dawn-cmake/test/tint/builtins/gen/var/textureSampleBaseClampToEdge/7c04e6.wgsl.expected.msl

136 lines
6.5 KiB
Plaintext
Raw Normal View History

#include <metal_stdlib>
using namespace metal;
template<typename T, size_t N>
struct tint_array {
const constant T& operator[](size_t i) const constant { return elements[i]; }
device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; }
T elements[N];
};
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
struct tint_packed_vec3_f32_array_element {
/* 0x0000 */ packed_float3 elements;
/* 0x000c */ tint_array<int8_t, 4> tint_pad;
};
struct GammaTransferParams {
/* 0x0000 */ float G;
/* 0x0004 */ float A;
/* 0x0008 */ float B;
/* 0x000c */ float C;
/* 0x0010 */ float D;
/* 0x0014 */ float E;
/* 0x0018 */ float F;
/* 0x001c */ uint padding;
};
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
struct ExternalTextureParams_tint_packed_vec3 {
/* 0x0000 */ uint numPlanes;
/* 0x0004 */ uint doYuvToRgbConversionOnly;
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
/* 0x0008 */ tint_array<int8_t, 8> tint_pad_1;
/* 0x0010 */ float3x4 yuvToRgbConversionMatrix;
/* 0x0040 */ GammaTransferParams gammaDecodeParams;
/* 0x0060 */ GammaTransferParams gammaEncodeParams;
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
/* 0x0080 */ tint_array<tint_packed_vec3_f32_array_element, 3> gamutConversionMatrix;
/* 0x00b0 */ float3x2 coordTransformationMatrix;
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
/* 0x00c8 */ tint_array<int8_t, 8> tint_pad_2;
};
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
float3x3 tint_unpack_vec3_in_composite(tint_array<tint_packed_vec3_f32_array_element, 3> in) {
float3x3 result = float3x3(0.0f);
for(uint i = 0u; (i < 3u); i = (i + 1u)) {
result[i] = float3(in[i].elements);
}
return result;
}
struct ExternalTextureParams {
uint numPlanes;
uint doYuvToRgbConversionOnly;
float3x4 yuvToRgbConversionMatrix;
GammaTransferParams gammaDecodeParams;
GammaTransferParams gammaEncodeParams;
float3x3 gamutConversionMatrix;
float3x2 coordTransformationMatrix;
};
ExternalTextureParams tint_unpack_vec3_in_composite_1(ExternalTextureParams_tint_packed_vec3 in) {
ExternalTextureParams result = {};
result.numPlanes = in.numPlanes;
result.doYuvToRgbConversionOnly = in.doYuvToRgbConversionOnly;
result.yuvToRgbConversionMatrix = in.yuvToRgbConversionMatrix;
result.gammaDecodeParams = in.gammaDecodeParams;
result.gammaEncodeParams = in.gammaEncodeParams;
result.gamutConversionMatrix = tint_unpack_vec3_in_composite(in.gamutConversionMatrix);
result.coordTransformationMatrix = in.coordTransformationMatrix;
return result;
}
float3 gammaCorrection(float3 v, GammaTransferParams params) {
bool3 const cond = (fabs(v) < float3(params.D));
float3 const t = (sign(v) * ((params.C * fabs(v)) + params.F));
float3 const f = (sign(v) * (pow(((params.A * fabs(v)) + params.B), float3(params.G)) + params.E));
return select(f, t, cond);
}
float4 textureSampleExternal(texture2d<float, access::sample> plane0, texture2d<float, access::sample> plane1, sampler smp, float2 coord, ExternalTextureParams params) {
float2 const modifiedCoords = (params.coordTransformationMatrix * float3(coord, 1.0f));
float2 const plane0_dims = float2(uint2(plane0.get_width(0), plane0.get_height(0)));
float2 const plane0_half_texel = (float2(0.5f) / plane0_dims);
float2 const plane0_clamped = clamp(modifiedCoords, plane0_half_texel, (1.0f - plane0_half_texel));
float2 const plane1_dims = float2(uint2(plane1.get_width(0), plane1.get_height(0)));
float2 const plane1_half_texel = (float2(0.5f) / plane1_dims);
float2 const plane1_clamped = clamp(modifiedCoords, plane1_half_texel, (1.0f - plane1_half_texel));
float3 color = 0.0f;
if ((params.numPlanes == 1u)) {
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
color = plane0.sample(smp, plane0_clamped, level(0.0f)).rgb;
} else {
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
color = (float4(plane0.sample(smp, plane0_clamped, level(0.0f))[0], plane1.sample(smp, plane1_clamped, level(0.0f)).rg, 1.0f) * params.yuvToRgbConversionMatrix);
}
if ((params.doYuvToRgbConversionOnly == 0u)) {
color = gammaCorrection(color, params.gammaDecodeParams);
color = (params.gamutConversionMatrix * color);
color = gammaCorrection(color, params.gammaEncodeParams);
}
return float4(color, 1.0f);
