std::max(T(2), std::min(a, b)));
|
||
|
}
|
||
|
return values;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_DivideClass128UniformDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomClass128SampleUniformDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first / pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::uint128);
|
||
|
BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::int128);
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_RemainderClass128UniformDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomClass128SampleUniformDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first % pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::uint128);
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::int128);
|
||
|
|
||
|
template <typename T,
|
||
|
typename H = typename std::conditional<
|
||
|
std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type>
|
||
|
std::vector<std::pair<T, H>> GetRandomClass128SampleSmallDivisor() {
|
||
|
std::vector<std::pair<T, H>> values;
|
||
|
std::mt19937 random = MakeRandomEngine();
|
||
|
std::uniform_int_distribution<H> uniform_h;
|
||
|
values.reserve(kSampleSize);
|
||
|
for (size_t i = 0; i < kSampleSize; ++i) {
|
||
|
T a{absl::MakeUint128(uniform_h(random), uniform_h(random))};
|
||
|
H b{std::max(H{2}, uniform_h(random))};
|
||
|
values.emplace_back(std::max(a, T(b)), b);
|
||
|
}
|
||
|
return values;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_DivideClass128SmallDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomClass128SampleSmallDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first / pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::uint128);
|
||
|
BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::int128);
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_RemainderClass128SmallDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomClass128SampleSmallDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first % pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::uint128);
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::int128);
|
||
|
|
||
|
std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() {
|
||
|
std::vector<std::pair<absl::uint128, absl::uint128>> values;
|
||
|
std::mt19937 random = MakeRandomEngine();
|
||
|
std::uniform_int_distribution<uint64_t> uniform_uint64;
|
||
|
values.reserve(kSampleSize);
|
||
|
for (size_t i = 0; i < kSampleSize; ++i) {
|
||
|
values.emplace_back(
|
||
|
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)),
|
||
|
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)));
|
||
|
}
|
||
|
return values;
|
||
|
}
|
||
|
|
||
|
void BM_MultiplyClass128(benchmark::State& state) {
|
||
|
auto values = GetRandomClass128Sample();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first * pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK(BM_MultiplyClass128);
|
||
|
|
||
|
void BM_AddClass128(benchmark::State& state) {
|
||
|
auto values = GetRandomClass128Sample();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first + pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK(BM_AddClass128);
|
||
|
|
||
|
#ifdef ABSL_HAVE_INTRINSIC_INT128
|
||
|
|
||
|
// Some implementations of <random> do not support __int128 when it is
|
||
|
// available, so we make our own uniform_int_distribution-like type.
|
||
|
template <typename T,
|
||
|
typename H = typename std::conditional<
|
||
|
std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
|
||
|
class UniformIntDistribution128 {
|
||
|
public:
|
||
|
// NOLINTNEXTLINE: mimicking std::uniform_int_distribution API
|
||
|
T operator()(std::mt19937& generator) {
|
||
|
return (static_cast<T>(dist64_(generator)) << 64) | dist64_(generator);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
std::uniform_int_distribution<H> dist64_;
|
||
|
};
|
||
|
|
||
|
template <typename T,
|
||
|
typename H = typename std::conditional<
|
||
|
std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
|
||
|
std::vector<std::pair<T, T>> GetRandomIntrinsic128SampleUniformDivisor() {
|
||
|
std::vector<std::pair<T, T>> values;
|
||
|
std::mt19937 random = MakeRandomEngine();
|
||
|
UniformIntDistribution128<T> uniform_128;
|
||
|
values.reserve(kSampleSize);
|
||
|
for (size_t i = 0; i < kSampleSize; ++i) {
|
||
|
T a = uniform_128(random);
|
||
|
T b = uniform_128(random);
|
||
|
values.emplace_back(std::max(a, b),
|
||
|
std::max(static_cast<T>(2), std::min(a, b)));
|
||
|
}
|
||
|
return values;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first / pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, unsigned __int128);
|
||
|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, __int128);
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_RemainderIntrinsic128UniformDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomIntrinsic128SampleUniformDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first % pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, unsigned __int128);
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, __int128);
|
||
|
|
||
|
template <typename T,
|
||
|
typename H = typename std::conditional<
|
||
|
std::is_same<T, __int128>::value, int64_t, uint64_t>::type>
|
||
|
std::vector<std::pair<T, H>> GetRandomIntrinsic128SampleSmallDivisor() {
|
||
|
std::vector<std::pair<T, H>> values;
|
||
|
std::mt19937 random = MakeRandomEngine();
|
||
|
UniformIntDistribution128<T> uniform_int128;
|
||
|
std::uniform_int_distribution<H> uniform_int64;
|
||
|
values.reserve(kSampleSize);
|
||
|
for (size_t i = 0; i < kSampleSize; ++i) {
|
||
|
T a = uniform_int128(random);
|
||
|
H b = std::max(H{2}, uniform_int64(random));
|
||
|
values.emplace_back(std::max(a, static_cast<T>(b)), b);
|
||
|
}
|
||
|
return values;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first / pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, unsigned __int128);
|
||
|
BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, __int128);
|
||
|
|
||
|
template <typename T>
|
||
|
void BM_RemainderIntrinsic128SmallDivisor(benchmark::State& state) {
|
||
|
auto values = GetRandomIntrinsic128SampleSmallDivisor<T>();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first % pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, unsigned __int128);
|
||
|
BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, __int128);
|
||
|
|
||
|
std::vector<std::pair<unsigned __int128, unsigned __int128>>
|
||
|
GetRandomIntrinsic128Sample() {
|
||
|
std::vector<std::pair<unsigned __int128, unsigned __int128>> values;
|
||
|
std::mt19937 random = MakeRandomEngine();
|
||
|
UniformIntDistribution128<unsigned __int128> uniform_uint128;
|
||
|
values.reserve(kSampleSize);
|
||
|
for (size_t i = 0; i < kSampleSize; ++i) {
|
||
|
values.emplace_back(uniform_uint128(random), uniform_uint128(random));
|
||
|
}
|
||
|
return values;
|
||
|
}
|
||
|
|
||
|
void BM_MultiplyIntrinsic128(benchmark::State& state) {
|
||
|
auto values = GetRandomIntrinsic128Sample();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first * pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK(BM_MultiplyIntrinsic128);
|
||
|
|
||
|
void BM_AddIntrinsic128(benchmark::State& state) {
|
||
|
auto values = GetRandomIntrinsic128Sample();
|
||
|
while (state.KeepRunningBatch(values.size())) {
|
||
|
for (const auto& pair : values) {
|
||
|
benchmark::DoNotOptimize(pair.first + pair.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BENCHMARK(BM_AddIntrinsic128);
|
||
|
|
||
|
#endif // ABSL_HAVE_INTRINSIC_INT128
|
||
|
|
||
|
} // namespace
|