dawn-cmake/src/program_builder.h

2624 lines
104 KiB
C
Raw Normal View History

// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_PROGRAM_BUILDER_H_
#define SRC_PROGRAM_BUILDER_H_
#include <string>
#include <unordered_set>
#include <utility>
#include "src/ast/alias.h"
#include "src/ast/array.h"
#include "src/ast/assignment_statement.h"
#include "src/ast/atomic.h"
#include "src/ast/binary_expression.h"
#include "src/ast/binding_attribute.h"
#include "src/ast/bitcast_expression.h"
#include "src/ast/bool.h"
#include "src/ast/bool_literal_expression.h"
#include "src/ast/break_statement.h"
#include "src/ast/call_expression.h"
#include "src/ast/call_statement.h"
#include "src/ast/case_statement.h"
#include "src/ast/continue_statement.h"
#include "src/ast/depth_multisampled_texture.h"
#include "src/ast/depth_texture.h"
#include "src/ast/disable_validation_attribute.h"
#include "src/ast/discard_statement.h"
#include "src/ast/external_texture.h"
#include "src/ast/f32.h"
#include "src/ast/fallthrough_statement.h"
#include "src/ast/float_literal_expression.h"
#include "src/ast/for_loop_statement.h"
#include "src/ast/i32.h"
#include "src/ast/if_statement.h"
#include "src/ast/index_accessor_expression.h"
#include "src/ast/interpolate_attribute.h"
#include "src/ast/invariant_attribute.h"
#include "src/ast/loop_statement.h"
#include "src/ast/matrix.h"
#include "src/ast/member_accessor_expression.h"
#include "src/ast/module.h"
#include "src/ast/multisampled_texture.h"
#include "src/ast/override_attribute.h"
#include "src/ast/phony_expression.h"
#include "src/ast/pointer.h"
#include "src/ast/return_statement.h"
#include "src/ast/sampled_texture.h"
#include "src/ast/sampler.h"
#include "src/ast/sint_literal_expression.h"
#include "src/ast/stage_attribute.h"
#include "src/ast/storage_texture.h"
#include "src/ast/stride_attribute.h"
#include "src/ast/struct_block_attribute.h"
#include "src/ast/struct_member_align_attribute.h"
#include "src/ast/struct_member_offset_attribute.h"
#include "src/ast/struct_member_size_attribute.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type_name.h"
#include "src/ast/u32.h"
#include "src/ast/uint_literal_expression.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/ast/vector.h"
#include "src/ast/void.h"
#include "src/ast/workgroup_attribute.h"
#include "src/program.h"
#include "src/program_id.h"
#include "src/sem/array.h"
#include "src/sem/bool_type.h"
#include "src/sem/depth_texture_type.h"
#include "src/sem/external_texture_type.h"
#include "src/sem/f32_type.h"
#include "src/sem/i32_type.h"
#include "src/sem/matrix_type.h"
#include "src/sem/multisampled_texture_type.h"
#include "src/sem/pointer_type.h"
#include "src/sem/sampled_texture_type.h"
#include "src/sem/storage_texture_type.h"
#include "src/sem/struct.h"
#include "src/sem/u32_type.h"
#include "src/sem/vector_type.h"
#include "src/sem/void_type.h"
#ifdef INCLUDE_TINT_TINT_H_
#error "internal tint header being #included from tint.h"
#endif
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
// Forward declarations
namespace tint {
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
namespace ast {
class VariableDeclStatement;
} // namespace ast
} // namespace tint
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
namespace tint {
class CloneContext;
/// ProgramBuilder is a mutable builder for a Program.
/// To construct a Program, populate the builder and then `std::move` it to a
/// Program.
class ProgramBuilder {
/// A helper used to disable overloads if the first type in `TYPES` is a
/// Source. Used to avoid ambiguities in overloads that take a Source as the
/// first parameter and those that perfectly-forward the first argument.
template <typename... TYPES>
using DisableIfSource = traits::EnableIfIsNotType<
traits::Decay<traits::NthTypeOf<0, TYPES..., void>>,
Source>;
/// VarOptionals is a helper for accepting a number of optional, extra
/// arguments for Var() and Global().
struct VarOptionals {
template <typename... ARGS>
explicit VarOptionals(ARGS&&... args) {
Apply(std::forward<ARGS>(args)...);
}
~VarOptionals();
ast::StorageClass storage = ast::StorageClass::kNone;
ast::Access access = ast::Access::kUndefined;
const ast::Expression* constructor = nullptr;
ast::AttributeList attributes = {};
private:
void Set(ast::StorageClass sc) { storage = sc; }
void Set(ast::Access ac) { access = ac; }
void Set(const ast::Expression* c) { constructor = c; }
void Set(const ast::AttributeList& l) { attributes = l; }
template <typename FIRST, typename... ARGS>
void Apply(FIRST&& first, ARGS&&... args) {
Set(std::forward<FIRST>(first));
Apply(std::forward<ARGS>(args)...);
}
void Apply() {}
};
public:
/// ASTNodeAllocator is an alias to BlockAllocator<ast::Node>
using ASTNodeAllocator = BlockAllocator<ast::Node>;
/// SemNodeAllocator is an alias to BlockAllocator<sem::Node>
using SemNodeAllocator = BlockAllocator<sem::Node>;
/// `i32` is a type alias to `int`.
/// Useful for passing to template methods such as `vec2<i32>()` to imitate
/// WGSL syntax.
/// Note: this is intentionally not aliased to uint32_t as we want integer
/// literals passed to the builder to match WGSL's integer literal types.
using i32 = decltype(1);
/// `u32` is a type alias to `unsigned int`.
/// Useful for passing to template methods such as `vec2<u32>()` to imitate
/// WGSL syntax.
/// Note: this is intentionally not aliased to uint32_t as we want integer
/// literals passed to the builder to match WGSL's integer literal types.
using u32 = decltype(1u);
/// `f32` is a type alias to `float`
/// Useful for passing to template methods such as `vec2<f32>()` to imitate
/// WGSL syntax.
using f32 = float;
/// Constructor
ProgramBuilder();
/// Move constructor
/// @param rhs the builder to move
ProgramBuilder(ProgramBuilder&& rhs);
/// Destructor
virtual ~ProgramBuilder();
/// Move assignment operator
/// @param rhs the builder to move
/// @return this builder
ProgramBuilder& operator=(ProgramBuilder&& rhs);
/// Wrap returns a new ProgramBuilder wrapping the Program `program` without
/// making a deep clone of the Program contents.
/// ProgramBuilder returned by Wrap() is intended to temporarily extend an
/// existing immutable program.
/// As the returned ProgramBuilder wraps `program`, `program` must not be
/// destructed or assigned while using the returned ProgramBuilder.
/// TODO(bclayton) - Evaluate whether there are safer alternatives to this
/// function. See crbug.com/tint/460.
/// @param program the immutable Program to wrap
/// @return the ProgramBuilder that wraps `program`
static ProgramBuilder Wrap(const Program* program);
/// @returns the unique identifier for this program
ProgramID ID() const { return id_; }
/// @returns a reference to the program's types
sem::Manager& Types() {
AssertNotMoved();
return types_;
}
/// @returns a reference to the program's types
const sem::Manager& Types() const {
AssertNotMoved();
return types_;
}
/// @returns a reference to the program's AST nodes storage
ASTNodeAllocator& ASTNodes() {
AssertNotMoved();
return ast_nodes_;
}
/// @returns a reference to the program's AST nodes storage
const ASTNodeAllocator& ASTNodes() const {
AssertNotMoved();
return ast_nodes_;
}
/// @returns a reference to the program's semantic nodes storage
SemNodeAllocator& SemNodes() {
AssertNotMoved();
return sem_nodes_;
}
/// @returns a reference to the program's semantic nodes storage
const SemNodeAllocator& SemNodes() const {
AssertNotMoved();
return sem_nodes_;
}
/// @returns a reference to the program's AST root Module
ast::Module& AST() {
AssertNotMoved();
return *ast_;
}
/// @returns a reference to the program's AST root Module
const ast::Module& AST() const {
AssertNotMoved();
return *ast_;
}
/// @returns a reference to the program's semantic info
sem::Info& Sem() {
AssertNotMoved();
return sem_;
}
/// @returns a reference to the program's semantic info
const sem::Info& Sem() const {
AssertNotMoved();
return sem_;
}
/// @returns a reference to the program's SymbolTable
SymbolTable& Symbols() {
AssertNotMoved();
return symbols_;
}
/// @returns a reference to the program's SymbolTable
const SymbolTable& Symbols() const {
AssertNotMoved();
return symbols_;
}
/// @returns a reference to the program's diagnostics
diag::List& Diagnostics() {
AssertNotMoved();
return diagnostics_;
}
/// @returns a reference to the program's diagnostics
const diag::List& Diagnostics() const {
AssertNotMoved();
return diagnostics_;
}
/// Controls whether the Resolver will be run on the program when it is built.
/// @param enable the new flag value (defaults to true)
void SetResolveOnBuild(bool enable) { resolve_on_build_ = enable; }
/// @return true if the Resolver will be run on the program when it is
/// built.
bool ResolveOnBuild() const { return resolve_on_build_; }
/// @returns true if the program has no error diagnostics and is not missing
/// information
bool IsValid() const;
/// Creates a new ast::Node owned by the ProgramBuilder. When the
/// ProgramBuilder is destructed, the ast::Node will also be destructed.
/// @param source the Source of the node
/// @param args the arguments to pass to the type constructor
/// @returns the node pointer
template <typename T, typename... ARGS>
traits::EnableIfIsType<T, ast::Node>* create(const Source& source,
ARGS&&... args) {
AssertNotMoved();
return ast_nodes_.Create<T>(id_, source, std::forward<ARGS>(args)...);
}
/// Creates a new ast::Node owned by the ProgramBuilder, injecting the current
/// Source as set by the last call to SetSource() as the only argument to the
/// constructor.
/// When the ProgramBuilder is destructed, the ast::Node will also be
/// destructed.
/// @returns the node pointer
template <typename T>
traits::EnableIfIsType<T, ast::Node>* create() {
AssertNotMoved();
return ast_nodes_.Create<T>(id_, source_);
}
/// Creates a new ast::Node owned by the ProgramBuilder, injecting the current
/// Source as set by the last call to SetSource() as the first argument to the
/// constructor.
/// When the ProgramBuilder is destructed, the ast::Node will also be
/// destructed.
