dawn-cmake/src/intrinsics.def

508 lines
32 KiB
Modula-2
Raw Normal View History

// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// WGSL intrinsic definition file //
// //
// This file is used to generate parts of the Tint IntrinsicTable, various //
// enum definition files, as well as test .wgsl files. //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Enumerators //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#storage-class
enum storage_class {
function
private
workgroup
uniform
storage
handle
}
// https://gpuweb.github.io/gpuweb/wgsl/#memory-access-mode
enum access_control {
read
write
read_write
}
// https://gpuweb.github.io/gpuweb/wgsl/#texel-formats
enum texel_format {
rgba8unorm
rgba8snorm
rgba8uint
rgba8sint
rgba16uint
rgba16sint
rgba16float
r32uint
r32sint
r32float
rg32uint
rg32sint
rg32float
rgba32uint
rgba32sint
rgba32float
}
////////////////////////////////////////////////////////////////////////////////
// WGSL primitive types //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section
type bool
type f32
type i32
type u32
type vec2<T>
type vec3<T>
type vec4<T>
[[display("vec{N}<{T}>")]] type vec<N: num, T>
[[display("mat{N}x{M}<{T}>")]] type mat<N: num, M: num, T>
[[display("ptr<{T}>")]] type ptr<S: storage_class, T> // TODO(crbug.com/tint/846): Add access control
type array<T>
type sampler
type sampler_comparison
type texture_1d<T>
type texture_2d<T>
type texture_2d_array<T>
type texture_3d<T>
type texture_cube<T>
type texture_cube_array<T>
type texture_multisampled_2d<T>
type texture_depth_2d
type texture_depth_2d_array
type texture_depth_cube
type texture_depth_cube_array
type texture_storage_1d<F: texel_format, A: access_control>
type texture_storage_2d<F: texel_format, A: access_control>
type texture_storage_2d_array<F: texel_format, A: access_control>
type texture_storage_3d<F: texel_format, A: access_control>
type texture_external
////////////////////////////////////////////////////////////////////////////////
// Type matchers //
// //
// A type matcher that can match one or more types. //
////////////////////////////////////////////////////////////////////////////////
match fiu32: f32 | i32 | u32
match iu32: i32 | u32
match scalar: f32 | i32 | u32 | bool
////////////////////////////////////////////////////////////////////////////////
// Enum matchers //
// //
// A number matcher that can match one or more enumerator values. //
// All enumerator values listed in the match declaration need to be from the //
// same enum. //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#texel-formats
match f32_texel_format:
rgba8unorm | rgba8snorm | rgba16float | r32float | rg32float | rgba32float
match i32_texel_format:
rgba8sint | rgba16sint | r32sint | rg32sint | rgba32sint
match u32_texel_format:
rgba8uint | rgba16uint | r32uint | rg32uint | rgba32uint
match read_or_write: read | write
////////////////////////////////////////////////////////////////////////////////
// Intrinsic Functions //
// //
// The intrinsic function declarations below declare all the built-in //
// functions supported by the WGSL language. This intrinsic definition //
// language supports simple static-type function declarations, as well as //
// single overload declarations that can match a number of different //
// argument types via the use of 'open-types' and 'open-numbers'. //
// //
// * Basic example: //
// //
// fn isInf(f32) -> bool //
// //
// Declares an overload of the function 'isInf' that accepts a single //
// parameter of type 'f32' and returns a 'bool'. //
// //
// An 'open-type' can be thought as a template type that is determined by the //
// arguments to the intrinsic. //
// //
// * Open-type example without constraint: //
// //
// fn arrayLength<T>(array<T>) -> u32 //
// //
// Declares an overload of the function 'arrayLength' that accepts a //
// single argument of an array type with no constraints on the array //
// element type. This overload will always return a value of the same type //
// as its single argument. //
// //
// * Open-type example with constraint: //
// //
// fn abs<T: fiu32>(T) -> T //
// //
// Declares an overload of the function 'abs' that accepts a single //
// argument of type 'f32', 'i32' or 'u32', which returns a value of the //
// same argument type. //
// //
// Similarly an 'open-number' can be thought as a template number or //
// enumerator that is determined by the arguments to the intrinsic. //
