2022-02-11 19:01:25 +00:00
|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
// Tests for pointer utilities.
|
|
|
|
|
|
|
|
#include "absl/memory/memory.h"
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
|
|
|
#include <cstddef>
|
|
|
|
#include <memory>
|
|
|
|
#include <string>
|
|
|
|
#include <type_traits>
|
|
|
|
#include <utility>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "gmock/gmock.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
using ::testing::ElementsAre;
|
|
|
|
using ::testing::Return;
|
|
|
|
|
|
|
|
// This class creates observable behavior to verify that a destructor has
|
|
|
|
// been called, via the instance_count variable.
|
|
|
|
class DestructorVerifier {
|
|
|
|
public:
|
|
|
|
DestructorVerifier() { ++instance_count_; }
|
|
|
|
DestructorVerifier(const DestructorVerifier&) = delete;
|
|
|
|
DestructorVerifier& operator=(const DestructorVerifier&) = delete;
|
|
|
|
~DestructorVerifier() { --instance_count_; }
|
|
|
|
|
|
|
|
// The number of instances of this class currently active.
|
|
|
|
static int instance_count() { return instance_count_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
// The number of instances of this class currently active.
|
|
|
|
static int instance_count_;
|
|
|
|
};
|
|
|
|
|
|
|
|
int DestructorVerifier::instance_count_ = 0;
|
|
|
|
|
|
|
|
TEST(WrapUniqueTest, WrapUnique) {
|
|
|
|
// Test that the unique_ptr is constructed properly by verifying that the
|
|
|
|
// destructor for its payload gets called at the proper time.
|
|
|
|
{
|
|
|
|
auto dv = new DestructorVerifier;
|
|
|
|
EXPECT_EQ(1, DestructorVerifier::instance_count());
|
|
|
|
std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv);
|
|
|
|
EXPECT_EQ(1, DestructorVerifier::instance_count());
|
|
|
|
}
|
|
|
|
EXPECT_EQ(0, DestructorVerifier::instance_count());
|
|
|
|
}
|
|
|
|
TEST(MakeUniqueTest, Basic) {
|
|
|
|
std::unique_ptr<std::string> p = absl::make_unique<std::string>();
|
|
|
|
EXPECT_EQ("", *p);
|
|
|
|
p = absl::make_unique<std::string>("hi");
|
|
|
|
EXPECT_EQ("hi", *p);
|
|
|
|
}
|
|
|
|
|
|
|
|
// InitializationVerifier fills in a pattern when allocated so we can
|
|
|
|
// distinguish between its default and value initialized states (without
|
|
|
|
// accessing truly uninitialized memory).
|
|
|
|
struct InitializationVerifier {
|
|
|
|
static constexpr int kDefaultScalar = 0x43;
|
|
|
|
static constexpr int kDefaultArray = 0x4B;
|
|
|
|
|
|
|
|
static void* operator new(size_t n) {
|
|
|
|
void* ret = ::operator new(n);
|
|
|
|
memset(ret, kDefaultScalar, n);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void* operator new[](size_t n) {
|
|
|
|
void* ret = ::operator new[](n);
|
|
|
|
memset(ret, kDefaultArray, n);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int a;
|
|
|
|
int b;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Initialization, MakeUnique) {
|
|
|
|
auto p = absl::make_unique<InitializationVerifier>();
|
|
|
|
|
|
|
|
EXPECT_EQ(0, p->a);
|
|
|
|
EXPECT_EQ(0, p->b);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Initialization, MakeUniqueArray) {
|
|
|
|
