2022-02-11 19:01:25 +00:00
|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#ifndef ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_
|
|
|
|
#define ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <cinttypes>
|
|
|
|
#include <cstdlib>
|
|
|
|
#include <iostream>
|
|
|
|
#include <iterator>
|
|
|
|
#include <limits>
|
|
|
|
#include <type_traits>
|
|
|
|
|
|
|
|
#include "absl/base/internal/endian.h"
|
|
|
|
#include "absl/meta/type_traits.h"
|
|
|
|
#include "absl/random/internal/iostream_state_saver.h"
|
|
|
|
#include "absl/random/internal/randen.h"
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
namespace random_internal {
|
|
|
|
|
|
|
|
// Deterministic pseudorandom byte generator with backtracking resistance
|
|
|
|
// (leaking the state does not compromise prior outputs). Based on Reverie
|
|
|
|
// (see "A Robust and Sponge-Like PRNG with Improved Efficiency") instantiated
|
|
|
|
// with an improved Simpira-like permutation.
|
|
|
|
// Returns values of type "T" (must be a built-in unsigned integer type).
|
|
|
|
//
|
|
|
|
// RANDen = RANDom generator or beetroots in Swiss High German.
|
|
|
|
// 'Strong' (well-distributed, unpredictable, backtracking-resistant) random
|
|
|
|
// generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32.
|
|
|
|
template <typename T>
|
2022-08-29 17:59:48 +00:00
|
|
|
class alignas(8) randen_engine {
|
2022-02-11 19:01:25 +00:00
|
|
|
public:
|
|
|
|
// C++11 URBG interface:
|
|
|
|
using result_type = T;
|
|
|
|
static_assert(std::is_unsigned<result_type>::value,
|
|
|
|
"randen_engine template argument must be a built-in unsigned "
|
|
|
|
"integer type");
|
|
|
|
|
|
|
|
static constexpr result_type(min)() {
|
|
|
|
return (std::numeric_limits<result_type>::min)();
|
|
|
|
}
|
|
|
|
|
|
|
|
static constexpr result_type(max)() {
|
|
|
|
return (std::numeric_limits<result_type>::max)();
|
|
|
|
}
|
|
|
|
|
2022-08-29 17:59:48 +00:00
|
|
|
randen_engine() : randen_engine(0) {}
|
|
|
|
explicit randen_engine(result_type seed_value) { seed(seed_value); }
|
2022-02-11 19:01:25 +00:00
|
|
|
|
|
|
|
template <class SeedSequence,
|
|
|
|
typename = typename absl::enable_if_t<
|
|
|
|
!std::is_same<SeedSequence, randen_engine>::value>>
|
|
|
|
explicit randen_engine(SeedSequence&& seq) {
|
|
|
|
seed(seq);
|
|
|
|
}
|
|
|
|
|
2022-08-29 17:59:48 +00:00
|
|
|
// alignment requirements dictate custom copy and move constructors.
|
|
|
|
randen_engine(const randen_engine& other)
|
|
|
|
: next_(other.next_), impl_(other.impl_) {
|
|
|
|
std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type));
|
|
|
|
}
|
|
|
|
randen_engine& operator=(const randen_engine& other) {
|
|
|
|
next_ = other.next_;
|
|
|
|
impl_ = other.impl_;
|
|
|
|
std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type));
|
|
|
|
return *this;
|
|
|
|
}
|
2022-02-11 19:01:25 +00:00
|
|
|
|
|
|
|
// Returns random bits from the buffer in units of result_type.
|
|
|
|
result_type operator()() {
|
|
|
|
// Refill the buffer if needed (unlikely).
|
2022-08-29 17:59:48 +00:00
|
|
|
auto* begin = state();
|
2022-02-11 19:01:25 +00:00
|
|
|
if (next_ >= kStateSizeT) {
|
|
|
|
next_ = kCapacityT;
|
2022-08-29 17:59:48 +00:00
|
|
|
impl_.Generate(begin);
|
2022-02-11 19:01:25 +00:00
|
|
|
}
|
2022-08-29 17:59:48 +00:00
|
|
|
return little_endian::ToHost(begin[next_++]);
|
2022-02-11 19:01:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class SeedSequence>
|
|
|
|
typename absl::enable_if_t<
|
|
|
|
!std::is_convertible<SeedSequence, result_type>::value>
|
|
|
|
seed(SeedSequence&& seq) {
|
|
|
|
// Zeroes the state.