/// @param arg0 the first arguments to pass to the type constructor
/// @param args the remaining arguments to pass to the type constructor
/// @returns the node pointer
template <typename T, typename ARG0, typename... ARGS>
traits::EnableIf</* T is ast::Node and ARG0 is not Source */
traits::IsTypeOrDerived<T, ast::Node>::value &&
!traits::IsTypeOrDerived<ARG0, Source>::value,
T>*
create(ARG0&& arg0, ARGS&&... args) {
AssertNotMoved();
return ast_nodes_.Create<T>(id_, source_, std::forward<ARG0>(arg0),
std::forward<ARGS>(args)...);
}
/// Creates a new sem::Node owned by the ProgramBuilder.
/// When the ProgramBuilder is destructed, the sem::Node will also be
/// destructed.
/// @param args the arguments to pass to the type constructor
/// @returns the node pointer
template <typename T, typename... ARGS>
traits::EnableIf<traits::IsTypeOrDerived<T, sem::Node>::value &&
!traits::IsTypeOrDerived<T, sem::Type>::value,
T>*
create(ARGS&&... args) {
AssertNotMoved();
return sem_nodes_.Create<T>(std::forward<ARGS>(args)...);
}
/// Creates a new sem::Type owned by the ProgramBuilder.
/// When the ProgramBuilder is destructed, owned ProgramBuilder and the
/// returned`Type` will also be destructed.
/// Types are unique (de-aliased), and so calling create() for the same `T`
/// and arguments will return the same pointer.
/// @warning Use this method to acquire a type only if all of its type
/// information is provided in the constructor arguments `args`.<br>
/// If the type requires additional configuration after construction that
/// affect its fundamental type, build the type with `std::make_unique`, make
/// any necessary alterations and then call unique_type() instead.
/// @param args the arguments to pass to the type constructor
/// @returns the de-aliased type pointer
template <typename T, typename... ARGS>
traits::EnableIfIsType<T, sem::Type>* create(ARGS&&... args) {
static_assert(std::is_base_of<sem::Type, T>::value,
"T does not derive from sem::Type");
AssertNotMoved();
return types_.Get<T>(std::forward<ARGS>(args)...);
}
/// Marks this builder as moved, preventing any further use of the builder.
void MarkAsMoved();
//////////////////////////////////////////////////////////////////////////////
// TypesBuilder
//////////////////////////////////////////////////////////////////////////////
/// TypesBuilder holds basic `tint` types and methods for constructing
/// complex types.
class TypesBuilder {
public:
/// Constructor
/// @param builder the program builder
explicit TypesBuilder(ProgramBuilder* builder);
/// @return the tint AST type for the C type `T`.
template <typename T>
const ast::Type* Of() const {
return CToAST<T>::get(this);
}
/// @returns a boolean type
const ast::Bool* bool_() const { return builder->create<ast::Bool>(); }
/// @param source the Source of the node
/// @returns a boolean type
const ast::Bool* bool_(const Source& source) const {
return builder->create<ast::Bool>(source);
}
/// @returns a f32 type
const ast::F32* f32() const { return builder->create<ast::F32>(); }
/// @param source the Source of the node
/// @returns a f32 type
const ast::F32* f32(const Source& source) const {
return builder->create<ast::F32>(source);
}
/// @returns a i32 type
const ast::I32* i32() const { return builder->create<ast::I32>(); }
/// @param source the Source of the node
/// @returns a i32 type
const ast::I32* i32(const Source& source) const {
return builder->create<ast::I32>(source);
}
/// @returns a u32 type
const ast::U32* u32() const { return builder->create<ast::U32>(); }
/// @param source the Source of the node
/// @returns a u32 type
const ast::U32* u32(const Source& source) const {
return builder->create<ast::U32>(source);
}
/// @returns a void type
const ast::Void* void_() const { return builder->create<ast::Void>(); }
/// @param source the Source of the node
/// @returns a void type
const ast::Void* void_(const Source& source) const {
return builder->create<ast::Void>(source);
}
/// @param type vector subtype
/// @param n vector width in elements
/// @return the tint AST type for a `n`-element vector of `type`.
const ast::Vector* vec(const ast::Type* type, uint32_t n) const {
return builder->create<ast::Vector>(type, n);
}
/// @param source the Source of the node
/// @param type vector subtype
/// @param n vector width in elements
/// @return the tint AST type for a `n`-element vector of `type`.
const ast::Vector* vec(const Source& source,
const ast::Type* type,
uint32_t n) const {
return builder->create<ast::Vector>(source, type, n);
}
/// @param type vector subtype
/// @return the tint AST type for a 2-element vector of `type`.
const ast::Vector* vec2(const ast::Type* type) const {
return vec(type, 2u);
}
/// @param type vector subtype
/// @return the tint AST type for a 3-element vector of `type`.
const ast::Vector* vec3(const ast::Type* type) const {
return vec(type, 3u);
}
/// @param type vector subtype
/// @return the tint AST type for a 4-element vector of `type`.
const ast::Vector* vec4(const ast::Type* type) const {
return vec(type, 4u);
}
/// @param n vector width in elements
/// @return the tint AST type for a `n`-element vector of `type`.
template <typename T>
const ast::Vector* vec(uint32_t n) const {
return vec(Of<T>(), n);
}
/// @return the tint AST type for a 2-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec2() const {
return vec2(Of<T>());
}
/// @return the tint AST type for a 3-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec3() const {
return vec3(Of<T>());
}
/// @return the tint AST type for a 4-element vector of the C type `T`.
template <typename T>
const ast::Vector* vec4() const {
return vec4(Of<T>());
}
/// @param type matrix subtype
/// @param columns number of columns for the matrix
/// @param rows number of rows for the matrix
/// @return the tint AST type for a matrix of `type`
const ast::Matrix* mat(const ast::Type* type,
uint32_t columns,
uint32_t rows) const {
return builder->create<ast::Matrix>(type, rows, columns);
}
/// @param source the Source of the node
/// @param type matrix subtype
/// @param columns number of columns for the matrix
/// @param rows number of rows for the matrix
/// @return the tint AST type for a matrix of `type`
const ast::Matrix* mat(const Source& source,
const ast::Type* type,
uint32_t columns,
uint32_t rows) const {
return builder->create<ast::Matrix>(source, type, rows, columns);
}
/// @param type matrix subtype
/// @return the tint AST type for a 2x3 matrix of `type`.
const ast::Matrix* mat2x2(const ast::Type* type) const {
return mat(type, 2u, 2u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 2x3 matrix of `type`.
const ast::Matrix* mat2x3(const ast::Type* type) const {
return mat(type, 2u, 3u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 2x4 matrix of `type`.
const ast::Matrix* mat2x4(const ast::Type* type) const {
return mat(type, 2u, 4u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 3x2 matrix of `type`.
const ast::Matrix* mat3x2(const ast::Type* type) const {
return mat(type, 3u, 2u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 3x3 matrix of `type`.
const ast::Matrix* mat3x3(const ast::Type* type) const {
return mat(type, 3u, 3u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 3x4 matrix of `type`.
const ast::Matrix* mat3x4(const ast::Type* type) const {
return mat(type, 3u, 4u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 4x2 matrix of `type`.
const ast::Matrix* mat4x2(const ast::Type* type) const {
return mat(type, 4u, 2u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 4x3 matrix of `type`.
const ast::Matrix* mat4x3(const ast::Type* type) const {
return mat(type, 4u, 3u);
}
/// @param type matrix subtype
/// @return the tint AST type for a 4x4 matrix of `type`.
const ast::Matrix* mat4x4(const ast::Type* type) const {
return mat(type, 4u, 4u);
}
/// @param columns number of columns for the matrix
/// @param rows number of rows for the matrix
/// @return the tint AST type for a matrix of `type`
template <typename T>
const ast::Matrix* mat(uint32_t columns, uint32_t rows) const {
return mat(Of<T>(), columns, rows);
}
/// @return the tint AST type for a 2x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat2x2() const {
return mat2x2(Of<T>());
}
/// @return the tint AST type for a 2x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat2x3() const {
return mat2x3(Of<T>());
}
/// @return the tint AST type for a 2x4 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat2x4() const {
return mat2x4(Of<T>());
}
/// @return the tint AST type for a 3x2 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat3x2() const {
return mat3x2(Of<T>());
}
/// @return the tint AST type for a 3x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat3x3() const {
return mat3x3(Of<T>());
}
/// @return the tint AST type for a 3x4 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat3x4() const {
return mat3x4(Of<T>());
}
/// @return the tint AST type for a 4x2 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat4x2() const {
return mat4x2(Of<T>());
}
/// @return the tint AST type for a 4x3 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat4x3() const {
return mat4x3(Of<T>());
}
/// @return the tint AST type for a 4x4 matrix of the C type `T`.