auto p = absl::make_unique<InitializationVerifier[]>(2);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, p[0].a);
|
|
|
|
EXPECT_EQ(0, p[0].b);
|
|
|
|
EXPECT_EQ(0, p[1].a);
|
|
|
|
EXPECT_EQ(0, p[1].b);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct MoveOnly {
|
|
|
|
MoveOnly() = default;
|
|
|
|
explicit MoveOnly(int i1) : ip1{new int{i1}} {}
|
|
|
|
MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {}
|
|
|
|
std::unique_ptr<int> ip1;
|
|
|
|
std::unique_ptr<int> ip2;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct AcceptMoveOnly {
|
|
|
|
explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {}
|
|
|
|
MoveOnly m_;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(MakeUniqueTest, MoveOnlyTypeAndValue) {
|
|
|
|
using ExpectedType = std::unique_ptr<MoveOnly>;
|
|
|
|
{
|
|
|
|
auto p = absl::make_unique<MoveOnly>();
|
|
|
|
static_assert(std::is_same<decltype(p), ExpectedType>::value,
|
|
|
|
"unexpected return type");
|
|
|
|
EXPECT_TRUE(!p->ip1);
|
|
|
|
EXPECT_TRUE(!p->ip2);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
auto p = absl::make_unique<MoveOnly>(1);
|
|
|
|
static_assert(std::is_same<decltype(p), ExpectedType>::value,
|
|
|
|
"unexpected return type");
|
|
|
|
EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
|
|
|
|
EXPECT_TRUE(!p->ip2);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
auto p = absl::make_unique<MoveOnly>(1, 2);
|
|
|
|
static_assert(std::is_same<decltype(p), ExpectedType>::value,
|
|
|
|
"unexpected return type");
|
|
|
|
EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
|
|
|
|
EXPECT_TRUE(p->ip2 && *p->ip2 == 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(MakeUniqueTest, AcceptMoveOnly) {
|
|
|
|
auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly());
|
|
|
|
p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly()));
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ArrayWatch {
|
|
|
|
void* operator new[](size_t n) {
|
|
|
|
allocs().push_back(n);
|
|
|
|
return ::operator new[](n);
|
|
|
|
}
|
|
|
|
void operator delete[](void* p) { return ::operator delete[](p); }
|
|
|
|
static std::vector<size_t>& allocs() {
|
|
|
|
static auto& v = *new std::vector<size_t>;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Make_UniqueTest, Array) {
|
|
|
|
// Ensure state is clean before we start so that these tests
|
|
|
|
// are order-agnostic.
|
|
|
|
ArrayWatch::allocs().clear();
|
|
|
|
|
|
|
|
auto p = absl::make_unique<ArrayWatch[]>(5);
|
|
|
|
static_assert(std::is_same<decltype(p), std::unique_ptr<ArrayWatch[]>>::value,
|
|
|
|
"unexpected return type");
|
|
|
|
EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch)));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Make_UniqueTest, NotAmbiguousWithStdMakeUnique) {
|
|
|
|
// Ensure that absl::make_unique is not ambiguous with std::make_unique.
|
|
|
|
// In C++14 mode, the below call to make_unique has both types as candidates.
|
|
|
|
struct TakesStdType {
|
|
|
|
explicit TakesStdType(const std::vector<int>& vec) {}
|
|
|
|
};
|
|
|
|
using absl::make_unique;
|
|
|
|
(void)make_unique<TakesStdType>(std::vector<int>());
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
// These tests shouldn't compile.
