dawn-cmake/src/resolver/resolver.h

384 lines
15 KiB
C
Raw Normal View History

2020-03-02 20:47:43 +00:00
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_RESOLVER_RESOLVER_H_
#define SRC_RESOLVER_RESOLVER_H_
2020-03-02 20:47:43 +00:00
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
#include <memory>
2020-03-02 20:47:43 +00:00
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
2020-03-02 20:47:43 +00:00
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
#include "src/intrinsic_table.h"
#include "src/program_builder.h"
#include "src/scope_stack.h"
#include "src/sem/struct.h"
#include "src/utils/unique_vector.h"
2020-03-02 20:47:43 +00:00
namespace tint {
// Forward declarations
namespace ast {
class ArrayAccessorExpression;
class BinaryExpression;
class BitcastExpression;
class CallExpression;
class CaseStatement;
class ConstructorExpression;
class Function;
class IdentifierExpression;
class MemberAccessorExpression;
class ReturnStatement;
class SwitchStatement;
class UnaryOpExpression;
class Variable;
} // namespace ast
namespace sem {
class Array;
class Statement;
} // namespace sem
namespace sem {
class StructType;
} // namespace sem
2020-03-02 20:47:43 +00:00
namespace resolver {
/// Resolves types for all items in the given tint program
class Resolver {
2020-03-02 20:47:43 +00:00
public:
/// Constructor
/// @param builder the program builder
explicit Resolver(ProgramBuilder* builder);
/// Destructor
~Resolver();
2020-03-02 20:47:43 +00:00
/// @returns error messages from the resolver
std::string error() const { return diagnostics_.str(); }
2020-03-02 20:47:43 +00:00
/// @returns true if the resolver was successful
bool Resolve();
/// @param type the given type
/// @returns true if the given type is storable
static bool IsStorable(const sem::Type* type);
/// @param type the given type
/// @returns true if the given type is host-shareable
static bool IsHostShareable(const sem::Type* type);
/// @param lhs the assignment store type (non-pointer)
/// @param rhs the assignment source type (non-pointer or pointer with
/// auto-deref)
/// @returns true an expression of type `rhs` can be assigned to a variable,
/// structure member or array element of type `lhs`
static bool IsValidAssignment(const sem::Type* lhs, const sem::Type* rhs);
/// @param type the input type
/// @returns the canonical type for `type`; that is, a type with all aliases
/// removed. For example, `Canonical(alias<alias<vec3<alias<f32>>>>)` is
/// `vec3<f32>`.
const sem::Type* Canonical(const sem::Type* type);
2020-03-02 20:47:43 +00:00
private:
/// Structure holding semantic information about a variable.
/// Used to build the sem::Variable nodes at the end of resolving.
struct VariableInfo {
VariableInfo(const ast::Variable* decl,
const sem::Type* type,
const std::string& type_name);
~VariableInfo();
ast::Variable const* const declaration;
sem::Type const* type;
std::string const type_name;
ast::StorageClass storage_class;
std::vector<ast::IdentifierExpression*> users;
};
/// Structure holding semantic information about a function.
/// Used to build the sem::Function nodes at the end of resolving.
struct FunctionInfo {
explicit FunctionInfo(ast::Function* decl);
~FunctionInfo();
ast::Function* const declaration;
std::vector<VariableInfo*> parameters;
UniqueVector<VariableInfo*> referenced_module_vars;
UniqueVector<VariableInfo*> local_referenced_module_vars;
std::vector<const ast::ReturnStatement*> return_statements;
sem::Type const* return_type = nullptr;
std::string return_type_name;
// List of transitive calls this function makes
UniqueVector<FunctionInfo*> transitive_calls;
};
/// Structure holding semantic information about an expression.
/// Used to build the sem::Expression nodes at the end of resolving.
struct ExpressionInfo {
sem::Type const* type;
std::string const type_name; // Declared type name
sem::Statement* statement;
};
/// Structure holding semantic information about a call expression to an
/// ast::Function.
/// Used to build the sem::Call nodes at the end of resolving.
struct FunctionCallInfo {
FunctionInfo* function;
sem::Statement* statement;
};
/// Structure holding semantic information about a struct.
/// Used to build the sem::Struct nodes at the end of resolving.
struct StructInfo {
StructInfo();
~StructInfo();
std::vector<const sem::StructMember*> members;
uint32_t align = 0;
uint32_t size = 0;
uint32_t size_no_padding = 0;
std::unordered_set<ast::StorageClass> storage_class_usage;
std::unordered_set<sem::PipelineStageUsage> pipeline_stage_uses;
};
/// Structure holding semantic information about a block (i.e. scope), such as
/// parent block and variables declared in the block.
