dawn-cmake/src/type_determiner.cc

498 lines
15 KiB
C++
Raw Normal View History

2020-03-02 20:47:43 +00:00
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/type_determiner.h"
#include <memory>
#include "src/ast/array_accessor_expression.h"
#include "src/ast/as_expression.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_expression.h"
#include "src/ast/case_statement.h"
#include "src/ast/cast_expression.h"
#include "src/ast/continue_statement.h"
#include "src/ast/else_statement.h"
#include "src/ast/identifier_expression.h"
#include "src/ast/if_statement.h"
#include "src/ast/loop_statement.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/regardless_statement.h"
#include "src/ast/relational_expression.h"
#include "src/ast/return_statement.h"
#include "src/ast/scalar_constructor_expression.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type/array_type.h"
#include "src/ast/type/bool_type.h"
#include "src/ast/type/f32_type.h"
#include "src/ast/type/matrix_type.h"
#include "src/ast/type/struct_type.h"
#include "src/ast/type/vector_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/unary_derivative_expression.h"
#include "src/ast/unary_method_expression.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/unless_statement.h"
#include "src/ast/variable_decl_statement.h"
2020-03-02 20:47:43 +00:00
namespace tint {
TypeDeterminer::TypeDeterminer(Context* ctx) : ctx_(*ctx) {
// TODO(dsinclair): Temporary usage to avoid compiler warning
static_cast<void>(ctx_.type_mgr());
}
2020-03-02 20:47:43 +00:00
TypeDeterminer::~TypeDeterminer() = default;
bool TypeDeterminer::Determine(ast::Module* mod) {
for (const auto& var : mod->global_variables()) {
variable_stack_.set_global(var->name(), var.get());
}
for (const auto& func : mod->functions()) {
name_to_function_[func->name()] = func.get();
}
if (!DetermineFunctions(mod->functions())) {
return false;
}
return true;
}
bool TypeDeterminer::DetermineFunctions(const ast::FunctionList& funcs) {
for (const auto& func : funcs) {
if (!DetermineFunction(func.get())) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineFunction(ast::Function* func) {
variable_stack_.push_scope();
if (!DetermineResultType(func->body())) {
return false;
}
variable_stack_.pop_scope();
2020-03-02 20:47:43 +00:00
return true;
}
bool TypeDeterminer::DetermineResultType(const ast::StatementList& stmts) {
for (const auto& stmt : stmts) {
if (!DetermineResultType(stmt.get())) {
return false;
}
}
return true;
}
bool TypeDeterminer::DetermineResultType(ast::Statement* stmt) {
if (stmt->IsAssign()) {
auto a = stmt->AsAssign();
return DetermineResultType(a->lhs()) && DetermineResultType(a->rhs());
}
if (stmt->IsBreak()) {
auto b = stmt->AsBreak();
return DetermineResultType(b->conditional());
}
if (stmt->IsCase()) {
auto c = stmt->AsCase();
return DetermineResultType(c->body());
}
if (stmt->IsContinue()) {
auto c = stmt->AsContinue();
return DetermineResultType(c->conditional());
}
if (stmt->IsElse()) {
auto e = stmt->AsElse();
return DetermineResultType(e->condition()) &&
DetermineResultType(e->body());
}
if (stmt->IsFallthrough()) {
return true;
}
if (stmt->IsIf()) {
auto i = stmt->AsIf();
if (!DetermineResultType(i->condition()) ||
!DetermineResultType(i->body())) {
return false;
}
for (const auto& else_stmt : i->else_statements()) {
if (!DetermineResultType(else_stmt.get())) {
return false;
}
}
return true;
}
if (stmt->IsKill()) {
return true;
}
if (stmt->IsLoop()) {
auto l = stmt->AsLoop();
return DetermineResultType(l->body()) &&
DetermineResultType(l->continuing());
}
if (stmt->IsNop()) {
return true;
}
if (stmt->IsRegardless()) {
auto r = stmt->AsRegardless();
return DetermineResultType(r->condition()) &&
DetermineResultType(r->body());
}
if (stmt->IsReturn()) {
auto r = stmt->AsReturn();
return DetermineResultType(r->value());
}
if (stmt->IsSwitch()) {
auto s = stmt->AsSwitch();
if (!DetermineResultType(s->condition())) {
return false;
}
for (const auto& case_stmt : s->body()) {
if (!DetermineResultType(case_stmt.get())) {
return false;
}
}
return true;
}
if (stmt->IsUnless()) {
auto u = stmt->AsUnless();
return DetermineResultType(u->condition()) &&
DetermineResultType(u->body());
}
if (stmt->IsVariableDecl()) {
auto v = stmt->AsVariableDecl();
variable_stack_.set(v->variable()->name(), v->variable());
return DetermineResultType(v->variable()->constructor());
}
error_ = "unknown statement type for type determination";
return false;
}
bool TypeDeterminer::DetermineResultType(ast::Expression* expr) {
// This is blindly called above, so in some cases the expression won't exist.