|
|
|
|
TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) {
|
|
|
|
auto m = MoveOnly();
|
|
|
|
auto p = absl::make_unique<AcceptMoveOnly>(m);
|
|
|
|
}
|
|
|
|
TEST(MakeUniqueTestNC, KnownBoundArray) {
|
|
|
|
auto p = absl::make_unique<ArrayWatch[5]>();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TEST(RawPtrTest, RawPointer) {
|
|
|
|
int i = 5;
|
|
|
|
EXPECT_EQ(&i, absl::RawPtr(&i));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(RawPtrTest, SmartPointer) {
|
|
|
|
int* o = new int(5);
|
|
|
|
std::unique_ptr<int> p(o);
|
|
|
|
EXPECT_EQ(o, absl::RawPtr(p));
|
|
|
|
}
|
|
|
|
|
|
|
|
class IntPointerNonConstDeref {
|
|
|
|
public:
|
|
|
|
explicit IntPointerNonConstDeref(int* p) : p_(p) {}
|
|
|
|
friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) {
|
|
|
|
return a.p_ != nullptr;
|
|
|
|
}
|
|
|
|
int& operator*() { return *p_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::unique_ptr<int> p_;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(RawPtrTest, SmartPointerNonConstDereference) {
|
|
|
|
int* o = new int(5);
|
|
|
|
IntPointerNonConstDeref p(o);
|
|
|
|
EXPECT_EQ(o, absl::RawPtr(p));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(RawPtrTest, NullValuedRawPointer) {
|
|
|
|
int* p = nullptr;
|
|
|
|
EXPECT_EQ(nullptr, absl::RawPtr(p));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(RawPtrTest, NullValuedSmartPointer) {
|
|
|
|
std::unique_ptr<int> p;
|
|
|
|
EXPECT_EQ(nullptr, absl::RawPtr(p));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(RawPtrTest, Nullptr) {
|
|
|
|
auto p = absl::RawPtr(nullptr);
|
|
|
|
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
|
|
|
|
EXPECT_EQ(nullptr, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(RawPtrTest, Null) {
|
|
|
|
auto p = absl::RawPtr(nullptr);
|
|
|
|
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
|
|
|
|
EXPECT_EQ(nullptr, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(RawPtrTest, Zero) {
|
|
|
|
auto p = absl::RawPtr(nullptr);
|
|
|
|
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
|
|
|
|
EXPECT_EQ(nullptr, p);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ShareUniquePtrTest, Share) {
|
|
|
|
auto up = absl::make_unique<int>();
|
|
|
|
int* rp = up.get();
|
|
|
|
auto sp = absl::ShareUniquePtr(std::move(up));
|
|
|
|
EXPECT_EQ(sp.get(), rp);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ShareUniquePtrTest, ShareNull) {
|
|
|
|
struct NeverDie {
|
|
|
|
using pointer = void*;
|
|
|
|
void operator()(pointer) {
|
|
|
|
ASSERT_TRUE(false) << "Deleter should not have been called.";
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
std::unique_ptr<void, NeverDie> up;
|
|
|
|
auto sp = absl::ShareUniquePtr(std::move(up));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(WeakenPtrTest, Weak) {
|
|
|
|
auto sp = std::make_shared<int>();
|
|
|
|
auto wp = absl::WeakenPtr(sp);
|
|
|
|
EXPECT_EQ(sp.get(), wp.lock().get());
|
|
|
|
sp.reset();
|
|
|
|
EXPECT_TRUE(wp.expired());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Should not compile.
|
|
|
|
/*
|
|
|
|
TEST(RawPtrTest, NotAPointer) {
|
|
|
|
absl::RawPtr(1.5);
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct SmartPointer {
|
|
|
|
using difference_type = char;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct PointerWith {
|
|
|
|
using element_type = int32_t;
|
|
|
|
using difference_type = int16_t;
|
|
|
|
template <typename U>
|
|
|
|
using rebind = SmartPointer<U>;
|
|
|
|
|
|
|
|
static PointerWith pointer_to(
|
|
|
|
element_type& r) { // NOLINT(runtime/references)
|
|
|
|
return PointerWith{&r};
|
|
|
|
}
|
|
|
|
|
|
|
|
element_type* ptr;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename... Args>
|
|
|
|
struct PointerWithout {};
|
|
|
|
|
|
|
|
TEST(PointerTraits, Types) {
|
|
|
|
using TraitsWith = absl::pointer_traits<PointerWith>;
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value));
|
|
|
|
EXPECT_TRUE((
|
|
|
|
std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value));
|
|
|
|
|
|
|
|
using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>;
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsWithout::pointer,
|
|
|
|
PointerWithout<double, int>>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>,
|
|
|
|
PointerWithout<int64_t, int>>::value));
|
|
|
|
|
|
|
|
using TraitsRawPtr = absl::pointer_traits<char*>;
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(PointerTraits, Functions) {
|
|
|
|
int i;
|
|
|
|
EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr);
|
|
|
|
EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorTraits, Typedefs) {
|
|
|
|
struct A {
|
|
|
|
struct value_type {};
|
|
|
|
};
|
|
|
|
EXPECT_TRUE((
|
|
|
|
std::is_same<A,
|
|
|
|