|
|
|
|
seed();
|
|
|
|
reseed(seq);
|
|
|
|
}
|
|
|
|
|
|
|
|
void seed(result_type seed_value = 0) {
|
|
|
|
next_ = kStateSizeT;
|
|
|
|
// Zeroes the inner state and fills the outer state with seed_value to
|
2022-08-29 17:59:48 +00:00
|
|
|
// mimic the behaviour of reseed
|
|
|
|
auto* begin = state();
|
|
|
|
std::fill(begin, begin + kCapacityT, 0);
|
|
|
|
std::fill(begin + kCapacityT, begin + kStateSizeT, seed_value);
|
2022-02-11 19:01:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Inserts entropy into (part of) the state. Calling this periodically with
|
|
|
|
// sufficient entropy ensures prediction resistance (attackers cannot predict
|
|
|
|
// future outputs even if state is compromised).
|
|
|
|
template <class SeedSequence>
|
|
|
|
void reseed(SeedSequence& seq) {
|
|
|
|
using sequence_result_type = typename SeedSequence::result_type;
|
|
|
|
static_assert(sizeof(sequence_result_type) == 4,
|
|
|
|
"SeedSequence::result_type must be 32-bit");
|
|
|
|
constexpr size_t kBufferSize =
|
|
|
|
Randen::kSeedBytes / sizeof(sequence_result_type);
|
|
|
|
alignas(16) sequence_result_type buffer[kBufferSize];
|
|
|
|
|
|
|
|
// Randen::Absorb XORs the seed into state, which is then mixed by a call
|
|
|
|
// to Randen::Generate. Seeding with only the provided entropy is preferred
|
|
|
|
// to using an arbitrary generate() call, so use [rand.req.seed_seq]
|
|
|
|
// size as a proxy for the number of entropy units that can be generated
|
|
|
|
// without relying on seed sequence mixing...
|
|
|
|
const size_t entropy_size = seq.size();
|
|
|
|
if (entropy_size < kBufferSize) {
|
|
|
|
// ... and only request that many values, or 256-bits, when unspecified.
|
|
|
|
const size_t requested_entropy = (entropy_size == 0) ? 8u : entropy_size;
|
2022-08-29 17:59:48 +00:00
|
|
|
std::fill(buffer + requested_entropy, buffer + kBufferSize, 0);
|
|
|
|
seq.generate(buffer, buffer + requested_entropy);
|
|
|
|
#ifdef ABSL_IS_BIG_ENDIAN
|
|
|
|
// Randen expects the seed buffer to be in Little Endian; reverse it on
|
|
|
|
// Big Endian platforms.
|
|
|
|
for (sequence_result_type& e : buffer) {
|
|
|
|
e = absl::little_endian::FromHost(e);
|
|
|
|
}
|
|
|
|
#endif
|
2022-02-11 19:01:25 +00:00
|
|
|
// The Randen paper suggests preferentially initializing even-numbered
|
|
|
|
// 128-bit vectors of the randen state (there are 16 such vectors).
|
|
|
|
// The seed data is merged into the state offset by 128-bits, which
|
|
|
|
// implies prefering seed bytes [16..31, ..., 208..223]. Since the
|
|
|
|
// buffer is 32-bit values, we swap the corresponding buffer positions in
|
|
|
|
// 128-bit chunks.
|
|
|
|
size_t dst = kBufferSize;
|
|
|
|
while (dst > 7) {
|
|
|
|
// leave the odd bucket as-is.
|
|
|
|
dst -= 4;
|
|
|
|
size_t src = dst >> 1;
|
|
|
|
// swap 128-bits into the even bucket
|
|
|
|
std::swap(buffer[--dst], buffer[--src]);
|
|
|
|
std::swap(buffer[--dst], buffer[--src]);
|
|
|
|
std::swap(buffer[--dst], buffer[--src]);
|
|
|
|
std::swap(buffer[--dst], buffer[--src]);
|
|
|
|
}
|
|
|
|
} else {
|
2022-08-29 17:59:48 +00:00
|
|
|
seq.generate(buffer, buffer + kBufferSize);
|
2022-02-11 19:01:25 +00:00
|
|
|
}
|
2022-08-29 17:59:48 +00:00
|
|
|
impl_.Absorb(buffer, state());
|
2022-02-11 19:01:25 +00:00
|
|
|
|
|
|
|
// Generate will be called when operator() is called
|
|
|
|
next_ = kStateSizeT;
|
|
|
|
}
|
|
|
|
|
|
|
|
void discard(uint64_t count) {
|
|
|
|
uint64_t step = std::min<uint64_t>(kStateSizeT - next_, count);
|
|
|
|
count -= step;
|
|
|
|
|
|
|
|
constexpr uint64_t kRateT = kStateSizeT - kCapacityT;
|
2022-08-29 17:59:48 +00:00
|
|
|
auto* begin = state();
|
2022-02-11 19:01:25 +00:00
|
|
|
while (count > 0) {
|
|
|
|
next_ = kCapacityT;
|
2022-08-29 17:59:48 +00:00
|
|
|
impl_.Generate(*reinterpret_cast<result_type(*)[kStateSizeT]>(begin));
|