template <typename T>
const ast::Matrix* mat4x4() const {
return mat4x4(Of<T>());
}
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param attrs the optional attributes for the array
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR = ast::Expression*>
const ast::Array* array(const ast::Type* subtype,
EXPR&& n = nullptr,
ast::AttributeList attrs = {}) const {
return builder->create<ast::Array>(
subtype, builder->Expr(std::forward<EXPR>(n)), attrs);
}
/// @param source the Source of the node
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param attrs the optional attributes for the array
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR = ast::Expression*>
const ast::Array* array(const Source& source,
const ast::Type* subtype,
EXPR&& n = nullptr,
ast::AttributeList attrs = {}) const {
return builder->create<ast::Array>(
source, subtype, builder->Expr(std::forward<EXPR>(n)), attrs);
}
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param stride the array stride. 0 represents implicit stride
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR>
const ast::Array* array(const ast::Type* subtype,
EXPR&& n,
uint32_t stride) const {
ast::AttributeList attrs;
if (stride) {
attrs.emplace_back(builder->create<ast::StrideAttribute>(stride));
}
return array(subtype, std::forward<EXPR>(n), std::move(attrs));
}
/// @param source the Source of the node
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array
/// @param stride the array stride. 0 represents implicit stride
/// @return the tint AST type for a array of size `n` of type `T`
template <typename EXPR>
const ast::Array* array(const Source& source,
const ast::Type* subtype,
EXPR&& n,
uint32_t stride) const {
ast::AttributeList attrs;
if (stride) {
attrs.emplace_back(builder->create<ast::StrideAttribute>(stride));
}
return array(source, subtype, std::forward<EXPR>(n), std::move(attrs));
}
/// @return the tint AST type for a runtime-sized array of type `T`
template <typename T>
const ast::Array* array() const {
return array(Of<T>(), nullptr);
}
/// @return the tint AST type for an array of size `N` of type `T`
template <typename T, int N>
const ast::Array* array() const {
return array(Of<T>(), builder->Expr(N));
}
/// @param stride the array stride
/// @return the tint AST type for a runtime-sized array of type `T`
template <typename T>
const ast::Array* array(uint32_t stride) const {
return array(Of<T>(), nullptr, stride);
}
/// @param stride the array stride
/// @return the tint AST type for an array of size `N` of type `T`
template <typename T, int N>
const ast::Array* array(uint32_t stride) const {
return array(Of<T>(), builder->Expr(N), stride);
}
/// Creates a type name
/// @param name the name
/// @returns the type name
template <typename NAME>
const ast::TypeName* type_name(NAME&& name) const {
return builder->create<ast::TypeName>(
builder->Sym(std::forward<NAME>(name)));
}
/// Creates a type name
/// @param source the Source of the node
/// @param name the name
/// @returns the type name
template <typename NAME>
const ast::TypeName* type_name(const Source& source, NAME&& name) const {
return builder->create<ast::TypeName>(
source, builder->Sym(std::forward<NAME>(name)));
}
/// Creates an alias type
/// @param name the alias name
/// @param type the alias type
/// @returns the alias pointer
template <typename NAME>
const ast::Alias* alias(NAME&& name, const ast::Type* type) const {
auto sym = builder->Sym(std::forward<NAME>(name));
return builder->create<ast::Alias>(sym, type);
}
/// Creates an alias type
/// @param source the Source of the node
/// @param name the alias name
/// @param type the alias type
/// @returns the alias pointer
template <typename NAME>
const ast::Alias* alias(const Source& source,
NAME&& name,
const ast::Type* type) const {
auto sym = builder->Sym(std::forward<NAME>(name));
return builder->create<ast::Alias>(source, sym, type);
}
/// @param type the type of the pointer
/// @param storage_class the storage class of the pointer
/// @param access the optional access control of the pointer
/// @return the pointer to `type` with the given ast::StorageClass
const ast::Pointer* pointer(
const ast::Type* type,
ast::StorageClass storage_class,
ast::Access access = ast::Access::kUndefined) const {
return builder->create<ast::Pointer>(type, storage_class, access);
}
/// @param source the Source of the node
/// @param type the type of the pointer
/// @param storage_class the storage class of the pointer
/// @param access the optional access control of the pointer
/// @return the pointer to `type` with the given ast::StorageClass
const ast::Pointer* pointer(
const Source& source,
const ast::Type* type,
ast::StorageClass storage_class,
ast::Access access = ast::Access::kUndefined) const {
return builder->create<ast::Pointer>(source, type, storage_class, access);
}
/// @param storage_class the storage class of the pointer
/// @param access the optional access control of the pointer
/// @return the pointer to type `T` with the given ast::StorageClass.
template <typename T>
const ast::Pointer* pointer(
ast::StorageClass storage_class,
ast::Access access = ast::Access::kUndefined) const {
return pointer(Of<T>(), storage_class, access);
}
/// @param source the Source of the node
/// @param type the type of the atomic
/// @return the atomic to `type`
const ast::Atomic* atomic(const Source& source,
const ast::Type* type) const {
return builder->create<ast::Atomic>(source, type);
}
/// @param type the type of the atomic
/// @return the atomic to `type`
const ast::Atomic* atomic(const ast::Type* type) const {
return builder->create<ast::Atomic>(type);
}
/// @return the atomic to type `T`
template <typename T>
const ast::Atomic* atomic() const {
return atomic(Of<T>());
}
/// @param kind the kind of sampler
/// @returns the sampler
const ast::Sampler* sampler(ast::SamplerKind kind) const {
return builder->create<ast::Sampler>(kind);
}
/// @param source the Source of the node
/// @param kind the kind of sampler
/// @returns the sampler
const ast::Sampler* sampler(const Source& source,
ast::SamplerKind kind) const {
return builder->create<ast::Sampler>(source, kind);
}
/// @param dims the dimensionality of the texture
/// @returns the depth texture
const ast::DepthTexture* depth_texture(ast::TextureDimension dims) const {
return builder->create<ast::DepthTexture>(dims);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @returns the depth texture
const ast::DepthTexture* depth_texture(const Source& source,
ast::TextureDimension dims) const {
return builder->create<ast::DepthTexture>(source, dims);
}
/// @param dims the dimensionality of the texture
/// @returns the multisampled depth texture
const ast::DepthMultisampledTexture* depth_multisampled_texture(
ast::TextureDimension dims) const {
return builder->create<ast::DepthMultisampledTexture>(dims);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @returns the multisampled depth texture
const ast::DepthMultisampledTexture* depth_multisampled_texture(
const Source& source,
ast::TextureDimension dims) const {
return builder->create<ast::DepthMultisampledTexture>(source, dims);
}
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the sampled texture
const ast::SampledTexture* sampled_texture(ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::SampledTexture>(dims, subtype);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the sampled texture
const ast::SampledTexture* sampled_texture(const Source& source,
ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::SampledTexture>(source, dims, subtype);
}
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the multisampled texture
const ast::MultisampledTexture* multisampled_texture(
ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::MultisampledTexture>(dims, subtype);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @param subtype the texture subtype.
/// @returns the multisampled texture
const ast::MultisampledTexture* multisampled_texture(
const Source& source,
ast::TextureDimension dims,
const ast::Type* subtype) const {
return builder->create<ast::MultisampledTexture>(source, dims, subtype);
}
/// @param dims the dimensionality of the texture
/// @param format the texel format of the texture
/// @param access the access control of the texture
/// @returns the storage texture
const ast::StorageTexture* storage_texture(ast::TextureDimension dims,
ast::TexelFormat format,
ast::Access access) const {
auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder);
return builder->create<ast::StorageTexture>(dims, format, subtype,
access);
}
/// @param source the Source of the node
/// @param dims the dimensionality of the texture
/// @param format the texel format of the texture
/// @param access the access control of the texture
/// @returns the storage texture
const ast::StorageTexture* storage_texture(const Source& source,
ast::TextureDimension dims,
ast::TexelFormat format,
ast::Access access) const {
auto* subtype = ast::StorageTexture::SubtypeFor(format, *builder);
return builder->create<ast::StorageTexture>(source, dims, format, subtype,
access);
}
/// @returns the external texture
const ast::ExternalTexture* external_texture() const {
return builder->create<ast::ExternalTexture>();
}
/// @param source the Source of the node
/// @returns the external texture
const ast::ExternalTexture* external_texture(const Source& source) const {
return builder->create<ast::ExternalTexture>(source);
}
/// Constructs a TypeName for the type declaration.
/// @param type the type
/// @return either type or a pointer to a new ast::TypeName
const ast::TypeName* Of(const ast::TypeDecl* type) const;
/// The ProgramBuilder
ProgramBuilder* const builder;
private:
/// CToAST<T> is specialized for various `T` types and each specialization
/// contains a single static `get()` method for obtaining the corresponding
/// AST type for the C type `T`.
/// `get()` has the signature:
/// `static const ast::Type* get(Types* t)`
template <typename T>
struct CToAST {};
};
//////////////////////////////////////////////////////////////////////////////
// AST helper methods
//////////////////////////////////////////////////////////////////////////////
/// @return a new unnamed symbol
Symbol Sym() { return Symbols().New(); }
/// @param name the symbol string
/// @return a Symbol with the given name
Symbol Sym(const std::string& name) { return Symbols().Register(name); }
/// @param sym the symbol
/// @return `sym`
Symbol Sym(Symbol sym) { return sym; }
/// @param expr the expression
/// @return expr
template <typename T>
traits::EnableIfIsType<T, ast::Expression>* Expr(T* expr) {
return expr;
}
/// Passthrough for nullptr
/// @return nullptr
const ast::IdentifierExpression* Expr(std::nullptr_t) { return nullptr; }
/// @param source the source information
/// @param symbol the identifier symbol
/// @return an ast::IdentifierExpression with the given symbol
const ast::IdentifierExpression* Expr(const Source& source, Symbol symbol) {
return create<ast::IdentifierExpression>(source, symbol);
}
/// @param symbol the identifier symbol
/// @return an ast::IdentifierExpression with the given symbol
const ast::IdentifierExpression* Expr(Symbol symbol) {
return create<ast::IdentifierExpression>(symbol);
}
/// @param source the source information
/// @param variable the AST variable
/// @return an ast::IdentifierExpression with the variable's symbol
const ast::IdentifierExpression* Expr(const Source& source,
const ast::Variable* variable) {
return create<ast::IdentifierExpression>(source, variable->symbol);
}
/// @param variable the AST variable
/// @return an ast::IdentifierExpression with the variable's symbol
const ast::IdentifierExpression* Expr(const ast::Variable* variable) {
return create<ast::IdentifierExpression>(variable->symbol);
}
/// @param source the source information
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const Source& source,
const char* name) {
return create<ast::IdentifierExpression>(source, Symbols().Register(name));
}
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const char* name) {
return create<ast::IdentifierExpression>(Symbols().Register(name));
}
/// @param source the source information
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const Source& source,
const std::string& name) {
return create<ast::IdentifierExpression>(source, Symbols().Register(name));
}
/// @param name the identifier name
/// @return an ast::IdentifierExpression with the given name
const ast::IdentifierExpression* Expr(const std::string& name) {
return create<ast::IdentifierExpression>(Symbols().Register(name));
}
/// @param source the source information
/// @param value the boolean value
/// @return a Scalar constructor for the given value
const ast::BoolLiteralExpression* Expr(const Source& source, bool value) {
return create<ast::BoolLiteralExpression>(source, value);
}
/// @param value the boolean value
/// @return a Scalar constructor for the given value
const ast::BoolLiteralExpression* Expr(bool value) {
return create<ast::BoolLiteralExpression>(value);
}
/// @param source the source information
/// @param value the float value
/// @return a Scalar constructor for the given value
const ast::FloatLiteralExpression* Expr(const Source& source, f32 value) {
return create<ast::FloatLiteralExpression>(source, value);
}
/// @param value the float value
/// @return a Scalar constructor for the given value
const ast::FloatLiteralExpression* Expr(f32 value) {
return create<ast::FloatLiteralExpression>(value);
}
/// @param source the source information
/// @param value the integer value
/// @return a Scalar constructor for the given value
const ast::SintLiteralExpression* Expr(const Source& source, i32 value) {
return create<ast::SintLiteralExpression>(source, value);
}
/// @param value the integer value
/// @return a Scalar constructor for the given value
const ast::SintLiteralExpression* Expr(i32 value) {
return create<ast::SintLiteralExpression>(value);
}
/// @param source the source information
/// @param value the unsigned int value
/// @return a Scalar constructor for the given value
const ast::UintLiteralExpression* Expr(const Source& source, u32 value) {
return create<ast::UintLiteralExpression>(source, value);
}
/// @param value the unsigned int value
/// @return a Scalar constructor for the given value
const ast::UintLiteralExpression* Expr(u32 value) {
return create<ast::UintLiteralExpression>(value);
}
/// Converts `arg` to an `ast::Expression` using `Expr()`, then appends it to
/// `list`.