if (!expr) {
return true;
}
if (expr->IsArrayAccessor()) {
return DetermineArrayAccessor(expr->AsArrayAccessor());
}
if (expr->IsAs()) {
return DetermineAs(expr->AsAs());
}
if (expr->IsCall()) {
return DetermineCall(expr->AsCall());
}
if (expr->IsCast()) {
return DetermineCast(expr->AsCast());
}
if (expr->IsConstructor()) {
return DetermineConstructor(expr->AsConstructor());
}
if (expr->IsIdentifier()) {
return DetermineIdentifier(expr->AsIdentifier());
}
if (expr->IsMemberAccessor()) {
return DetermineMemberAccessor(expr->AsMemberAccessor());
}
if (expr->IsRelational()) {
return DetermineRelational(expr->AsRelational());
}
if (expr->IsUnaryDerivative()) {
return DetermineUnaryDerivative(expr->AsUnaryDerivative());
}
if (expr->IsUnaryMethod()) {
return DetermineUnaryMethod(expr->AsUnaryMethod());
}
if (expr->IsUnaryOp()) {
return DetermineUnaryOp(expr->AsUnaryOp());
}
error_ = "unknown expression for type determination";
return false;
}
bool TypeDeterminer::DetermineArrayAccessor(
ast::ArrayAccessorExpression* expr) {
if (!DetermineResultType(expr->array())) {
return false;
}
auto parent_type = expr->array()->result_type();
if (parent_type->IsArray()) {
expr->set_result_type(parent_type->AsArray()->type());
} else if (parent_type->IsVector()) {
expr->set_result_type(parent_type->AsVector()->type());
} else if (parent_type->IsMatrix()) {
auto m = parent_type->AsMatrix();
expr->set_result_type(ctx_.type_mgr().Get(
std::make_unique<ast::type::VectorType>(m->type(), m->rows())));
} else {
error_ = "invalid parent type in array accessor";
return false;
}
return true;
}
bool TypeDeterminer::DetermineAs(ast::AsExpression* expr) {
expr->set_result_type(expr->type());
return true;
}
bool TypeDeterminer::DetermineCall(ast::CallExpression* expr) {
if (!DetermineResultType(expr->func())) {
return false;
}
expr->set_result_type(expr->func()->result_type());
return true;
}
bool TypeDeterminer::DetermineCast(ast::CastExpression* expr) {
expr->set_result_type(expr->type());
return true;
}
bool TypeDeterminer::DetermineConstructor(ast::ConstructorExpression* expr) {
if (expr->IsTypeConstructor()) {
expr->set_result_type(expr->AsTypeConstructor()->type());
} else {
expr->set_result_type(expr->AsScalarConstructor()->literal()->type());
}
return true;
}
bool TypeDeterminer::DetermineIdentifier(ast::IdentifierExpression* expr) {
if (expr->name().size() > 1) {
// TODO(dsinclair): Handle imports
error_ = "imports not handled in type determination";
return false;
}
auto name = expr->name()[0];
ast::Variable* var;
if (variable_stack_.get(name, &var)) {
expr->set_result_type(var->type());
return true;
}
auto iter = name_to_function_.find(name);
if (iter != name_to_function_.end()) {
expr->set_result_type(iter->second->return_type());
return true;
}
return true;
}
bool TypeDeterminer::DetermineMemberAccessor(
ast::MemberAccessorExpression* expr) {
if (!DetermineResultType(expr->structure())) {
return false;
}
auto data_type = expr->structure()->result_type();
if (data_type->IsStruct()) {
auto strct = data_type->AsStruct()->impl();
auto name = expr->member()->name()[0];
for (const auto& member : strct->members()) {
if (member->name() != name) {
continue;
}
expr->set_result_type(member->type());
return true;
}
error_ = "struct member not found";
return false;
}
if (data_type->IsVector()) {
auto vec = data_type->AsVector();
// The vector will have a number of components equal to the length of the
// swizzle. This assumes the validator will check that the swizzle
// is correct.