// //
// * Open-number example: //
// //
// fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32> //
// //
// Declares an overload of the function 'dpdx' that accepts a single //
// argument of a variable-sized vector of 'f32', which returns a value of //
// the same argument type. //
// //
// //
// Matching algorithm: //
// ------------------- //
// //
// Prior to matching an overload, all open-types are undefined. //
// //
// Open-types become closed-types (pinned to a fixed type) on the first //
// attempt to match an argument to that open-type. //
// Once open-types are closed, they remain that type for the rest of the //
// overload evaluation. //
// //
// To better understand, let's consider the following hypothetical overload //
// declaration: //
// //
// fn foo<T: scalar>(T, T); //
// //
// T - is the open-type //
// scalar - is a matcher for the types 'f32', 'i32', 'u32' or 'bool' //
// (declared above) //
// <T: scalar> - declares the open-type T, with the constraint that T must //
// match one of 'f32', 'i32', 'u32' or 'bool'. //
// //
// The process for resolving this overload is as follows: //
// //
// (1) The overload resolver begins by attempting to match the argument //
// types from left to right. //
// The first parameter type is compared against the argument type. //
// As the open-type T has not been closed yet, T is closed as the type //
// of the first argument. //
// There's no verification that the T type is a scalar at this stage. //
// (2) The second parameter is then compared against the second argument. //
// As the open-type T is now closed, the argument type is compared //
// against the value of the closed-type of T. If the types match, then //
// the overload is still a candidate for matching, otherwise the //
// overload is no longer considered. //
// (3) If all the parameters matched, constraints on the open-types need //
// to be checked next. If the closed-type does not match the 'match' //
// constraint, then the overload is no longer considered. //
// //
// The algorithm for matching open-numbers is almost identical to open-types, //
// except of course, they match against integer numbers or enumerators //
// instead of types. //
// //
// //
// * More examples: //
// //
// fn F() //
// - Function called F. //
// No open types or numbers, no parameters, no return value //
// //
// fn F() -> RETURN_TYPE //
// - Function with RETURN_TYPE as the return type value //
// //
// fn F(f32, i32) //
// - Two fixed-type, anonymous parameters //
// //
// fn F(USAGE : f32) //
// - Single parameter with name USAGE. //
// Note: Parameter names are used by Tint to infer parameter order for //
// some intrinsic functions //
// //
// fn F<T>(T) //
// - Single parameter of unconstrained open-type T (any type) //
// //
// fn F<T: scalar>(T) //
// - Single parameter of constrained open-type T (must be a scalar) //
// //
// fn F<T: fiu32>(T) -> T //
// - Single parameter of constrained open-type T (must be a one of fiu32) //
// Return type matches parameter type //
// //
// fn F<T, N: num>(vec<N, T>) //
// - Single parameter of vector type with open-number size N and element //
// open-type T //
// //
// fn F<A: access_control>(texture_storage_1d<f32_texel_format, A>) //
// - Single parameter of texture_storage_1d type with open-number //
// access-control C, and of a texel format that is listed in //
// f32_texel_format //
// //
////////////////////////////////////////////////////////////////////////////////
// https://gpuweb.github.io/gpuweb/wgsl/#builtin-functions
fn abs<T: fiu32>(T) -> T
fn abs<N: num, T: fiu32>(vec<N, T>) -> vec<N, T>
fn acos(f32) -> f32
fn acos<N: num>(vec<N, f32>) -> vec<N, f32>
fn all<N: num>(vec<N, bool>) -> bool
fn any<N: num>(vec<N, bool>) -> bool
fn arrayLength<T>(array<T>) -> u32
fn asin(f32) -> f32
fn asin<N: num>(vec<N, f32>) -> vec<N, f32>
fn atan(f32) -> f32
fn atan<N: num>(vec<N, f32>) -> vec<N, f32>
fn atan2(f32, f32) -> f32
fn atan2<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn ceil(f32) -> f32
fn ceil<N: num>(vec<N, f32>) -> vec<N, f32>
fn clamp<T: fiu32>(T, T, T) -> T
fn clamp<N: num, T: fiu32>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T>
fn cos(f32) -> f32
fn cos<N: num>(vec<N, f32>) -> vec<N, f32>
fn cosh(f32) -> f32
fn cosh<N: num>(vec<N, f32>) -> vec<N, f32>
fn countOneBits<T: iu32>(T) -> T
fn countOneBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn cross(vec3<f32>, vec3<f32>) -> vec3<f32>