/// @param list the list to append too
/// @param arg the arg to create
template <typename ARG>
void Append(ast::ExpressionList& list, ARG&& arg) {
list.emplace_back(Expr(std::forward<ARG>(arg)));
}
/// Converts `arg0` and `args` to `ast::Expression`s using `Expr()`,
/// then appends them to `list`.
/// @param list the list to append too
/// @param arg0 the first argument
/// @param args the rest of the arguments
template <typename ARG0, typename... ARGS>
void Append(ast::ExpressionList& list, ARG0&& arg0, ARGS&&... args) {
Append(list, std::forward<ARG0>(arg0));
Append(list, std::forward<ARGS>(args)...);
}
/// @return an empty list of expressions
ast::ExpressionList ExprList() { return {}; }
/// @param args the list of expressions
/// @return the list of expressions converted to `ast::Expression`s using
/// `Expr()`,
template <typename... ARGS>
ast::ExpressionList ExprList(ARGS&&... args) {
ast::ExpressionList list;
list.reserve(sizeof...(args));
Append(list, std::forward<ARGS>(args)...);
return list;
}
/// @param list the list of expressions
/// @return `list`
ast::ExpressionList ExprList(ast::ExpressionList list) { return list; }
/// @param args the arguments for the type constructor
/// @return an `ast::CallExpression` of type `ty`, with the values
/// of `args` converted to `ast::Expression`s using `Expr()`
template <typename T, typename... ARGS>
const ast::CallExpression* Construct(ARGS&&... args) {
return Construct(ty.Of<T>(), std::forward<ARGS>(args)...);
}
/// @param type the type to construct
/// @param args the arguments for the constructor
/// @return an `ast::CallExpression` of `type` constructed with the
/// values `args`.
template <typename... ARGS>
const ast::CallExpression* Construct(const ast::Type* type, ARGS&&... args) {
return Construct(source_, type, std::forward<ARGS>(args)...);
}
/// @param source the source information
/// @param type the type to construct
/// @param args the arguments for the constructor
/// @return an `ast::CallExpression` of `type` constructed with the
/// values `args`.
template <typename... ARGS>
const ast::CallExpression* Construct(const Source& source,
const ast::Type* type,
ARGS&&... args) {
return create<ast::CallExpression>(source, type,
ExprList(std::forward<ARGS>(args)...));
}
/// @param expr the expression for the bitcast
/// @return an `ast::BitcastExpression` of type `ty`, with the values of
/// `expr` converted to `ast::Expression`s using `Expr()`
template <typename T, typename EXPR>
const ast::BitcastExpression* Bitcast(EXPR&& expr) {
return Bitcast(ty.Of<T>(), std::forward<EXPR>(expr));
}
/// @param type the type to cast to
/// @param expr the expression for the bitcast
/// @return an `ast::BitcastExpression` of `type` constructed with the values
/// `expr`.
template <typename EXPR>
const ast::BitcastExpression* Bitcast(const ast::Type* type, EXPR&& expr) {
return create<ast::BitcastExpression>(type, Expr(std::forward<EXPR>(expr)));
}
/// @param source the source information
/// @param type the type to cast to
/// @param expr the expression for the bitcast
/// @return an `ast::BitcastExpression` of `type` constructed with the values
/// `expr`.
template <typename EXPR>
const ast::BitcastExpression* Bitcast(const Source& source,
const ast::Type* type,
EXPR&& expr) {
return create<ast::BitcastExpression>(source, type,
Expr(std::forward<EXPR>(expr)));
}
/// @param args the arguments for the vector constructor
/// @param type the vector type
/// @param size the vector size
/// @return an `ast::CallExpression` of a `size`-element vector of
/// type `type`, constructed with the values `args`.
template <typename... ARGS>
const ast::CallExpression* vec(const ast::Type* type,
uint32_t size,
ARGS&&... args) {
return Construct(ty.vec(type, size), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the vector constructor
/// @return an `ast::CallExpression` of a 2-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* vec2(ARGS&&... args) {
return Construct(ty.vec2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the vector constructor
/// @return an `ast::CallExpression` of a 3-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* vec3(ARGS&&... args) {
return Construct(ty.vec3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the vector constructor
/// @return an `ast::CallExpression` of a 4-element vector of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* vec4(ARGS&&... args) {
return Construct(ty.vec4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 2x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat2x2(ARGS&&... args) {
return Construct(ty.mat2x2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 2x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat2x3(ARGS&&... args) {
return Construct(ty.mat2x3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 2x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat2x4(ARGS&&... args) {
return Construct(ty.mat2x4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 3x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat3x2(ARGS&&... args) {
return Construct(ty.mat3x2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 3x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat3x3(ARGS&&... args) {
return Construct(ty.mat3x3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 3x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat3x4(ARGS&&... args) {
return Construct(ty.mat3x4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 4x2 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat4x2(ARGS&&... args) {
return Construct(ty.mat4x2<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 4x3 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat4x3(ARGS&&... args) {
return Construct(ty.mat4x3<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the matrix constructor
/// @return an `ast::CallExpression` of a 4x4 matrix of type
/// `T`, constructed with the values `args`.
template <typename T, typename... ARGS>
const ast::CallExpression* mat4x4(ARGS&&... args) {
return Construct(ty.mat4x4<T>(), std::forward<ARGS>(args)...);
}
/// @param args the arguments for the array constructor
/// @return an `ast::CallExpression` of an array with element type
/// `T` and size `N`, constructed with the values `args`.
template <typename T, int N, typename... ARGS>
const ast::CallExpression* array(ARGS&&... args) {
return Construct(ty.array<T, N>(), std::forward<ARGS>(args)...);
}
/// @param subtype the array element type
/// @param n the array size. nullptr represents a runtime-array.
/// @param args the arguments for the array constructor
/// @return an `ast::CallExpression` of an array with element type
/// `subtype`, constructed with the values `args`.
template <typename EXPR, typename... ARGS>
const ast::CallExpression* array(const ast::Type* subtype,
EXPR&& n,
ARGS&&... args) {
return Construct(ty.array(subtype, std::forward<EXPR>(n)),
std::forward<ARGS>(args)...);
}
/// @param name the variable name
/// @param type the variable type
/// @param optional the optional variable settings.
/// Can be any of the following, in any order:
/// * ast::StorageClass - specifies the variable storage class
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::AttributeList - specifies the variable's attributes
/// Note that repeated arguments of the same type will use the last argument's
/// value.
/// @returns a `ast::Variable` with the given name, type and additional
/// options
template <typename NAME, typename... OPTIONAL>
const ast::Variable* Var(NAME&& name,
const ast::Type* type,
OPTIONAL&&... optional) {
VarOptionals opts(std::forward<OPTIONAL>(optional)...);
return create<ast::Variable>(Sym(std::forward<NAME>(name)), opts.storage,
opts.access, type, false, opts.constructor,
std::move(opts.attributes));
}
/// @param source the variable source
/// @param name the variable name
/// @param type the variable type
/// @param optional the optional variable settings.
/// Can be any of the following, in any order:
/// * ast::StorageClass - specifies the variable storage class
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::AttributeList - specifies the variable's attributes
/// Note that repeated arguments of the same type will use the last argument's
/// value.
/// @returns a `ast::Variable` with the given name, storage and type
template <typename NAME, typename... OPTIONAL>
const ast::Variable* Var(const Source& source,
NAME&& name,
const ast::Type* type,
OPTIONAL&&... optional) {
VarOptionals opts(std::forward<OPTIONAL>(optional)...);
return create<ast::Variable>(source, Sym(std::forward<NAME>(name)),
opts.storage, opts.access, type, false,
opts.constructor, std::move(opts.attributes));
}
/// @param name the variable name
/// @param type the variable type
/// @param constructor constructor expression
/// @param attributes optional variable attributes
/// @returns a constant `ast::Variable` with the given name and type
template <typename NAME>
const ast::Variable* Const(NAME&& name,
const ast::Type* type,
const ast::Expression* constructor,
ast::AttributeList attributes = {}) {
return create<ast::Variable>(
Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
ast::Access::kUndefined, type, true, constructor, attributes);
}
/// @param source the variable source
/// @param name the variable name
/// @param type the variable type
/// @param constructor constructor expression
/// @param attributes optional variable attributes
/// @returns a constant `ast::Variable` with the given name and type
template <typename NAME>
const ast::Variable* Const(const Source& source,
NAME&& name,
const ast::Type* type,
const ast::Expression* constructor,
ast::AttributeList attributes = {}) {
return create<ast::Variable>(
source, Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
ast::Access::kUndefined, type, true, constructor, attributes);
}
/// @param name the parameter name
/// @param type the parameter type
/// @param attributes optional parameter attributes
/// @returns a constant `ast::Variable` with the given name and type
template <typename NAME>
const ast::Variable* Param(NAME&& name,
const ast::Type* type,
ast::AttributeList attributes = {}) {
return create<ast::Variable>(
Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
ast::Access::kUndefined, type, true, nullptr, attributes);
}
/// @param source the parameter source
/// @param name the parameter name
/// @param type the parameter type
/// @param attributes optional parameter attributes
/// @returns a constant `ast::Variable` with the given name and type
template <typename NAME>
const ast::Variable* Param(const Source& source,
NAME&& name,
const ast::Type* type,
ast::AttributeList attributes = {}) {
return create<ast::Variable>(
source, Sym(std::forward<NAME>(name)), ast::StorageClass::kNone,
ast::Access::kUndefined, type, true, nullptr, attributes);
}
/// @param name the variable name
/// @param type the variable type
/// @param optional the optional variable settings.
/// Can be any of the following, in any order:
/// * ast::StorageClass - specifies the variable storage class
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::AttributeList - specifies the variable's attributes
/// Note that repeated arguments of the same type will use the last argument's
/// value.