typename absl::allocator_traits<A>::allocator_type>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<A::value_type,
|
|
|
|
typename absl::allocator_traits<A>::value_type>::value));
|
|
|
|
|
|
|
|
struct X {};
|
|
|
|
struct HasPointer {
|
|
|
|
using value_type = X;
|
|
|
|
using pointer = SmartPointer<X>;
|
|
|
|
};
|
|
|
|
EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits<
|
|
|
|
HasPointer>::pointer>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<A::value_type*,
|
|
|
|
typename absl::allocator_traits<A>::pointer>::value));
|
|
|
|
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<
|
|
|
|
SmartPointer<const X>,
|
|
|
|
typename absl::allocator_traits<HasPointer>::const_pointer>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<const A::value_type*,
|
|
|
|
typename absl::allocator_traits<A>::const_pointer>::value));
|
|
|
|
|
|
|
|
struct HasVoidPointer {
|
|
|
|
using value_type = X;
|
|
|
|
struct void_pointer {};
|
|
|
|
};
|
|
|
|
|
|
|
|
EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
HasVoidPointer>::void_pointer>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<SmartPointer<void>, typename absl::allocator_traits<
|
|
|
|
HasPointer>::void_pointer>::value));
|
|
|
|
|
|
|
|
struct HasConstVoidPointer {
|
|
|
|
using value_type = X;
|
|
|
|
struct const_void_pointer {};
|
|
|
|
};
|
|
|
|
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<HasConstVoidPointer::const_void_pointer,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
HasConstVoidPointer>::const_void_pointer>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<SmartPointer<const void>,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
HasPointer>::const_void_pointer>::value));
|
|
|
|
|
|
|
|
struct HasDifferenceType {
|
|
|
|
using value_type = X;
|
|
|
|
using difference_type = int;
|
|
|
|
};
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<int, typename absl::allocator_traits<
|
|
|
|
HasDifferenceType>::difference_type>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits<
|
|
|
|
HasPointer>::difference_type>::value));
|
|
|
|
|
|
|
|
struct HasSizeType {
|
|
|
|
using value_type = X;
|
|
|
|
using size_type = unsigned int;
|
|
|
|
};
|
|
|
|
EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits<
|
|
|
|
HasSizeType>::size_type>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits<
|
|
|
|
HasPointer>::size_type>::value));
|
|
|
|
|
|
|
|
struct HasPropagateOnCopy {
|
|
|
|
using value_type = X;
|
|
|
|
struct propagate_on_container_copy_assignment {};
|
|
|
|
};
|
|
|
|
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment,
|
|
|
|
typename absl::allocator_traits<HasPropagateOnCopy>::
|
|
|
|
propagate_on_container_copy_assignment>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<std::false_type,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
A>::propagate_on_container_copy_assignment>::value));
|
|
|
|
|
|
|
|
struct HasPropagateOnMove {
|
|
|
|
using value_type = X;
|
|
|
|
struct propagate_on_container_move_assignment {};
|
|
|
|
};
|
|
|
|
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment,
|
|
|
|
typename absl::allocator_traits<HasPropagateOnMove>::
|
|
|
|
propagate_on_container_move_assignment>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<std::false_type,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
A>::propagate_on_container_move_assignment>::value));
|
|
|
|
|
|
|
|
struct HasPropagateOnSwap {
|
|
|
|
using value_type = X;
|
|
|
|
struct propagate_on_container_swap {};
|
|
|
|
};
|
|
|
|
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<HasPropagateOnSwap::propagate_on_container_swap,
|
|
|
|
typename absl::allocator_traits<HasPropagateOnSwap>::
|
|
|
|
propagate_on_container_swap>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<std::false_type, typename absl::allocator_traits<A>::
|
|
|
|
propagate_on_container_swap>::value));
|
|
|
|
|
|
|
|
struct HasIsAlwaysEqual {
|
|
|
|
using value_type = X;
|
|
|
|
struct is_always_equal {};
|
|
|
|
};
|
|
|
|
|
|
|
|
EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
HasIsAlwaysEqual>::is_always_equal>::value));
|
|
|
|
EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits<
|
|
|
|
A>::is_always_equal>::value));
|
|
|
|
struct NonEmpty {
|
|
|
|
using value_type = X;
|
|
|
|
int i;
|
|
|
|
};
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<std::false_type,
|
|
|
|
absl::allocator_traits<NonEmpty>::is_always_equal>::value));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct AllocWithPrivateInheritance : private std::allocator<T> {
|
|
|
|
using value_type = T;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(AllocatorTraits, RebindWithPrivateInheritance) {
|
|
|
|
// Regression test for some versions of gcc that do not like the sfinae we
|
|
|
|
// used in combination with private inheritance.