2022-02-11 19:01:25 +00:00
|
|
|
step = std::min<uint64_t>(kRateT, count);
|
|
|
|
count -= step;
|
|
|
|
}
|
|
|
|
next_ += step;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator==(const randen_engine& other) const {
|
2022-08-29 17:59:48 +00:00
|
|
|
const auto* begin = state();
|
2022-02-11 19:01:25 +00:00
|
|
|
return next_ == other.next_ &&
|
2022-08-29 17:59:48 +00:00
|
|
|
std::equal(begin, begin + kStateSizeT, other.state());
|
2022-02-11 19:01:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool operator!=(const randen_engine& other) const {
|
|
|
|
return !(*this == other);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class CharT, class Traits>
|
|
|
|
friend std::basic_ostream<CharT, Traits>& operator<<(
|
|
|
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
|
|
|
|
const randen_engine<T>& engine) { // NOLINT(runtime/references)
|
|
|
|
using numeric_type =
|
|
|
|
typename random_internal::stream_format_type<result_type>::type;
|
|
|
|
auto saver = random_internal::make_ostream_state_saver(os);
|
2022-08-29 17:59:48 +00:00
|
|
|
auto* it = engine.state();
|
|
|
|
for (auto* end = it + kStateSizeT; it < end; ++it) {
|
2022-02-11 19:01:25 +00:00
|
|
|
// In the case that `elem` is `uint8_t`, it must be cast to something
|
|
|
|
// larger so that it prints as an integer rather than a character. For
|
|
|
|
// simplicity, apply the cast all circumstances.
|
2022-08-29 17:59:48 +00:00
|
|
|
os << static_cast<numeric_type>(little_endian::FromHost(*it))
|
2022-02-11 19:01:25 +00:00
|
|
|
<< os.fill();
|
|
|
|
}
|
|
|
|
os << engine.next_;
|
|
|
|
return os;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class CharT, class Traits>
|
|
|
|
friend std::basic_istream<CharT, Traits>& operator>>(
|
|
|
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
|
|
|
|
randen_engine<T>& engine) { // NOLINT(runtime/references)
|
|
|
|
using numeric_type =
|
|
|
|
typename random_internal::stream_format_type<result_type>::type;
|
|
|
|
result_type state[kStateSizeT];
|
|
|
|
size_t next;
|
|
|
|
for (auto& elem : state) {
|
|
|
|
// It is not possible to read uint8_t from wide streams, so it is
|
|
|
|
// necessary to read a wider type and then cast it to uint8_t.
|
|
|
|
numeric_type value;
|
|
|
|
is >> value;
|
|
|
|
elem = little_endian::ToHost(static_cast<result_type>(value));
|
|
|
|
}
|
|
|
|
is >> next;
|
|
|
|
if (is.fail()) {
|
|
|
|
return is;
|
|
|
|
}
|
2022-08-29 17:59:48 +00:00
|
|
|
std::memcpy(engine.state(), state, sizeof(state));
|
2022-02-11 19:01:25 +00:00
|
|
|
engine.next_ = next;
|
|
|
|
return is;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
static constexpr size_t kStateSizeT =
|
|
|
|
Randen::kStateBytes / sizeof(result_type);
|
|
|
|
static constexpr size_t kCapacityT =
|
|
|
|
Randen::kCapacityBytes / sizeof(result_type);
|
|
|
|
|
2022-08-29 17:59:48 +00:00
|
|
|
// Returns the state array pointer, which is aligned to 16 bytes.
|
|
|
|
// The first kCapacityT are the `inner' sponge; the remainder are available.
|
|
|
|
result_type* state() {
|
|
|
|
return reinterpret_cast<result_type*>(
|
|
|
|
(reinterpret_cast<uintptr_t>(&raw_state_) & 0xf) ? (raw_state_ + 8)
|
|
|
|
: raw_state_);
|
|
|
|
}
|
|
|
|
const result_type* state() const {
|
|
|
|
return const_cast<randen_engine*>(this)->state();
|
|
|
|
}
|
|
|
|
|
|
|
|
// raw state array, manually aligned in state(). This overallocates
|
|
|
|
// by 8 bytes since C++ does not guarantee extended heap alignment.
|
|
|
|
alignas(8) char raw_state_[Randen::kStateBytes + 8];
|
|
|
|
size_t next_; // index within state()
|
2022-02-11 19:01:25 +00:00
|
|
|
Randen impl_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace random_internal
|
|
|
|
ABSL_NAMESPACE_END
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
#endif // ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_
|