}
void textureSampleBaseClampToEdge_7c04e6(texture2d<float, access::sample> tint_symbol_1, texture2d<float, access::sample> tint_symbol_2, sampler tint_symbol_3, const constant ExternalTextureParams_tint_packed_vec3* const tint_symbol_4, device float4* const tint_symbol_5) {
float2 arg_2 = float2(1.0f);
tint/msl: Preserve trailing vec3 padding In order to preserve padding properly for MSL, we need to use its packed_vec type for all vec3 types in storage buffers, not just struct members. This commit includes a complete rewrite of the PackedVec3 transform to achieve this. The key details are: * An internal `__packed_vec3<>` type was added, which corresponds to a `type::Vector` with an additional flag to indicate that it will be emitted as packed vector. * The `PackedVec3` transform replaces all vec3 types used in host-shareable address spaces with the internal `__packed_vec3` type. This includes vec3 types that appear as the store type of a pointer. * When used as an array element, these `__packed_vec3` types are wrapped in a struct that contains a single `__packed_vec3` member. This allows us to add an `@align()` attribute that ensures that `array<vec3<T>>` still has the correct array element stride. * When the `vec3<T>` appears as a struct member in the input program, we apply the `@align()` to that member to ensure that we do not change its offset. * Matrix types with three rows that are used in memory are replaced with an array of columns, where each column uses a `__packed_vec3` inside an aligned wrapper structure as above. * Accesses to host-shareable memory that involve any of these types invoke a "pack" or "unpack" helper function to convert them to the equivalent type that uses `__packed_vec3` or a regular `vec3` as required. * The `chromium_internal_relaxed_uniform_layout` extension is used to avoid issues where modifying a type in the uniform address space triggers stricter layout validation rules. Bug: tint:1571 Fixed: tint:1837 Change-Id: Idaf2da2f5bcb2be00c85ec657edfb614186476bb Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/121200 Reviewed-by: Ben Clayton <bclayton@google.com> Commit-Queue: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
2023-02-27 20:21:03 +00:00
float4 res = textureSampleExternal(tint_symbol_1, tint_symbol_2, tint_symbol_3, arg_2, tint_unpack_vec3_in_composite_1(*(tint_symbol_4)));
*(tint_symbol_5) = res;
}
struct tint_symbol {
float4 value [[position]];
};
float4 vertex_main_inner(texture2d<float, access::sample> tint_symbol_6, texture2d<float, access::sample> tint_symbol_7, sampler tint_symbol_8, const constant ExternalTextureParams_tint_packed_vec3* const tint_symbol_9, device float4* const tint_symbol_10) {
textureSampleBaseClampToEdge_7c04e6(tint_symbol_6, tint_symbol_7, tint_symbol_8, tint_symbol_9, tint_symbol_10);
return float4(0.0f);
}
vertex tint_symbol vertex_main(texture2d<float, access::sample> tint_symbol_11 [[texture(0)]], texture2d<float, access::sample> tint_symbol_12 [[texture(1)]], sampler tint_symbol_13 [[sampler(0)]], const constant ExternalTextureParams_tint_packed_vec3* tint_symbol_14 [[buffer(2)]], device float4* tint_symbol_15 [[buffer(0)]]) {
float4 const inner_result = vertex_main_inner(tint_symbol_11, tint_symbol_12, tint_symbol_13, tint_symbol_14, tint_symbol_15);
tint_symbol wrapper_result = {};
wrapper_result.value = inner_result;
return wrapper_result;
}
fragment void fragment_main(texture2d<float, access::sample> tint_symbol_16 [[texture(0)]], texture2d<float, access::sample> tint_symbol_17 [[texture(1)]], sampler tint_symbol_18 [[sampler(0)]], const constant ExternalTextureParams_tint_packed_vec3* tint_symbol_19 [[buffer(2)]], device float4* tint_symbol_20 [[buffer(0)]]) {
textureSampleBaseClampToEdge_7c04e6(tint_symbol_16, tint_symbol_17, tint_symbol_18, tint_symbol_19, tint_symbol_20);
return;
}
kernel void compute_main(texture2d<float, access::sample> tint_symbol_21 [[texture(0)]], texture2d<float, access::sample> tint_symbol_22 [[texture(1)]], sampler tint_symbol_23 [[sampler(0)]], const constant ExternalTextureParams_tint_packed_vec3* tint_symbol_24 [[buffer(2)]], device float4* tint_symbol_25 [[buffer(0)]]) {
textureSampleBaseClampToEdge_7c04e6(tint_symbol_21, tint_symbol_22, tint_symbol_23, tint_symbol_24, tint_symbol_25);
return;
}