fn determinant<N: num>(mat<N, N, f32>) -> f32
fn distance(f32, f32) -> f32
fn distance<N: num>(vec<N, f32>, vec<N, f32>) -> f32
fn dot<N: num>(vec<N, f32>, vec<N, f32>) -> f32
fn dpdx(f32) -> f32
fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32>
fn dpdxCoarse(f32) -> f32
fn dpdxCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
fn dpdxFine(f32) -> f32
fn dpdxFine<N: num>(vec<N, f32>) -> vec<N, f32>
fn dpdy(f32) -> f32
fn dpdy<N: num>(vec<N, f32>) -> vec<N, f32>
fn dpdyCoarse(f32) -> f32
fn dpdyCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
fn dpdyFine(f32) -> f32
fn dpdyFine<N: num>(vec<N, f32>) -> vec<N, f32>
fn exp(f32) -> f32
fn exp<N: num>(vec<N, f32>) -> vec<N, f32>
fn exp2(f32) -> f32
fn exp2<N: num>(vec<N, f32>) -> vec<N, f32>
fn faceForward(f32, f32, f32) -> f32
fn faceForward<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn floor(f32) -> f32
fn floor<N: num>(vec<N, f32>) -> vec<N, f32>
fn fma(f32, f32, f32) -> f32
fn fma<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn fract(f32) -> f32
fn fract<N: num>(vec<N, f32>) -> vec<N, f32>
fn frexp<T: iu32, S: storage_class>(f32, ptr<S, T>) -> f32
fn frexp<N: num, T: iu32, S: storage_class>(vec<N, f32>, ptr<S, vec<N, T>>) -> vec<N, f32>
fn fwidth(f32) -> f32
fn fwidth<N: num>(vec<N, f32>) -> vec<N, f32>
fn fwidthCoarse(f32) -> f32
fn fwidthCoarse<N: num>(vec<N, f32>) -> vec<N, f32>
fn fwidthFine(f32) -> f32
fn fwidthFine<N: num>(vec<N, f32>) -> vec<N, f32>
fn inverseSqrt(f32) -> f32
fn inverseSqrt<N: num>(vec<N, f32>) -> vec<N, f32>
fn isFinite(f32) -> bool
fn isFinite<N: num>(vec<N, f32>) -> vec<N, bool>
fn isInf(f32) -> bool
fn isInf<N: num>(vec<N, f32>) -> vec<N, bool>
fn isNan(f32) -> bool
fn isNan<N: num>(vec<N, f32>) -> vec<N, bool>
fn isNormal(f32) -> bool
fn isNormal<N: num>(vec<N, f32>) -> vec<N, bool>
fn ldexp<T: iu32>(f32, T) -> f32
fn ldexp<N: num, T: iu32>(vec<N, f32>, vec<N, T>) -> vec<N, f32>
fn length(f32) -> f32
fn length<N: num>(vec<N, f32>) -> f32
fn log(f32) -> f32
fn log<N: num>(vec<N, f32>) -> vec<N, f32>
fn log2(f32) -> f32
fn log2<N: num>(vec<N, f32>) -> vec<N, f32>
fn max<T: fiu32>(T, T) -> T
fn max<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T>
fn min<T: fiu32>(T, T) -> T
fn min<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T>
fn mix(f32, f32, f32) -> f32
fn mix<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn modf<S: storage_class>(f32, ptr<S, f32>) -> f32
fn modf<N: num, S: storage_class>(vec<N, f32>, ptr<S, vec<N, f32>>) -> vec<N, f32>
fn normalize<N: num>(vec<N, f32>) -> vec<N, f32>
fn pack2x16float(vec2<f32>) -> u32
fn pack2x16snorm(vec2<f32>) -> u32
fn pack2x16unorm(vec2<f32>) -> u32
fn pack4x8snorm(vec4<f32>) -> u32
fn pack4x8unorm(vec4<f32>) -> u32
fn pow(f32, f32) -> f32
fn pow<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn reflect(f32, f32) -> f32
fn reflect<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn reverseBits<T: iu32>(T) -> T
fn reverseBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T>
fn round(f32) -> f32
fn round<N: num>(vec<N, f32>) -> vec<N, f32>
fn select<T: scalar>(T, T, bool) -> T
fn select<N: num, T: scalar>(vec<N, T>, vec<N, T>, vec<N, bool>) -> vec<N, T>
fn sign(f32) -> f32
fn sign<N: num>(vec<N, f32>) -> vec<N, f32>
fn sin(f32) -> f32
fn sin<N: num>(vec<N, f32>) -> vec<N, f32>
fn sinh(f32) -> f32
fn sinh<N: num>(vec<N, f32>) -> vec<N, f32>
fn smoothStep(f32, f32, f32) -> f32
fn smoothStep<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn sqrt(f32) -> f32
fn sqrt<N: num>(vec<N, f32>) -> vec<N, f32>
fn step(f32, f32) -> f32
fn step<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32>
fn storageBarrier()
fn tan(f32) -> f32
fn tan<N: num>(vec<N, f32>) -> vec<N, f32>
fn tanh(f32) -> f32
fn tanh<N: num>(vec<N, f32>) -> vec<N, f32>
fn trunc(f32) -> f32
fn trunc<N: num>(vec<N, f32>) -> vec<N, f32>
fn unpack2x16float(u32) -> vec2<f32>
fn unpack2x16snorm(u32) -> vec2<f32>
fn unpack2x16unorm(u32) -> vec2<f32>
fn unpack4x8snorm(u32) -> vec4<f32>
fn unpack4x8unorm(u32) -> vec4<f32>
fn workgroupBarrier()
fn textureDimensions<T: fiu32>(texture: texture_1d<T>) -> i32
fn textureDimensions<T: fiu32>(texture: texture_2d<T>) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_2d<T>, level: i32) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>, level: i32) -> vec2<i32>
