252 lines
8.1 KiB
C++
252 lines
8.1 KiB
C++
|
// Copyright 2017 The Abseil Authors.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include "absl/random/discrete_distribution.h"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <cstddef>
|
||
|
#include <cstdint>
|
||
|
#include <iterator>
|
||
|
#include <numeric>
|
||
|
#include <random>
|
||
|
#include <sstream>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "gmock/gmock.h"
|
||
|
#include "gtest/gtest.h"
|
||
|
#include "absl/base/internal/raw_logging.h"
|
||
|
#include "absl/random/internal/chi_square.h"
|
||
|
#include "absl/random/internal/distribution_test_util.h"
|
||
|
#include "absl/random/internal/pcg_engine.h"
|
||
|
#include "absl/random/internal/sequence_urbg.h"
|
||
|
#include "absl/random/random.h"
|
||
|
#include "absl/strings/str_cat.h"
|
||
|
#include "absl/strings/strip.h"
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
template <typename IntType>
|
||
|
class DiscreteDistributionTypeTest : public ::testing::Test {};
|
||
|
|
||
|
using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
|
||
|
uint32_t, int64_t, uint64_t>;
|
||
|
TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes);
|
||
|
|
||
|
TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) {
|
||
|
using param_type =
|
||
|
typename absl::discrete_distribution<TypeParam>::param_type;
|
||
|
|
||
|
absl::discrete_distribution<TypeParam> empty;
|
||
|
EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0));
|
||
|
|
||
|
absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0});
|
||
|
|
||
|
// Validate that the probabilities sum to 1.0. We picked values which
|
||
|
// can be represented exactly to avoid floating-point roundoff error.
|
||
|
double s = 0;
|
||
|
for (const auto& x : before.probabilities()) {
|
||
|
s += x;
|
||
|
}
|
||
|
EXPECT_EQ(s, 1.0);
|
||
|
EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25));
|
||
|
|
||
|
// Validate the same data via an initializer list.
|
||
|
{
|
||
|
std::vector<double> data({1.0, 2.0, 1.0});
|
||
|
|
||
|
absl::discrete_distribution<TypeParam> via_param{
|
||
|
param_type(std::begin(data), std::end(data))};
|
||
|
|
||
|
EXPECT_EQ(via_param, before);
|
||
|
}
|
||
|
|
||
|
std::stringstream ss;
|
||
|
ss << before;
|
||
|
absl::discrete_distribution<TypeParam> after;
|
||
|
|
||
|
EXPECT_NE(before, after);
|
||
|
|
||
|
ss >> after;
|
||
|
|
||
|
EXPECT_EQ(before, after);
|
||
|
}
|
||
|
|
||
|
TYPED_TEST(DiscreteDistributionTypeTest, Constructor) {
|
||
|
auto fn = [](double x) { return x; };
|
||
|
{
|
||
|
absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn);
|
||
|
EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0));
|
||
|
}
|
||
|
|
||
|
{
|
||
|
absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn);
|
||
|
// => fn(1.0 + 0 * 4 + 2) => 3
|
||
|
// => fn(1.0 + 1 * 4 + 2) => 7
|
||
|
EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(DiscreteDistributionTest, InitDiscreteDistribution) {
|
||
|
using testing::_;
|
||
|
using testing::Pair;
|
||
|
|
||
|
{
|
||
|
std::vector<double> p({1.0, 2.0, 3.0});
|
||
|
std::vector<std::pair<double, size_t>> q =
|
||
|
absl::random_internal::InitDiscreteDistribution(&p);
|
||
|
|
||
|
EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0));
|
||
|
|
||
|
// Each bucket is p=1/3, so bucket 0 will send half it's traffic
|
||
|
// to bucket 2, while the rest will retain all of their traffic.
|
||
|
EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2), //
|
||
|
Pair(1.0, _), //
|
||
|
Pair(1.0, _)));
|
||
|
}
|
||
|
|
||
|
{
|
||
|
std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0});
|
||
|
|
||
|
std::vector<std::pair<double, size_t>> q =
|
||
|
absl::random_internal::InitDiscreteDistribution(&p);
|
||
|
|
||
|
EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0,
|
||
|
2 / 13.0));
|
||
|
|
||
|
// A more complex bucketing solution: Each bucket has p=0.2
|
||
|
// So buckets 0, 1, 4 will send their alternate traffic elsewhere, which
|
||
|
// happens to be bucket 3.
|
||
|
// However, summing up that alternate traffic gives bucket 3 too much
|
||
|
// traffic, so it will send some traffic to bucket 2.