/// @returns a new `ast::Variable`, which is automatically registered as a
/// global variable with the ast::Module.
template <typename NAME,
typename... OPTIONAL,
typename = DisableIfSource<NAME>>
const ast::Variable* Global(NAME&& name,
const ast::Type* type,
OPTIONAL&&... optional) {
auto* var = Var(std::forward<NAME>(name), type,
std::forward<OPTIONAL>(optional)...);
AST().AddGlobalVariable(var);
return var;
}
/// @param source the variable source
/// @param name the variable name
/// @param type the variable type
/// @param optional the optional variable settings.
/// Can be any of the following, in any order:
/// * ast::StorageClass - specifies the variable storage class
/// * ast::Access - specifies the variable's access control
/// * ast::Expression* - specifies the variable's initializer expression
/// * ast::AttributeList - specifies the variable's attributes
/// Note that repeated arguments of the same type will use the last argument's
/// value.
/// @returns a new `ast::Variable`, which is automatically registered as a
/// global variable with the ast::Module.
template <typename NAME, typename... OPTIONAL>
const ast::Variable* Global(const Source& source,
NAME&& name,
const ast::Type* type,
OPTIONAL&&... optional) {
auto* var = Var(source, std::forward<NAME>(name), type,
std::forward<OPTIONAL>(optional)...);
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
AST().AddGlobalVariable(var);
return var;
}
/// @param name the variable name
/// @param type the variable type
/// @param constructor constructor expression
/// @param attributes optional variable attributes
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// @returns a const `ast::Variable` constructed by calling Var() with the
/// arguments of `args`, which is automatically registered as a global
/// variable with the ast::Module.
template <typename NAME>
const ast::Variable* GlobalConst(NAME&& name,
const ast::Type* type,
const ast::Expression* constructor,
ast::AttributeList attributes = {}) {
auto* var = Const(std::forward<NAME>(name), type, constructor,
std::move(attributes));
AST().AddGlobalVariable(var);
return var;
}
/// @param source the variable source
/// @param name the variable name
/// @param type the variable type
/// @param constructor constructor expression
/// @param attributes optional variable attributes
/// @returns a const `ast::Variable` constructed by calling Var() with the
/// arguments of `args`, which is automatically registered as a global
/// variable with the ast::Module.
template <typename NAME>
const ast::Variable* GlobalConst(const Source& source,
NAME&& name,
const ast::Type* type,
const ast::Expression* constructor,
ast::AttributeList attributes = {}) {
auto* var = Const(source, std::forward<NAME>(name), type, constructor,
std::move(attributes));
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
AST().AddGlobalVariable(var);
return var;
}
/// @param source the source information
/// @param expr the expression to take the address of
/// @return an ast::UnaryOpExpression that takes the address of `expr`
template <typename EXPR>
const ast::UnaryOpExpression* AddressOf(const Source& source, EXPR&& expr) {
return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kAddressOf,
Expr(std::forward<EXPR>(expr)));
}
/// @param expr the expression to take the address of
/// @return an ast::UnaryOpExpression that takes the address of `expr`
template <typename EXPR>
const ast::UnaryOpExpression* AddressOf(EXPR&& expr) {
return create<ast::UnaryOpExpression>(ast::UnaryOp::kAddressOf,
Expr(std::forward<EXPR>(expr)));
}
/// @param source the source information
/// @param expr the expression to perform an indirection on
/// @return an ast::UnaryOpExpression that dereferences the pointer `expr`
template <typename EXPR>
const ast::UnaryOpExpression* Deref(const Source& source, EXPR&& expr) {
return create<ast::UnaryOpExpression>(source, ast::UnaryOp::kIndirection,
Expr(std::forward<EXPR>(expr)));
}
/// @param expr the expression to perform an indirection on
/// @return an ast::UnaryOpExpression that dereferences the pointer `expr`
template <typename EXPR>
const ast::UnaryOpExpression* Deref(EXPR&& expr) {
return create<ast::UnaryOpExpression>(ast::UnaryOp::kIndirection,
Expr(std::forward<EXPR>(expr)));
}
/// @param source the source information
/// @param func the function name
/// @param args the function call arguments
/// @returns a `ast::CallExpression` to the function `func`, with the
/// arguments of `args` converted to `ast::Expression`s using `Expr()`.
template <typename NAME, typename... ARGS>
const ast::CallExpression* Call(const Source& source,
NAME&& func,
ARGS&&... args) {
return create<ast::CallExpression>(source, Expr(func),
ExprList(std::forward<ARGS>(args)...));
}
/// @param func the function name
/// @param args the function call arguments
/// @returns a `ast::CallExpression` to the function `func`, with the
/// arguments of `args` converted to `ast::Expression`s using `Expr()`.
template <typename NAME, typename... ARGS, typename = DisableIfSource<NAME>>
const ast::CallExpression* Call(NAME&& func, ARGS&&... args) {
return create<ast::CallExpression>(Expr(func),
ExprList(std::forward<ARGS>(args)...));
}
/// @param source the source information
/// @param call the call expression to wrap in a call statement
/// @returns a `ast::CallStatement` for the given call expression
const ast::CallStatement* CallStmt(const Source& source,
const ast::CallExpression* call) {
return create<ast::CallStatement>(source, call);
}
/// @param call the call expression to wrap in a call statement
/// @returns a `ast::CallStatement` for the given call expression
const ast::CallStatement* CallStmt(const ast::CallExpression* call) {
return create<ast::CallStatement>(call);
}
/// @param source the source information
/// @returns a `ast::PhonyExpression`
const ast::PhonyExpression* Phony(const Source& source) {
return create<ast::PhonyExpression>(source);
}
/// @returns a `ast::PhonyExpression`
const ast::PhonyExpression* Phony() { return create<ast::PhonyExpression>(); }
/// @param expr the expression to ignore
/// @returns a `ast::AssignmentStatement` that assigns 'expr' to the phony
/// (underscore) variable.
template <typename EXPR>
const ast::AssignmentStatement* Ignore(EXPR&& expr) {
return create<ast::AssignmentStatement>(Phony(), Expr(expr));
}
/// @param lhs the left hand argument to the addition operation
/// @param rhs the right hand argument to the addition operation
/// @returns a `ast::BinaryExpression` summing the arguments `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Add(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kAdd,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the and operation
/// @param rhs the right hand argument to the and operation
/// @returns a `ast::BinaryExpression` bitwise anding `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* And(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kAnd,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the or operation
/// @param rhs the right hand argument to the or operation
/// @returns a `ast::BinaryExpression` bitwise or-ing `lhs` and `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Or(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kOr,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the subtraction operation
/// @param rhs the right hand argument to the subtraction operation
/// @returns a `ast::BinaryExpression` subtracting `rhs` from `lhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Sub(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kSubtract,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the multiplication operation
/// @param rhs the right hand argument to the multiplication operation
/// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Mul(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kMultiply,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param source the source information
/// @param lhs the left hand argument to the multiplication operation
/// @param rhs the right hand argument to the multiplication operation
/// @returns a `ast::BinaryExpression` multiplying `rhs` from `lhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Mul(const Source& source, LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(source, ast::BinaryOp::kMultiply,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the division operation
/// @param rhs the right hand argument to the division operation
/// @returns a `ast::BinaryExpression` dividing `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::Expression* Div(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kDivide,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the modulo operation
/// @param rhs the right hand argument to the modulo operation
/// @returns a `ast::BinaryExpression` applying modulo of `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::Expression* Mod(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kModulo,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the bit shift right operation
/// @param rhs the right hand argument to the bit shift right operation
/// @returns a `ast::BinaryExpression` bit shifting right `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Shr(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kShiftRight,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the bit shift left operation
/// @param rhs the right hand argument to the bit shift left operation
/// @returns a `ast::BinaryExpression` bit shifting left `lhs` by `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Shl(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kShiftLeft,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param lhs the left hand argument to the equal expression
/// @param rhs the right hand argument to the equal expression
/// @returns a `ast::BinaryExpression` comparing `lhs` equal to `rhs`
template <typename LHS, typename RHS>
const ast::BinaryExpression* Equal(LHS&& lhs, RHS&& rhs) {
return create<ast::BinaryExpression>(ast::BinaryOp::kEqual,
Expr(std::forward<LHS>(lhs)),
Expr(std::forward<RHS>(rhs)));
}
/// @param source the source information
/// @param obj the object for the index accessor expression
/// @param idx the index argument for the index accessor expression
/// @returns a `ast::IndexAccessorExpression` that indexes `arr` with `idx`
template <typename OBJ, typename IDX>
const ast::IndexAccessorExpression* IndexAccessor(const Source& source,
OBJ&& obj,
IDX&& idx) {
return create<ast::IndexAccessorExpression>(
source, Expr(std::forward<OBJ>(obj)), Expr(std::forward<IDX>(idx)));
}
/// @param obj the object for the index accessor expression
/// @param idx the index argument for the index accessor expression
/// @returns a `ast::IndexAccessorExpression` that indexes `arr` with `idx`
template <typename OBJ, typename IDX>
const ast::IndexAccessorExpression* IndexAccessor(OBJ&& obj, IDX&& idx) {
return create<ast::IndexAccessorExpression>(Expr(std::forward<OBJ>(obj)),
Expr(std::forward<IDX>(idx)));
}
/// @param source the source information
/// @param obj the object for the member accessor expression
/// @param idx the index argument for the member accessor expression
/// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx`
template <typename OBJ, typename IDX>
const ast::MemberAccessorExpression* MemberAccessor(const Source& source,
OBJ&& obj,
IDX&& idx) {
return create<ast::MemberAccessorExpression>(
source, Expr(std::forward<OBJ>(obj)), Expr(std::forward<IDX>(idx)));
}
/// @param obj the object for the member accessor expression
/// @param idx the index argument for the member accessor expression
/// @returns a `ast::MemberAccessorExpression` that indexes `obj` with `idx`
template <typename OBJ, typename IDX>
const ast::MemberAccessorExpression* MemberAccessor(OBJ&& obj, IDX&& idx) {
return create<ast::MemberAccessorExpression>(Expr(std::forward<OBJ>(obj)),
Expr(std::forward<IDX>(idx)));
}
/// Creates a ast::StructMemberOffsetAttribute
/// @param val the offset value
/// @returns the offset attribute pointer
const ast::StructMemberOffsetAttribute* MemberOffset(uint32_t val) {
return create<ast::StructMemberOffsetAttribute>(source_, val);
}
/// Creates a ast::StructMemberSizeAttribute
/// @param source the source information
/// @param val the size value
/// @returns the size attribute pointer
const ast::StructMemberSizeAttribute* MemberSize(const Source& source,
uint32_t val) {
return create<ast::StructMemberSizeAttribute>(source, val);
}
/// Creates a ast::StructMemberSizeAttribute
/// @param val the size value
/// @returns the size attribute pointer
const ast::StructMemberSizeAttribute* MemberSize(uint32_t val) {
return create<ast::StructMemberSizeAttribute>(source_, val);
}
/// Creates a ast::StructMemberAlignAttribute
/// @param source the source information
/// @param val the align value
/// @returns the align attribute pointer
const ast::StructMemberAlignAttribute* MemberAlign(const Source& source,
uint32_t val) {
return create<ast::StructMemberAlignAttribute>(source, val);
}
/// Creates a ast::StructMemberAlignAttribute
/// @param val the align value
/// @returns the align attribute pointer
const ast::StructMemberAlignAttribute* MemberAlign(uint32_t val) {
return create<ast::StructMemberAlignAttribute>(source_, val);
}
/// Creates a ast::StructBlockAttribute
/// @returns the struct block attribute pointer
const ast::StructBlockAttribute* StructBlock() {
return create<ast::StructBlockAttribute>();
}
/// Creates the ast::GroupAttribute
/// @param value group attribute index
/// @returns the group attribute pointer
const ast::GroupAttribute* Group(uint32_t value) {
return create<ast::GroupAttribute>(value);
}
/// Creates the ast::BindingAttribute
/// @param value the binding index
/// @returns the binding deocration pointer
const ast::BindingAttribute* Binding(uint32_t value) {
return create<ast::BindingAttribute>(value);
}
/// Convenience function to create both a ast::GroupAttribute and
/// ast::BindingAttribute
/// @param group the group index
/// @param binding the binding index
/// @returns a attribute list with both the group and binding attributes
ast::AttributeList GroupAndBinding(uint32_t group, uint32_t binding) {
return {Group(group), Binding(binding)};
}
/// Creates an ast::Function and registers it with the ast::Module.