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<AllocWithPrivateInheritance<int>,
|
|
|
|
absl::allocator_traits<AllocWithPrivateInheritance<char>>::
|
|
|
|
rebind_alloc<int>>::value));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct Rebound {};
|
|
|
|
|
|
|
|
struct AllocWithRebind {
|
|
|
|
using value_type = int;
|
|
|
|
template <typename T>
|
|
|
|
struct rebind {
|
|
|
|
using other = Rebound<T>;
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T, typename U>
|
|
|
|
struct AllocWithoutRebind {
|
|
|
|
using value_type = int;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(AllocatorTraits, Rebind) {
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<Rebound<int>,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
AllocWithRebind>::template rebind_alloc<int>>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<absl::allocator_traits<Rebound<int>>,
|
|
|
|
typename absl::allocator_traits<
|
|
|
|
AllocWithRebind>::template rebind_traits<int>>::value));
|
|
|
|
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<AllocWithoutRebind<double, char>,
|
|
|
|
typename absl::allocator_traits<AllocWithoutRebind<
|
|
|
|
int, char>>::template rebind_alloc<double>>::value));
|
|
|
|
EXPECT_TRUE(
|
|
|
|
(std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>,
|
|
|
|
typename absl::allocator_traits<AllocWithoutRebind<
|
|
|
|
int, char>>::template rebind_traits<double>>::value));
|
|
|
|
}
|
|
|
|
|
|
|
|
struct TestValue {
|
|
|
|
TestValue() {}
|
|
|
|
explicit TestValue(int* trace) : trace(trace) { ++*trace; }
|
|
|
|
~TestValue() {
|
|
|
|
if (trace) --*trace;
|
|
|
|
}
|
|
|
|
int* trace = nullptr;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct MinimalMockAllocator {
|
|
|
|
MinimalMockAllocator() : value(0) {}
|
|
|
|
explicit MinimalMockAllocator(int value) : value(value) {}
|
|
|
|
MinimalMockAllocator(const MinimalMockAllocator& other)
|
|
|
|
: value(other.value) {}
|
|
|
|
using value_type = TestValue;
|
|
|
|
MOCK_METHOD(value_type*, allocate, (size_t));
|
|
|
|
MOCK_METHOD(void, deallocate, (value_type*, size_t));
|
|
|
|
|
|
|
|
int value;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(AllocatorTraits, FunctionsMinimal) {
|
|
|
|
int trace = 0;
|
|
|
|
int hint;
|
2022-08-29 17:59:48 +00:00
|
|
|
alignas(TestValue) char buffer[sizeof(TestValue)];
|
|
|
|
auto* x = reinterpret_cast<TestValue*>(buffer);
|
2022-02-11 19:01:25 +00:00
|
|
|
MinimalMockAllocator mock;
|
|
|
|
using Traits = absl::allocator_traits<MinimalMockAllocator>;
|
2022-08-29 17:59:48 +00:00
|
|
|
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(x));
|
|
|
|
EXPECT_CALL(mock, deallocate(x, 7));
|
2022-02-11 19:01:25 +00:00
|
|
|
|
2022-08-29 17:59:48 +00:00
|
|
|
EXPECT_EQ(x, Traits::allocate(mock, 7));
|
2022-02-11 19:01:25 +00:00
|
|
|
static_cast<void>(Traits::allocate(mock, 7, static_cast<const void*>(&hint)));
|
2022-08-29 17:59:48 +00:00
|
|
|
EXPECT_EQ(x, Traits::allocate(mock, 7, static_cast<const void*>(&hint)));
|
|
|
|
Traits::deallocate(mock, x, 7);
|
2022-02-11 19:01:25 +00:00
|
|
|
|
2022-08-29 17:59:48 +00:00
|
|
|
EXPECT_EQ(0, trace);
|
|
|
|
Traits::construct(mock, x, &trace);