/// Used to validate variable scoping rules.
struct BlockInfo {
enum class Type { kGeneric, kLoop, kLoopContinuing, kSwitchCase };
BlockInfo(const ast::BlockStatement* block, Type type, BlockInfo* parent);
~BlockInfo();
template <typename Pred>
BlockInfo* FindFirstParent(Pred&& pred) {
BlockInfo* curr = this;
while (curr && !pred(curr)) {
curr = curr->parent;
}
return curr;
}
BlockInfo* FindFirstParent(BlockInfo::Type ty) {
return FindFirstParent(
[ty](auto* block_info) { return block_info->type == ty; });
}
ast::BlockStatement const* const block;
Type const type;
BlockInfo* const parent;
std::vector<const ast::Variable*> decls;
// first_continue is set to the index of the first variable in decls
// declared after the first continue statement in a loop block, if any.
constexpr static size_t kNoContinue = size_t(~0);
size_t first_continue = kNoContinue;
};
/// Resolves the program, without creating final the semantic nodes.
/// @returns true on success, false on error
bool ResolveInternal();
/// Creates the nodes and adds them to the sem::Info mappings of the
/// ProgramBuilder.
void CreateSemanticNodes() const;
/// Retrieves information for the requested import.
/// @param src the source of the import
/// @param path the import path
/// @param name the method name to get information on
/// @param params the parameters to the method call
/// @param id out parameter for the external call ID. Must not be a nullptr.
/// @returns the return type of `name` in `path` or nullptr on error.
sem::Type* GetImportData(const Source& src,
const std::string& path,
const std::string& name,
const ast::ExpressionList& params,
uint32_t* id);
void set_referenced_from_function_if_needed(VariableInfo* var, bool local);
// AST and Type traversal methods
// Each return true on success, false on failure.
bool ArrayAccessor(ast::ArrayAccessorExpression*);
bool Assignment(ast::AssignmentStatement* a);
bool Binary(ast::BinaryExpression*);
bool Bitcast(ast::BitcastExpression*);
bool BlockStatement(const ast::BlockStatement*);
bool Call(ast::CallExpression*);
bool CaseStatement(ast::CaseStatement*);
bool Constructor(ast::ConstructorExpression*);
bool Expression(ast::Expression*);
bool Expressions(const ast::ExpressionList&);
bool Function(ast::Function*);
bool GlobalVariable(ast::Variable* var);
bool Identifier(ast::IdentifierExpression*);
bool IfStatement(ast::IfStatement*);
bool IntrinsicCall(ast::CallExpression*, sem::IntrinsicType);
bool MemberAccessor(ast::MemberAccessorExpression*);
bool Parameter(ast::Variable* param);
bool Return(ast::ReturnStatement* ret);
bool Statement(ast::Statement*);
bool Statements(const ast::StatementList&);
bool Switch(ast::SwitchStatement* s);
bool Type(const sem::Type* ty, const Source& source = {});
bool UnaryOp(ast::UnaryOpExpression*);
bool VariableDeclStatement(const ast::VariableDeclStatement*);
// AST and Type validation methods
// Each return true on success, false on failure.
bool ValidateArray(const sem::ArrayType* arr, const Source& source);
bool ValidateArrayStrideDecoration(const ast::StrideDecoration* deco,
uint32_t el_size,
uint32_t el_align,
const Source& source);
bool ValidateAssignment(const ast::AssignmentStatement* a);
bool ValidateBinary(ast::BinaryExpression* expr);
bool ValidateEntryPoint(const ast::Function* func, const FunctionInfo* info);
bool ValidateFunction(const ast::Function* func, const FunctionInfo* info);
bool ValidateGlobalVariable(const VariableInfo* var);
bool ValidateMatrixConstructor(const ast::TypeConstructorExpression* ctor,
const sem::Matrix* matrix_type,
const ast::ExpressionList& values);
bool ValidateParameter(const ast::Variable* param);
bool ValidateReturn(const ast::ReturnStatement* ret);
bool ValidateStructure(const sem::StructType* st);
bool ValidateSwitch(const ast::SwitchStatement* s);
bool ValidateVariable(const ast::Variable* param);
bool ValidateVectorConstructor(const ast::TypeConstructorExpression* ctor,
const sem::Vector* vec_type,
const ast::ExpressionList& values);
/// @returns the sem::Type for the ast::Type `ty`, building it if it
/// hasn't been constructed already. If an error is raised, nullptr is
/// returned.
/// @param ty the ast::Type
const sem::Type* Type(const ast::Type* ty);
/// @returns the semantic information for the array `arr`, building it if it
/// hasn't been constructed already. If an error is raised, nullptr is
/// returned.
/// @param arr the Array to get semantic information for
/// @param source the Source of the ast node with this array as its type
const sem::Array* Array(const sem::ArrayType* arr, const Source& source);
/// @returns the StructInfo for the structure `str`, building it if it hasn't
/// been constructed already. If an error is raised, nullptr is returned.
StructInfo* Structure(const sem::StructType* str);
/// @returns the VariableInfo for the variable `var`, building it if it hasn't
/// been constructed already. If an error is raised, nullptr is returned.
/// @param var the variable to create or return the `VariableInfo` for
/// @param type optional type of `var` to use instead of
/// `var->declared_type()`. For type inference.
VariableInfo* Variable(ast::Variable* var, const sem::Type* type = nullptr);
/// Records the storage class usage for the given type, and any transient
/// dependencies of the type. Validates that the type can be used for the
/// given storage class, erroring if it cannot.