/// @param source the source information
/// @param name the function name
/// @param params the function parameters
/// @param type the function return type
/// @param body the function body
/// @param attributes the optional function attributes
/// @param return_type_attributes the optional function return type
/// attributes
/// @returns the function pointer
template <typename NAME>
const ast::Function* Func(const Source& source,
NAME&& name,
ast::VariableList params,
const ast::Type* type,
ast::StatementList body,
ast::AttributeList attributes = {},
ast::AttributeList return_type_attributes = {}) {
auto* func = create<ast::Function>(
source, Sym(std::forward<NAME>(name)), params, type,
create<ast::BlockStatement>(body), attributes, return_type_attributes);
AST().AddFunction(func);
return func;
}
/// Creates an ast::Function and registers it with the ast::Module.
/// @param name the function name
/// @param params the function parameters
/// @param type the function return type
/// @param body the function body
/// @param attributes the optional function attributes
/// @param return_type_attributes the optional function return type
/// attributes
/// @returns the function pointer
template <typename NAME>
const ast::Function* Func(NAME&& name,
ast::VariableList params,
const ast::Type* type,
ast::StatementList body,
ast::AttributeList attributes = {},
ast::AttributeList return_type_attributes = {}) {
auto* func = create<ast::Function>(Sym(std::forward<NAME>(name)), params,
type, create<ast::BlockStatement>(body),
attributes, return_type_attributes);
AST().AddFunction(func);
return func;
}
/// Creates an ast::BreakStatement
/// @param source the source information
/// @returns the break statement pointer
const ast::BreakStatement* Break(const Source& source) {
return create<ast::BreakStatement>(source);
}
/// Creates an ast::BreakStatement
/// @returns the break statement pointer
const ast::BreakStatement* Break() { return create<ast::BreakStatement>(); }
/// Creates an ast::ContinueStatement
/// @param source the source information
/// @returns the continue statement pointer
const ast::ContinueStatement* Continue(const Source& source) {
return create<ast::ContinueStatement>(source);
}
/// Creates an ast::ContinueStatement
/// @returns the continue statement pointer
const ast::ContinueStatement* Continue() {
return create<ast::ContinueStatement>();
}
/// Creates an ast::ReturnStatement with no return value
/// @param source the source information
/// @returns the return statement pointer
const ast::ReturnStatement* Return(const Source& source) {
return create<ast::ReturnStatement>(source);
}
/// Creates an ast::ReturnStatement with no return value
/// @returns the return statement pointer
const ast::ReturnStatement* Return() {
return create<ast::ReturnStatement>();
}
/// Creates an ast::ReturnStatement with the given return value
/// @param source the source information
/// @param val the return value
/// @returns the return statement pointer
template <typename EXPR>
const ast::ReturnStatement* Return(const Source& source, EXPR&& val) {
return create<ast::ReturnStatement>(source, Expr(std::forward<EXPR>(val)));
}
/// Creates an ast::ReturnStatement with the given return value
/// @param val the return value
/// @returns the return statement pointer
template <typename EXPR, typename = DisableIfSource<EXPR>>
const ast::ReturnStatement* Return(EXPR&& val) {
return create<ast::ReturnStatement>(Expr(std::forward<EXPR>(val)));
}
/// Creates an ast::DiscardStatement
/// @param source the source information
/// @returns the discard statement pointer
const ast::DiscardStatement* Discard(const Source& source) {
return create<ast::DiscardStatement>(source);
}
/// Creates an ast::DiscardStatement
/// @returns the discard statement pointer
const ast::DiscardStatement* Discard() {
return create<ast::DiscardStatement>();
}
/// Creates a ast::Alias registering it with the AST().TypeDecls().
/// @param source the source information
/// @param name the alias name
/// @param type the alias target type
/// @returns the alias type
template <typename NAME>
const ast::Alias* Alias(const Source& source,
NAME&& name,
const ast::Type* type) {
auto* out = ty.alias(source, std::forward<NAME>(name), type);
AST().AddTypeDecl(out);
return out;
}
/// Creates a ast::Alias registering it with the AST().TypeDecls().
/// @param name the alias name
/// @param type the alias target type
/// @returns the alias type
template <typename NAME>
const ast::Alias* Alias(NAME&& name, const ast::Type* type) {
auto* out = ty.alias(std::forward<NAME>(name), type);
AST().AddTypeDecl(out);
return out;
}
/// Creates a ast::Struct registering it with the AST().TypeDecls().
/// @param source the source information
/// @param name the struct name
/// @param members the struct members
/// @param attributes the optional struct attributes
/// @returns the struct type
template <typename NAME>
const ast::Struct* Structure(const Source& source,
NAME&& name,
ast::StructMemberList members,
ast::AttributeList attributes = {}) {
auto sym = Sym(std::forward<NAME>(name));
auto* type = create<ast::Struct>(source, sym, std::move(members),
std::move(attributes));
AST().AddTypeDecl(type);
return type;
}
/// Creates a ast::Struct registering it with the AST().TypeDecls().
/// @param name the struct name
/// @param members the struct members
/// @param attributes the optional struct attributes
/// @returns the struct type
template <typename NAME>
const ast::Struct* Structure(NAME&& name,
ast::StructMemberList members,
ast::AttributeList attributes = {}) {
auto sym = Sym(std::forward<NAME>(name));
auto* type =
create<ast::Struct>(sym, std::move(members), std::move(attributes));
AST().AddTypeDecl(type);
return type;
}
/// Creates a ast::StructMember
/// @param source the source information
/// @param name the struct member name
/// @param type the struct member type
/// @param attributes the optional struct member attributes
/// @returns the struct member pointer
template <typename NAME>
const ast::StructMember* Member(const Source& source,
NAME&& name,
const ast::Type* type,
ast::AttributeList attributes = {}) {
return create<ast::StructMember>(source, Sym(std::forward<NAME>(name)),
type, std::move(attributes));
}
/// Creates a ast::StructMember
/// @param name the struct member name
/// @param type the struct member type
/// @param attributes the optional struct member attributes
/// @returns the struct member pointer
template <typename NAME>
const ast::StructMember* Member(NAME&& name,
const ast::Type* type,
ast::AttributeList attributes = {}) {
return create<ast::StructMember>(source_, Sym(std::forward<NAME>(name)),
type, std::move(attributes));
}
/// Creates a ast::StructMember with the given byte offset
/// @param offset the offset to use in the StructMemberOffsetattribute
/// @param name the struct member name
/// @param type the struct member type
/// @returns the struct member pointer
template <typename NAME>
const ast::StructMember* Member(uint32_t offset,
NAME&& name,
const ast::Type* type) {
return create<ast::StructMember>(
source_, Sym(std::forward<NAME>(name)), type,
ast::AttributeList{
create<ast::StructMemberOffsetAttribute>(offset),
});
}
/// Creates a ast::BlockStatement with input statements
/// @param source the source information for the block
/// @param statements statements of block
/// @returns the block statement pointer
template <typename... Statements>
const ast::BlockStatement* Block(const Source& source,
Statements&&... statements) {
return create<ast::BlockStatement>(
source, ast::StatementList{std::forward<Statements>(statements)...});
}
/// Creates a ast::BlockStatement with input statements
/// @param statements statements of block
/// @returns the block statement pointer
template <typename... STATEMENTS, typename = DisableIfSource<STATEMENTS...>>
const ast::BlockStatement* Block(STATEMENTS&&... statements) {
return create<ast::BlockStatement>(
ast::StatementList{std::forward<STATEMENTS>(statements)...});
}
/// Creates a ast::ElseStatement with input condition and body
/// @param condition the else condition expression
/// @param body the else body
/// @returns the else statement pointer
template <typename CONDITION>
const ast::ElseStatement* Else(CONDITION&& condition,
const ast::BlockStatement* body) {
return create<ast::ElseStatement>(Expr(std::forward<CONDITION>(condition)),
body);
}
/// Creates a ast::ElseStatement with no condition and body
/// @param body the else body
/// @returns the else statement pointer
const ast::ElseStatement* Else(const ast::BlockStatement* body) {
return create<ast::ElseStatement>(nullptr, body);
}
/// Creates a ast::IfStatement with input condition, body, and optional
/// variadic else statements
/// @param source the source information for the if statement
/// @param condition the if statement condition expression
/// @param body the if statement body
/// @param elseStatements optional variadic else statements
/// @returns the if statement pointer
template <typename CONDITION, typename... ELSE_STATEMENTS>
const ast::IfStatement* If(const Source& source,
CONDITION&& condition,
const ast::BlockStatement* body,
ELSE_STATEMENTS&&... elseStatements) {
return create<ast::IfStatement>(
source, Expr(std::forward<CONDITION>(condition)), body,
ast::ElseStatementList{
std::forward<ELSE_STATEMENTS>(elseStatements)...});
}
/// Creates a ast::IfStatement with input condition, body, and optional
/// variadic else statements
/// @param condition the if statement condition expression
/// @param body the if statement body
/// @param elseStatements optional variadic else statements
/// @returns the if statement pointer
template <typename CONDITION, typename... ELSE_STATEMENTS>
const ast::IfStatement* If(CONDITION&& condition,
const ast::BlockStatement* body,
ELSE_STATEMENTS&&... elseStatements) {
return create<ast::IfStatement>(
Expr(std::forward<CONDITION>(condition)), body,
ast::ElseStatementList{
std::forward<ELSE_STATEMENTS>(elseStatements)...});
}
/// Creates a ast::AssignmentStatement with input lhs and rhs expressions
/// @param source the source information
/// @param lhs the left hand side expression initializer
/// @param rhs the right hand side expression initializer
/// @returns the assignment statement pointer
template <typename LhsExpressionInit, typename RhsExpressionInit>