fn textureDimensions<T: fiu32>(texture: texture_3d<T>) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_3d<T>, level: i32) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube<T>) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube<T>, level: i32) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>, level: i32) -> vec3<i32>
fn textureDimensions<T: fiu32>(texture: texture_multisampled_2d<T>) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d, level: i32) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d_array) -> vec2<i32>
fn textureDimensions(texture: texture_depth_2d_array, level: i32) -> vec2<i32>
fn textureDimensions(texture: texture_depth_cube) -> vec3<i32>
fn textureDimensions(texture: texture_depth_cube, level: i32) -> vec3<i32>
fn textureDimensions(texture: texture_depth_cube_array) -> vec3<i32>
fn textureDimensions(texture: texture_depth_cube_array, level: i32) -> vec3<i32>
fn textureDimensions<F: texel_format, A: read_or_write>(texture: texture_storage_1d<F, A>) -> i32
fn textureDimensions<F: texel_format, A: read_or_write>(texture: texture_storage_2d<F, A>) -> vec2<i32>
fn textureDimensions<F: texel_format, A: read_or_write>(texture: texture_storage_2d_array<F, A>) -> vec2<i32>
fn textureDimensions<F: texel_format, A: read_or_write>(texture: texture_storage_3d<F, A>) -> vec3<i32>
fn textureDimensions(texture: texture_external) -> vec2<i32>
fn textureNumLayers<T: fiu32>(texture: texture_2d_array<T>) -> i32
fn textureNumLayers<T: fiu32>(texture: texture_cube_array<T>) -> i32
fn textureNumLayers(texture: texture_depth_2d_array) -> i32
fn textureNumLayers(texture: texture_depth_cube_array) -> i32
fn textureNumLayers<F: texel_format, A: read_or_write>(texture: texture_storage_2d_array<F, A>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_2d<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_2d_array<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_3d<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_cube<T>) -> i32
fn textureNumLevels<T: fiu32>(texture: texture_cube_array<T>) -> i32
fn textureNumLevels(texture: texture_depth_2d) -> i32
fn textureNumLevels(texture: texture_depth_2d_array) -> i32
fn textureNumLevels(texture: texture_depth_cube) -> i32
fn textureNumLevels(texture: texture_depth_cube_array) -> i32
fn textureNumSamples<T: fiu32>(texture: texture_multisampled_2d<T>) -> i32
fn textureSample(texture: texture_1d<f32>, sampler: sampler, coords: f32) -> vec4<f32>
fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> vec4<f32>
fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<f32>
fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> vec4<f32>
fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, offset: vec3<i32>) -> vec4<f32>
fn textureSample(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32>
fn textureSample(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<f32>
fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> f32
fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, offset: vec2<i32>) -> f32
fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32) -> f32
fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, offset: vec2<i32>) -> f32
fn textureSample(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> f32
fn textureSample(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: i32) -> f32
fn textureSample(texture: texture_external, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32) -> vec4<f32>
fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32, offset: vec2<i32>) -> vec4<f32>
fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32) -> vec4<f32>
fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32, offset: vec2<i32>) -> vec4<f32>
fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32>
fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32, offset: vec3<i32>) -> vec4<f32>
fn textureSampleBias(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32>
fn textureSampleBias(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, bias: f32) -> vec4<f32>
fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32
fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, offset: vec2<i32>) -> f32
fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> f32
fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, offset: vec2<i32>) -> f32
fn textureSampleCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32
fn textureSampleCompare(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> f32
fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>, offset: vec2<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>, offset: vec2<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>, offset: vec3<i32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleGrad(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32, offset: vec2<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32, offset: vec2<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32, offset: vec3<i32>) -> vec4<f32>
fn textureSampleLevel(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, level: f32) -> vec4<f32>
fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32) -> f32
fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32, offset: vec2<i32>) -> f32
fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32) -> f32
fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32, offset: vec2<i32>) -> f32
fn textureSampleLevel(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>, level: i32) -> f32
fn textureSampleLevel(texture: texture_depth_cube_array,sampler: sampler, coords: vec3<f32>, array_index: i32, level: i32) -> f32
fn textureSampleLevel(texture: texture_external, sampler: sampler, coords: vec2<f32>) -> vec4<f32>
fn textureStore(texture: texture_storage_1d<f32_texel_format, write>, coords: i32, value: vec4<f32>)
fn textureStore(texture: texture_storage_2d<f32_texel_format, write>, coords: vec2<i32>, value: vec4<f32>)
fn textureStore(texture: texture_storage_2d_array<f32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<f32>)
fn textureStore(texture: texture_storage_3d<f32_texel_format, write>, coords: vec3<i32>, value: vec4<f32>)
fn textureStore(texture: texture_storage_1d<i32_texel_format, write>, coords: i32, value: vec4<i32>)
fn textureStore(texture: texture_storage_2d<i32_texel_format, write>, coords: vec2<i32>, value: vec4<i32>)
fn textureStore(texture: texture_storage_2d_array<i32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<i32>)
fn textureStore(texture: texture_storage_3d<i32_texel_format, write>, coords: vec3<i32>, value: vec4<i32>)
fn textureStore(texture: texture_storage_1d<u32_texel_format, write>, coords: i32, value: vec4<u32>)
fn textureStore(texture: texture_storage_2d<u32_texel_format, write>, coords: vec2<i32>, value: vec4<u32>)
fn textureStore(texture: texture_storage_2d_array<u32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<u32>)
fn textureStore(texture: texture_storage_3d<u32_texel_format, write>, coords: vec3<i32>, value: vec4<u32>)
fn textureLoad<T: fiu32>(texture: texture_1d<T>, coords: i32, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_2d<T>, coords: vec2<i32>, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_2d_array<T>, coords: vec2<i32>, array_index: i32, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_3d<T>, coords: vec3<i32>, level: i32) -> vec4<T>
fn textureLoad<T: fiu32>(texture: texture_multisampled_2d<T>, coords: vec2<i32>, sample_index: i32) -> vec4<T>
fn textureLoad(texture: texture_depth_2d, coords: vec2<i32>, level: i32) -> f32
fn textureLoad(texture: texture_depth_2d_array, coords: vec2<i32>, array_index: i32, level: i32) -> f32
fn textureLoad(texture: texture_storage_1d<f32_texel_format, read>, coords: i32) -> vec4<f32>
fn textureLoad(texture: texture_storage_2d<f32_texel_format, read>, coords: vec2<i32>) -> vec4<f32>
fn textureLoad(texture: texture_storage_2d_array<f32_texel_format, read>, coords: vec2<i32>, array_index: i32) -> vec4<f32>
fn textureLoad(texture: texture_storage_3d<f32_texel_format, read>, coords: vec3<i32>) -> vec4<f32>
fn textureLoad(texture: texture_storage_1d<i32_texel_format, read>, coords: i32) -> vec4<i32>
fn textureLoad(texture: texture_storage_2d<i32_texel_format, read>, coords: vec2<i32>) -> vec4<i32>
fn textureLoad(texture: texture_storage_2d_array<i32_texel_format, read>, coords: vec2<i32>, array_index: i32) -> vec4<i32>
fn textureLoad(texture: texture_storage_3d<i32_texel_format, read>, coords: vec3<i32>) -> vec4<i32>
fn textureLoad(texture: texture_storage_1d<u32_texel_format, read>, coords: i32) -> vec4<u32>
fn textureLoad(texture: texture_storage_2d<u32_texel_format, read>, coords: vec2<i32>) -> vec4<u32>
fn textureLoad(texture: texture_storage_2d_array<u32_texel_format, read>, coords: vec2<i32>, array_index: i32) -> vec4<u32>
fn textureLoad(texture: texture_storage_3d<u32_texel_format, read>, coords: vec3<i32>) -> vec4<u32>
fn textureLoad(texture: texture_external, coords: vec2<i32>) -> vec4<f32>