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>(
vec->type(), expr->member()->name()[0].size())));
return true;
}
error_ = "invalid type in member accessor";
return false;
}
bool TypeDeterminer::DetermineRelational(ast::RelationalExpression* expr) {
if (!DetermineResultType(expr->lhs()) || !DetermineResultType(expr->rhs())) {
return false;
}
// Result type matches first parameter type
if (expr->IsAnd() || expr->IsOr() || expr->IsXor() || expr->IsShiftLeft() ||
expr->IsShiftRight() || expr->IsShiftRightArith() || expr->IsAdd() ||
expr->IsSubtract() || expr->IsDivide() || expr->IsModulo()) {
expr->set_result_type(expr->lhs()->result_type());
return true;
}
// Result type is a scalar or vector of boolean type
if (expr->IsLogicalAnd() || expr->IsLogicalOr() || expr->IsEqual() ||
expr->IsNotEqual() || expr->IsLessThan() || expr->IsGreaterThan() ||
expr->IsLessThanEqual() || expr->IsGreaterThanEqual()) {
auto bool_type =
ctx_.type_mgr().Get(std::make_unique<ast::type::BoolType>());
auto param_type = expr->lhs()->result_type();
if (param_type->IsVector()) {
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>(
bool_type, param_type->AsVector()->size())));
} else {
expr->set_result_type(bool_type);
}
return true;
}
if (expr->IsMultiply()) {
auto lhs_type = expr->lhs()->result_type();
auto rhs_type = expr->rhs()->result_type();
// Note, the ordering here matters. The later checks depend on the prior
// checks having been done.
if (lhs_type->IsMatrix() && rhs_type->IsMatrix()) {
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::MatrixType>(
lhs_type->AsMatrix()->type(), lhs_type->AsMatrix()->rows(),
rhs_type->AsMatrix()->columns())));
} else if (lhs_type->IsMatrix() && rhs_type->IsVector()) {
auto mat = lhs_type->AsMatrix();
expr->set_result_type(ctx_.type_mgr().Get(
std::make_unique<ast::type::VectorType>(mat->type(), mat->rows())));
} else if (lhs_type->IsVector() && rhs_type->IsMatrix()) {
auto mat = rhs_type->AsMatrix();
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>(
mat->type(), mat->columns())));
} else if (lhs_type->IsMatrix()) {
// matrix * scalar
expr->set_result_type(lhs_type);
} else if (rhs_type->IsMatrix()) {
// scalar * matrix
expr->set_result_type(rhs_type);
} else if (lhs_type->IsVector() && rhs_type->IsVector()) {
expr->set_result_type(lhs_type);
} else if (lhs_type->IsVector()) {
// Vector * scalar
expr->set_result_type(lhs_type);
} else if (rhs_type->IsVector()) {
// Scalar * vector
expr->set_result_type(rhs_type);
} else {
// Scalar * Scalar
expr->set_result_type(lhs_type);
}
return true;
}
return false;
}
bool TypeDeterminer::DetermineUnaryDerivative(
ast::UnaryDerivativeExpression* expr) {
// The result type must be the same as the type of the parameter.
if (!DetermineResultType(expr->param())) {
return false;
}
expr->set_result_type(expr->param()->result_type());
return true;
}
bool TypeDeterminer::DetermineUnaryMethod(ast::UnaryMethodExpression* expr) {
for (const auto& param : expr->params()) {
if (!DetermineResultType(param.get())) {
return false;
}
}
switch (expr->op()) {
case ast::UnaryMethod::kAny:
case ast::UnaryMethod::kAll: {
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::BoolType>()));
break;
}
case ast::UnaryMethod::kIsNan:
case ast::UnaryMethod::kIsInf:
case ast::UnaryMethod::kIsFinite:
case ast::UnaryMethod::kIsNormal: {
if (expr->params().empty()) {
error_ = "incorrect number of parameters";
return false;
}
auto bool_type =
ctx_.type_mgr().Get(std::make_unique<ast::type::BoolType>());
auto param_type = expr->params()[0]->result_type();
if (param_type->IsVector()) {
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::VectorType>(
bool_type, param_type->AsVector()->size())));
} else {
expr->set_result_type(bool_type);
}
break;
}
case ast::UnaryMethod::kDot: {
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::F32Type>()));
break;
}
case ast::UnaryMethod::kOuterProduct: {
if (expr->params().size() != 2) {
error_ = "incorrect number of parameters for outer product";
return false;
}
auto param0_type = expr->params()[0]->result_type();
auto param1_type = expr->params()[1]->result_type();
if (!param0_type->IsVector() || !param1_type->IsVector()) {
error_ = "invalid parameter type for outer product";
return false;
}
expr->set_result_type(
ctx_.type_mgr().Get(std::make_unique<ast::type::MatrixType>(
ctx_.type_mgr().Get(std::make_unique<ast::type::F32Type>()),
param0_type->AsVector()->size(),
param1_type->AsVector()->size())));
break;
}
}
return true;
}
bool TypeDeterminer::DetermineUnaryOp(ast::UnaryOpExpression* expr) {
// Result type matches the parameter type.
if (!DetermineResultType(expr->expr())) {
return false;
}
expr->set_result_type(expr->expr()->result_type());
return true;
}
2020-03-02 20:47:43 +00:00
} // namespace tint