const ast::AssignmentStatement* Assign(const Source& source,
LhsExpressionInit&& lhs,
RhsExpressionInit&& rhs) {
return create<ast::AssignmentStatement>(
source, Expr(std::forward<LhsExpressionInit>(lhs)),
Expr(std::forward<RhsExpressionInit>(rhs)));
}
/// Creates a ast::AssignmentStatement with input lhs and rhs expressions
/// @param lhs the left hand side expression initializer
/// @param rhs the right hand side expression initializer
/// @returns the assignment statement pointer
template <typename LhsExpressionInit, typename RhsExpressionInit>
const ast::AssignmentStatement* Assign(LhsExpressionInit&& lhs,
RhsExpressionInit&& rhs) {
return create<ast::AssignmentStatement>(
Expr(std::forward<LhsExpressionInit>(lhs)),
Expr(std::forward<RhsExpressionInit>(rhs)));
}
/// Creates a ast::LoopStatement with input body and optional continuing
/// @param source the source information
/// @param body the loop body
/// @param continuing the optional continuing block
/// @returns the loop statement pointer
const ast::LoopStatement* Loop(
const Source& source,
const ast::BlockStatement* body,
const ast::BlockStatement* continuing = nullptr) {
return create<ast::LoopStatement>(source, body, continuing);
}
/// Creates a ast::LoopStatement with input body and optional continuing
/// @param body the loop body
/// @param continuing the optional continuing block
/// @returns the loop statement pointer
const ast::LoopStatement* Loop(
const ast::BlockStatement* body,
const ast::BlockStatement* continuing = nullptr) {
return create<ast::LoopStatement>(body, continuing);
}
/// Creates a ast::ForLoopStatement with input body and optional initializer,
/// condition and continuing.
/// @param source the source information
/// @param init the optional loop initializer
/// @param cond the optional loop condition
/// @param cont the optional loop continuing
/// @param body the loop body
/// @returns the for loop statement pointer
template <typename COND>
const ast::ForLoopStatement* For(const Source& source,
const ast::Statement* init,
COND&& cond,
const ast::Statement* cont,
const ast::BlockStatement* body) {
return create<ast::ForLoopStatement>(
source, init, Expr(std::forward<COND>(cond)), cont, body);
}
/// Creates a ast::ForLoopStatement with input body and optional initializer,
/// condition and continuing.
/// @param init the optional loop initializer
/// @param cond the optional loop condition
/// @param cont the optional loop continuing
/// @param body the loop body
/// @returns the for loop statement pointer
template <typename COND>
const ast::ForLoopStatement* For(const ast::Statement* init,
COND&& cond,
const ast::Statement* cont,
const ast::BlockStatement* body) {
return create<ast::ForLoopStatement>(init, Expr(std::forward<COND>(cond)),
cont, body);
}
/// Creates a ast::VariableDeclStatement for the input variable
/// @param source the source information
/// @param var the variable to wrap in a decl statement
/// @returns the variable decl statement pointer
const ast::VariableDeclStatement* Decl(const Source& source,
const ast::Variable* var) {
return create<ast::VariableDeclStatement>(source, var);
}
/// Creates a ast::VariableDeclStatement for the input variable
/// @param var the variable to wrap in a decl statement
/// @returns the variable decl statement pointer
const ast::VariableDeclStatement* Decl(const ast::Variable* var) {
return create<ast::VariableDeclStatement>(var);
}
/// Creates a ast::SwitchStatement with input expression and cases
/// @param source the source information
/// @param condition the condition expression initializer
/// @param cases case statements
/// @returns the switch statement pointer
template <typename ExpressionInit, typename... Cases>
const ast::SwitchStatement* Switch(const Source& source,
ExpressionInit&& condition,
Cases&&... cases) {
return create<ast::SwitchStatement>(
source, Expr(std::forward<ExpressionInit>(condition)),
ast::CaseStatementList{std::forward<Cases>(cases)...});
}
/// Creates a ast::SwitchStatement with input expression and cases
/// @param condition the condition expression initializer
/// @param cases case statements
/// @returns the switch statement pointer
template <typename ExpressionInit,
typename... Cases,
typename = DisableIfSource<ExpressionInit>>
const ast::SwitchStatement* Switch(ExpressionInit&& condition,
Cases&&... cases) {
return create<ast::SwitchStatement>(
Expr(std::forward<ExpressionInit>(condition)),
ast::CaseStatementList{std::forward<Cases>(cases)...});
}
/// Creates a ast::CaseStatement with input list of selectors, and body
/// @param source the source information
/// @param selectors list of selectors
/// @param body the case body
/// @returns the case statement pointer
const ast::CaseStatement* Case(const Source& source,
ast::CaseSelectorList selectors,
const ast::BlockStatement* body = nullptr) {
return create<ast::CaseStatement>(source, std::move(selectors),
body ? body : Block());
}
/// Creates a ast::CaseStatement with input list of selectors, and body
/// @param selectors list of selectors
/// @param body the case body
/// @returns the case statement pointer
const ast::CaseStatement* Case(ast::CaseSelectorList selectors,
const ast::BlockStatement* body = nullptr) {
return create<ast::CaseStatement>(std::move(selectors),
body ? body : Block());
}
/// Convenient overload that takes a single selector
/// @param selector a single case selector
/// @param body the case body
/// @returns the case statement pointer
const ast::CaseStatement* Case(const ast::IntLiteralExpression* selector,
const ast::BlockStatement* body = nullptr) {
return Case(ast::CaseSelectorList{selector}, body);
}
/// Convenience function that creates a 'default' ast::CaseStatement
/// @param source the source information
/// @param body the case body
/// @returns the case statement pointer
const ast::CaseStatement* DefaultCase(
const Source& source,
const ast::BlockStatement* body = nullptr) {
return Case(source, ast::CaseSelectorList{}, body);
}
/// Convenience function that creates a 'default' ast::CaseStatement
/// @param body the case body
/// @returns the case statement pointer
const ast::CaseStatement* DefaultCase(
const ast::BlockStatement* body = nullptr) {
return Case(ast::CaseSelectorList{}, body);
}
/// Creates an ast::FallthroughStatement
/// @param source the source information
/// @returns the fallthrough statement pointer
const ast::FallthroughStatement* Fallthrough(const Source& source) {
return create<ast::FallthroughStatement>(source);
}
/// Creates an ast::FallthroughStatement
/// @returns the fallthrough statement pointer
const ast::FallthroughStatement* Fallthrough() {
return create<ast::FallthroughStatement>();
}
/// Creates an ast::BuiltinAttribute
/// @param source the source information
/// @param builtin the builtin value
/// @returns the builtin attribute pointer
const ast::BuiltinAttribute* Builtin(const Source& source,
ast::Builtin builtin) {
return create<ast::BuiltinAttribute>(source, builtin);
}
/// Creates an ast::BuiltinAttribute
/// @param builtin the builtin value
/// @returns the builtin attribute pointer
const ast::BuiltinAttribute* Builtin(ast::Builtin builtin) {
return create<ast::BuiltinAttribute>(source_, builtin);
}
/// Creates an ast::InterpolateAttribute
/// @param source the source information
/// @param type the interpolation type
/// @param sampling the interpolation sampling
/// @returns the interpolate attribute pointer
const ast::InterpolateAttribute* Interpolate(
const Source& source,
ast::InterpolationType type,
ast::InterpolationSampling sampling = ast::InterpolationSampling::kNone) {
return create<ast::InterpolateAttribute>(source, type, sampling);
}
/// Creates an ast::InterpolateAttribute
/// @param type the interpolation type
/// @param sampling the interpolation sampling
/// @returns the interpolate attribute pointer
const ast::InterpolateAttribute* Interpolate(
ast::InterpolationType type,
ast::InterpolationSampling sampling = ast::InterpolationSampling::kNone) {
return create<ast::InterpolateAttribute>(source_, type, sampling);
}
/// Creates an ast::InterpolateAttribute using flat interpolation
/// @param source the source information
/// @returns the interpolate attribute pointer
const ast::InterpolateAttribute* Flat(const Source& source) {
return Interpolate(source, ast::InterpolationType::kFlat);
}
/// Creates an ast::InterpolateAttribute using flat interpolation
/// @returns the interpolate attribute pointer
const ast::InterpolateAttribute* Flat() {
return Interpolate(ast::InterpolationType::kFlat);
}
/// Creates an ast::InvariantAttribute
/// @param source the source information
/// @returns the invariant attribute pointer
const ast::InvariantAttribute* Invariant(const Source& source) {
return create<ast::InvariantAttribute>(source);
}
/// Creates an ast::InvariantAttribute
/// @returns the invariant attribute pointer
const ast::InvariantAttribute* Invariant() {
return create<ast::InvariantAttribute>(source_);
}
/// Creates an ast::LocationAttribute
/// @param source the source information
/// @param location the location value
/// @returns the location attribute pointer
const ast::LocationAttribute* Location(const Source& source,
uint32_t location) {
return create<ast::LocationAttribute>(source, location);
}
/// Creates an ast::LocationAttribute
/// @param location the location value
/// @returns the location attribute pointer
const ast::LocationAttribute* Location(uint32_t location) {
return create<ast::LocationAttribute>(source_, location);
}
/// Creates an ast::OverrideAttribute with a specific constant ID
/// @param source the source information
/// @param id the id value
/// @returns the override attribute pointer
const ast::OverrideAttribute* Override(const Source& source, uint32_t id) {
return create<ast::OverrideAttribute>(source, id);
}
/// Creates an ast::OverrideAttribute with a specific constant ID
/// @param id the optional id value
/// @returns the override attribute pointer
const ast::OverrideAttribute* Override(uint32_t id) {
return Override(source_, id);
}
/// Creates an ast::OverrideAttribute without a constant ID
/// @param source the source information
/// @returns the override attribute pointer
const ast::OverrideAttribute* Override(const Source& source) {