|
||
|
constexpr double b0 = 1.0 / 13.0 / 0.2;
|
||
|
constexpr double b1 = 2.0 / 13.0 / 0.2;
|
||
|
constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
|
||
|
|
||
|
EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3), //
|
||
|
Pair(b1, 3), //
|
||
|
Pair(1.0, _), //
|
||
|
Pair(b3, 2), //
|
||
|
Pair(b1, 3)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(DiscreteDistributionTest, ChiSquaredTest50) {
|
||
|
using absl::random_internal::kChiSquared;
|
||
|
|
||
|
constexpr size_t kTrials = 10000;
|
||
|
constexpr int kBuckets = 50; // inclusive, so actally +1
|
||
|
|
||
|
// 1-in-100000 threshold, but remember, there are about 8 tests
|
||
|
// in this file. And the test could fail for other reasons.
|
||
|
// Empirically validated with --runs_per_test=10000.
|
||
|
const int kThreshold =
|
||
|
absl::random_internal::ChiSquareValue(kBuckets, 0.99999);
|
||
|
|
||
|
std::vector<double> weights(kBuckets, 0);
|
||
|
std::iota(std::begin(weights), std::end(weights), 1);
|
||
|
absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights));
|
||
|
|
||
|
// We use a fixed bit generator for distribution accuracy tests. This allows
|
||
|
// these tests to be deterministic, while still testing the qualify of the
|
||
|
// implementation.
|
||
|
absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
|
||
|
|
||
|
std::vector<int32_t> counts(kBuckets, 0);
|
||
|
for (size_t i = 0; i < kTrials; i++) {
|
||
|
auto x = dist(rng);
|
||
|
counts[x]++;
|
||
|
}
|
||
|
|
||
|
// Scale weights.
|
||
|
double sum = 0;
|
||
|
for (double x : weights) {
|
||
|
sum += x;
|
||
|
}
|
||
|
for (double& x : weights) {
|
||
|
x = kTrials * (x / sum);
|
||
|
}
|
||
|
|
||
|
double chi_square =
|
||
|
absl::random_internal::ChiSquare(std::begin(counts), std::end(counts),
|
||
|
std::begin(weights), std::end(weights));
|
||
|
|
||
|
if (chi_square > kThreshold) {
|
||
|
double p_value =
|
||
|
absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
|
||
|
|
||
|
// Chi-squared test failed. Output does not appear to be uniform.
|
||
|
std::string msg;
|
||
|
for (size_t i = 0; i < counts.size(); i++) {
|
||
|
absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n");
|
||
|
}
|
||
|
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
|
||
|
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
|
||
|
kThreshold);
|
||
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str());
|
||
|
FAIL() << msg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST(DiscreteDistributionTest, StabilityTest) {
|
||
|
// absl::discrete_distribution stabilitiy relies on
|
||
|
// absl::uniform_int_distribution and absl::bernoulli_distribution.
|
||
|
absl::random_internal::sequence_urbg urbg(
|
||
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
|
||
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
|
||
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
|
||
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
|
||
|
|
||
|
std::vector<int> output(6);
|
||
|
|
||
|
{
|
||
|
absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
|
||
|
EXPECT_EQ(0, dist.min());
|
||
|
EXPECT_EQ(4, dist.max());
|
||
|
for (auto& v : output) {
|
||
|
v = dist(urbg);
|
||
|
}
|
||
|
EXPECT_EQ(12, urbg.invocations());
|
||
|
}
|
||
|
|
||
|
// With 12 calls to urbg, each call into discrete_distribution consumes
|
||
|
// precisely 2 values: one for the uniform call, and a second for the
|
||
|
// bernoulli.
|
||
|
//
|
||
|
// Given the alt mapping: 0=>3, 1=>3, 2=>2, 3=>2, 4=>3, we can
|
||
|
//
|
||
|
// uniform: 443210143131
|
||
|
// bernoulli: b0 000011100101
|
||
|
// bernoulli: b1 001111101101
|
||
|
// bernoulli: b2 111111111111
|
||
|
// bernoulli: b3 001111101111
|
||
|
// bernoulli: b4 001111101101
|
||
|
// ...
|
||
|
EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3));
|
||
|
|
||
|
{
|
||
|
urbg.reset();
|
||
|
absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
|
||
|
EXPECT_EQ(0, dist.min());
|
||
|
EXPECT_EQ(4, dist.max());
|
||
|
for (auto& v : output) {
|
||
|
v = dist(urbg);
|
||
|
}
|
||
|
EXPECT_EQ(12, urbg.invocations());
|
||
|
}
|
||
|
EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4));
|
||
|
}
|
||
|
|
||
|
} // namespace
|