/// @param sc the storage class to apply to the type and transitent types
/// @param ty the type to apply the storage class on
/// @param usage the Source of the root variable declaration that uses the
/// given type and storage class. Used for generating sensible error messages.
/// @returns true on success, false on error
bool ApplyStorageClassUsageToType(ast::StorageClass sc,
const sem::Type* ty,
const Source& usage);
/// @param align the output default alignment in bytes for the type `ty`
/// @param size the output default size in bytes for the type `ty`
/// @param source the Source of the variable declaration of type `ty`
/// @returns true on success, false on error
bool DefaultAlignAndSize(sem::Type* ty,
uint32_t& align,
uint32_t& size,
const Source& source);
/// @returns the resolved type of the ast::Expression `expr`
/// @param expr the expression
const sem::Type* TypeOf(const ast::Expression* expr);
/// @returns the declared type name of the ast::Expression `expr`
/// @param expr the type name
std::string TypeNameOf(const ast::Expression* expr);
/// @returns the semantic type of the AST literal `lit`
/// @param lit the literal
const sem::Type* TypeOf(const ast::Literal* lit);
/// Creates a sem::Expression node with the resolved type `type`, and
/// assigns this semantic node to the expression `expr`.
/// @param expr the expression
/// @param type the resolved type
void SetType(ast::Expression* expr, const sem::Type* type);
/// Creates a sem::Expression node with the resolved type `type`, the declared
/// type name `type_name` and assigns this semantic node to the expression
/// `expr`.
/// @param expr the expression
/// @param type the resolved type
/// @param type_name the declared type name
void SetType(ast::Expression* expr,
const sem::Type* type,
const std::string& type_name);
/// Constructs a new BlockInfo with the given type and with #current_block_ as
/// its parent, assigns this to #current_block_, and then calls `callback`.
/// The original #current_block_ is restored on exit.
template <typename F>
bool BlockScope(const ast::BlockStatement* block,
BlockInfo::Type type,
F&& callback);
/// Returns a human-readable string representation of the vector type name
/// with the given parameters.
/// @param size the vector dimension
/// @param element_type scalar vector sub-element type
/// @return pretty string representation
std::string VectorPretty(uint32_t size, sem::Type* element_type);
/// Mark records that the given AST node has been visited, and asserts that
/// the given node has not already been seen. Diamonds in the AST are illegal.
/// @param node the AST node.
void Mark(const ast::Node* node);
ProgramBuilder* const builder_;
Add IntrinsicTable Provides a centeralized table for all intrinsic overloads. IntrinsicTable::Lookup() takes the intrinsic type and list of arguments, returning either the matched overload, or a sensible error message. The validator has expectations that the TypeDeterminer resolves the return type of an intrinsic call, even when the signature doesn't match. To handle this, create semantic::Intrinsic nodes even when the overload fails to match. A significant portion of the Validator's logic for handling intrinsics can be removed (future change). There are a number of benefits to migrating the TypeDeterminer and Validator over to the IntrinsicTable: * There's far less intrininsic-bespoke code to maintain (no more duplicate `kIntrinsicData` tables in TypeDeterminer and Validator). * Adding or adjusting an intrinsic overload involves adding or adjusting a single Register() line. * Error messages give helpful suggestions for related overloads when given incorrect arguments. * Error messages are consistent for all intrinsics. * Error messages are far more understandable than those produced by the TypeDeterminer. * Further improvements on the error messages produced by the IntrinsicTable will benefit _all_ the intrinsics and their overloads. * The IntrinsicTable generates correct parameter information, including whether parameters are pointers or not. * The IntrinsicTable will help with implementing autocomplete for a language server Change-Id: I4bfa88533396b0b372aef41a62fe47b738531aed Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40504 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: dan sinclair <dsinclair@chromium.org>
2021-02-08 22:42:54 +00:00
std::unique_ptr<IntrinsicTable> const intrinsic_table_;
diag::List diagnostics_;
BlockInfo* current_block_ = nullptr;
ScopeStack<VariableInfo*> variable_stack_;
std::unordered_map<Symbol, FunctionInfo*> symbol_to_function_;
std::unordered_map<const ast::Function*, FunctionInfo*> function_to_info_;
std::unordered_map<const ast::Variable*, VariableInfo*> variable_to_info_;
std::unordered_map<ast::CallExpression*, FunctionCallInfo> function_calls_;
std::unordered_map<const ast::Expression*, ExpressionInfo> expr_info_;
std::unordered_map<const sem::StructType*, StructInfo*> struct_info_;
std::unordered_map<const sem::Type*, const sem::Type*> type_to_canonical_;
std::unordered_set<const ast::Node*> marked_;
FunctionInfo* current_function_ = nullptr;
sem::Statement* current_statement_ = nullptr;
BlockAllocator<VariableInfo> variable_infos_;
BlockAllocator<FunctionInfo> function_infos_;
BlockAllocator<StructInfo> struct_infos_;
2020-03-02 20:47:43 +00:00
};
} // namespace resolver
2020-03-02 20:47:43 +00:00
} // namespace tint
#endif // SRC_RESOLVER_RESOLVER_H_