return create<ast::OverrideAttribute>(source);
}
/// Creates an ast::OverrideAttribute without a constant ID
/// @returns the override attribute pointer
const ast::OverrideAttribute* Override() { return Override(source_); }
/// Creates an ast::StageAttribute
/// @param source the source information
/// @param stage the pipeline stage
/// @returns the stage attribute pointer
const ast::StageAttribute* Stage(const Source& source,
ast::PipelineStage stage) {
return create<ast::StageAttribute>(source, stage);
}
/// Creates an ast::StageAttribute
/// @param stage the pipeline stage
/// @returns the stage attribute pointer
const ast::StageAttribute* Stage(ast::PipelineStage stage) {
return create<ast::StageAttribute>(source_, stage);
}
/// Creates an ast::WorkgroupAttribute
/// @param x the x dimension expression
/// @returns the workgroup attribute pointer
template <typename EXPR_X>
const ast::WorkgroupAttribute* WorkgroupSize(EXPR_X&& x) {
return WorkgroupSize(std::forward<EXPR_X>(x), nullptr, nullptr);
}
/// Creates an ast::WorkgroupAttribute
/// @param x the x dimension expression
/// @param y the y dimension expression
/// @returns the workgroup attribute pointer
template <typename EXPR_X, typename EXPR_Y>
const ast::WorkgroupAttribute* WorkgroupSize(EXPR_X&& x, EXPR_Y&& y) {
return WorkgroupSize(std::forward<EXPR_X>(x), std::forward<EXPR_Y>(y),
nullptr);
}
/// Creates an ast::WorkgroupAttribute
/// @param source the source information
/// @param x the x dimension expression
/// @param y the y dimension expression
/// @param z the z dimension expression
/// @returns the workgroup attribute pointer
template <typename EXPR_X, typename EXPR_Y, typename EXPR_Z>
const ast::WorkgroupAttribute* WorkgroupSize(const Source& source,
EXPR_X&& x,
EXPR_Y&& y,
EXPR_Z&& z) {
return create<ast::WorkgroupAttribute>(
source, Expr(std::forward<EXPR_X>(x)), Expr(std::forward<EXPR_Y>(y)),
Expr(std::forward<EXPR_Z>(z)));
}
/// Creates an ast::WorkgroupAttribute
/// @param x the x dimension expression
/// @param y the y dimension expression
/// @param z the z dimension expression
/// @returns the workgroup attribute pointer
template <typename EXPR_X, typename EXPR_Y, typename EXPR_Z>
const ast::WorkgroupAttribute* WorkgroupSize(EXPR_X&& x,
EXPR_Y&& y,
EXPR_Z&& z) {
return create<ast::WorkgroupAttribute>(
source_, Expr(std::forward<EXPR_X>(x)), Expr(std::forward<EXPR_Y>(y)),
Expr(std::forward<EXPR_Z>(z)));
}
/// Creates an ast::DisableValidationAttribute
/// @param validation the validation to disable
/// @returns the disable validation attribute pointer
const ast::DisableValidationAttribute* Disable(
ast::DisabledValidation validation) {
return ASTNodes().Create<ast::DisableValidationAttribute>(ID(), validation);
}
/// Sets the current builder source to `src`
/// @param src the Source used for future create() calls
void SetSource(const Source& src) {
AssertNotMoved();
source_ = src;
}
/// Sets the current builder source to `loc`
/// @param loc the Source used for future create() calls
void SetSource(const Source::Location& loc) {
AssertNotMoved();
source_ = Source(loc);
}
/// Helper for returning the resolved semantic type of the expression `expr`.
/// @note As the Resolver is run when the Program is built, this will only be
/// useful for the Resolver itself and tests that use their own Resolver.
/// @param expr the AST expression
/// @return the resolved semantic type for the expression, or nullptr if the
/// expression has no resolved type.
const sem::Type* TypeOf(const ast::Expression* expr) const;
/// Helper for returning the resolved semantic type of the variable `var`.
/// @note As the Resolver is run when the Program is built, this will only be
/// useful for the Resolver itself and tests that use their own Resolver.
/// @param var the AST variable
/// @return the resolved semantic type for the variable, or nullptr if the
/// variable has no resolved type.
const sem::Type* TypeOf(const ast::Variable* var) const;
/// Helper for returning the resolved semantic type of the AST type `type`.
/// @note As the Resolver is run when the Program is built, this will only be
/// useful for the Resolver itself and tests that use their own Resolver.
/// @param type the AST type
/// @return the resolved semantic type for the type, or nullptr if the type
/// has no resolved type.
const sem::Type* TypeOf(const ast::Type* type) const;
/// Helper for returning the resolved semantic type of the AST type
/// declaration `type_decl`.
/// @note As the Resolver is run when the Program is built, this will only be
/// useful for the Resolver itself and tests that use their own Resolver.
/// @param type_decl the AST type declaration
/// @return the resolved semantic type for the type declaration, or nullptr if
/// the type declaration has no resolved type.
const sem::Type* TypeOf(const ast::TypeDecl* type_decl) const;
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// Wraps the ast::Expression in a statement. This is used by tests that
/// construct a partial AST and require the Resolver to reach these
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// nodes.
/// @param expr the ast::Expression to be wrapped by an ast::Statement
/// @return the ast::Statement that wraps the ast::Expression
const ast::Statement* WrapInStatement(const ast::Expression* expr);
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// Wraps the ast::Variable in a ast::VariableDeclStatement. This is used by
/// tests that construct a partial AST and require the Resolver to reach
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// these nodes.
/// @param v the ast::Variable to be wrapped by an ast::VariableDeclStatement
/// @return the ast::VariableDeclStatement that wraps the ast::Variable
const ast::VariableDeclStatement* WrapInStatement(const ast::Variable* v);
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// Returns the statement argument. Used as a passthrough-overload by
/// WrapInFunction().
/// @param stmt the ast::Statement
/// @return `stmt`
const ast::Statement* WrapInStatement(const ast::Statement* stmt);
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// Wraps the list of arguments in a simple function so that each is reachable
/// by the Resolver.
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// @param args a mix of ast::Expression, ast::Statement, ast::Variables.
/// @returns the function
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
template <typename... ARGS>
const ast::Function* WrapInFunction(ARGS&&... args) {
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
ast::StatementList stmts{WrapInStatement(std::forward<ARGS>(args))...};
return WrapInFunction(std::move(stmts));
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
}
/// @param stmts a list of ast::Statement that will be wrapped by a function,
/// so that each statement is reachable by the Resolver.
/// @returns the function
const ast::Function* WrapInFunction(ast::StatementList stmts);
Simplify usage of the TypeDeterminer in tests Make private all TypeDeterminer::DetermineXXX() methods, forcing all tests to use the root-level TypeDeterminer::Determine() method. Remove TypeDeterminer::RegisterVariableForTesting(). The main use for calling the TypeDeterminer::DetermineXXX() methods was to perform type determination on a partial AST. This was messy and often resulting in multiple calls into TypeDeterminer. Most tests already perform a full TypeDeterminer::Determine() call when the program is built, so many of these were redundant. The exposure of these internal methods for testing also makes refactoring the TypeDeterminer extremely difficult. Add a number of ProgramBuilder helper methods for attaching the partial AST in these tests to the root of the AST, greatly simplifying the use of the TypeDeterminer: * ProgramBuilder::Global() and ProgramBuilder::GlobalConst() are helpers that register the variable returned by ProgramBuilder::Var() and ProgramBuilder::Const(), respectively. * ProgramBuilder::WrapInFunction() is a variadic function that accepts variables, expressions and statements, attaching these to the root of the AST via a dummy function. Most test classes now no longer use their own TypeDeterminer, and instead properly depend on the automatic type determination performed at Program build time. Bug: tint:390 Change-Id: Ie901890420c5de170cdf2a7aaef9b96fc3bebd60 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/40062 Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: David Neto <dneto@google.com>
2021-02-03 17:19:59 +00:00
/// The builder types
TypesBuilder const ty{this};
protected:
/// Asserts that the builder has not been moved.
void AssertNotMoved() const;
private:
ProgramID id_;
sem::Manager types_;
ASTNodeAllocator ast_nodes_;
SemNodeAllocator sem_nodes_;
ast::Module* ast_;
sem::Info sem_;
SymbolTable symbols_{id_};
diag::List diagnostics_;
/// The source to use when creating AST nodes without providing a Source as
/// the first argument.
Source source_;
/// Set by SetResolveOnBuild(). If set, the Resolver will be run on the
/// program when built.
bool resolve_on_build_ = true;
/// Set by MarkAsMoved(). Once set, no methods may be called on this builder.
bool moved_ = false;
};
//! @cond Doxygen_Suppress
// Various template specializations for ProgramBuilder::TypesBuilder::CToAST.
template <>
struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::i32> {
static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
return t->i32();
}
};
template <>
struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::u32> {
static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
return t->u32();
}
};
template <>
struct ProgramBuilder::TypesBuilder::CToAST<ProgramBuilder::f32> {
static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
return t->f32();
}
};
template <>
struct ProgramBuilder::TypesBuilder::CToAST<bool> {
static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
return t->bool_();
}
};
template <>
struct ProgramBuilder::TypesBuilder::CToAST<void> {
static const ast::Type* get(const ProgramBuilder::TypesBuilder* t) {
return t->void_();
}
};
//! @endcond
/// @param builder the ProgramBuilder
/// @returns the ProgramID of the ProgramBuilder
inline ProgramID ProgramIDOf(const ProgramBuilder* builder) {
return builder->ID();
}
} // namespace tint
#endif // SRC_PROGRAM_BUILDER_H_