|
2022-02-11 19:01:25 +00:00
|
|
|
EXPECT_EQ(1, trace);
|
2022-08-29 17:59:48 +00:00
|
|
|
Traits::destroy(mock, x);
|
|
|
|
EXPECT_EQ(0, trace);
|
2022-02-11 19:01:25 +00:00
|
|
|
|
|
|
|
EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue),
|
|
|
|
Traits::max_size(mock));
|
|
|
|
|
|
|
|
EXPECT_EQ(0, mock.value);
|
|
|
|
EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct FullMockAllocator {
|
|
|
|
FullMockAllocator() : value(0) {}
|
|
|
|
explicit FullMockAllocator(int value) : value(value) {}
|
|
|
|
FullMockAllocator(const FullMockAllocator& other) : value(other.value) {}
|
|
|
|
using value_type = TestValue;
|
|
|
|
MOCK_METHOD(value_type*, allocate, (size_t));
|
|
|
|
MOCK_METHOD(value_type*, allocate, (size_t, const void*));
|
|
|
|
MOCK_METHOD(void, construct, (value_type*, int*));
|
|
|
|
MOCK_METHOD(void, destroy, (value_type*));
|
|
|
|
MOCK_METHOD(size_t, max_size, (),
|
|
|
|
(const));
|
|
|
|
MOCK_METHOD(FullMockAllocator, select_on_container_copy_construction, (),
|
|
|
|
(const));
|
|
|
|
|
|
|
|
int value;
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(AllocatorTraits, FunctionsFull) {
|
|
|
|
int trace = 0;
|
|
|
|
int hint;
|
|
|
|
TestValue x(&trace), y;
|
|
|
|
FullMockAllocator mock;
|
|
|
|
using Traits = absl::allocator_traits<FullMockAllocator>;
|
|
|
|
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
|
|
|
|
EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y));
|
|
|
|
EXPECT_CALL(mock, construct(&x, &trace));
|
|
|
|
EXPECT_CALL(mock, destroy(&x));
|
|
|
|
EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17));
|
|
|
|
EXPECT_CALL(mock, select_on_container_copy_construction())
|
|
|
|
.WillRepeatedly(Return(FullMockAllocator(23)));
|
|
|
|
|
|
|
|
EXPECT_EQ(&x, Traits::allocate(mock, 7));
|
|
|
|
EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint)));
|
|
|
|
|
|
|
|
EXPECT_EQ(1, trace);
|
|
|
|
Traits::construct(mock, &x, &trace);
|
|
|
|
EXPECT_EQ(1, trace);
|
|
|
|
Traits::destroy(mock, &x);
|
|
|
|
EXPECT_EQ(1, trace);
|
|
|
|
|
|
|
|
EXPECT_EQ(17, Traits::max_size(mock));
|
|
|
|
|
|
|
|
EXPECT_EQ(0, mock.value);
|
|
|
|
EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorNoThrowTest, DefaultAllocator) {
|
|
|
|
#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
|
|
|
|
EXPECT_TRUE(absl::default_allocator_is_nothrow::value);
|
|
|
|
#else
|
|
|
|
EXPECT_FALSE(absl::default_allocator_is_nothrow::value);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorNoThrowTest, StdAllocator) {
|
|
|
|
#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
|
|
|
|
EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value);
|
|
|
|
#else
|
|
|
|
EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(AllocatorNoThrowTest, CustomAllocator) {
|
|
|
|
struct NoThrowAllocator {
|
|
|
|
using is_nothrow = std::true_type;
|
|
|
|
};
|
|
|
|
struct CanThrowAllocator {
|
|
|
|
using is_nothrow = std::false_type;
|
|
|
|
};
|
|
|
|
struct UnspecifiedAllocator {};
|
|
|
|
EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value);
|
|
|
|
EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value);
|
|
|
|
EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|