tint: Split Resolver::Materialize()

Add Resolver::ConcreteType() to determine the concrete type for an
abstract-numeric (or composite of abstract).

Will be used to recursively infer the concrete types of abstract arrays.

Bug: tint:1628
Change-Id: Ia26b778abc827b531848b346f3e36938ad1a0470
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/97582
Commit-Queue: Ben Clayton <bclayton@chromium.org>
Reviewed-by: Dan Sinclair <dsinclair@chromium.org>
Kokoro: Kokoro <noreply+kokoro@google.com>
This commit is contained in:
Ben Clayton 2022-07-29 13:19:12 +00:00 committed by Dawn LUCI CQ
parent ea84b9b072
commit 05a76183e0
2 changed files with 65 additions and 59 deletions

View File

@ -1318,46 +1318,7 @@ sem::Expression* Resolver::Expression(const ast::Expression* root) {
return nullptr;
}
const sem::Expression* Resolver::Materialize(const sem::Expression* expr,
const sem::Type* target_type /* = nullptr */) {
if (!expr) {
return nullptr; // Allow for Materialize(Expression(blah))
}
// Helper for actually creating the the materialize node, performing the constant cast, updating
// the ast -> sem binding, and performing validation.
auto materialize = [&](const sem::Type* target_ty) -> sem::Materialize* {
auto* src_ty = expr->Type();
auto* decl = expr->Declaration();
if (!validator_.Materialize(target_ty, src_ty, decl->source)) {
return nullptr;
}
auto expr_val = expr->ConstantValue();
if (!expr_val) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< decl->source << "Materialize(" << decl->TypeInfo().name
<< ") called on expression with no constant value";
return nullptr;
}
auto materialized_val = const_eval_.Convert(target_ty, expr_val, decl->source);
if (!materialized_val) {
// ConvertValue() has already failed and raised an diagnostic error.
return nullptr;
}
if (!materialized_val.Get()) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< decl->source << "ConvertValue(" << builder_->FriendlyName(expr_val->Type())
<< " -> " << builder_->FriendlyName(target_ty) << ") returned invalid value";
return nullptr;
}
auto* m =
builder_->create<sem::Materialize>(expr, current_statement_, materialized_val.Get());
m->Behaviors() = expr->Behaviors();
builder_->Sem().Replace(decl, m);
return m;
};
// Helpers for constructing semantic types
const sem::Type* Resolver::ConcreteType(const sem::Type* ty, const sem::Type* target_ty) {
auto i32 = [&] { return builder_->create<sem::I32>(); };
auto f32 = [&] { return builder_->create<sem::F32>(); };
auto i32v = [&](uint32_t width) { return builder_->create<sem::Vector>(i32(), width); };
@ -1366,31 +1327,69 @@ const sem::Expression* Resolver::Materialize(const sem::Expression* expr,
return builder_->create<sem::Matrix>(f32v(rows), columns);
};
// Type dispatch based on the expression type
return Switch<sem::Expression*>(
expr->Type(), //
[&](const sem::AbstractInt*) { return materialize(target_type ? target_type : i32()); },
[&](const sem::AbstractFloat*) { return materialize(target_type ? target_type : f32()); },
return Switch(
ty, //
[&](const sem::AbstractInt*) { return target_ty ? target_ty : i32(); },
[&](const sem::AbstractFloat*) { return target_ty ? target_ty : f32(); },
[&](const sem::Vector* v) {
return Switch(
v->type(), //
[&](const sem::AbstractInt*) {
return materialize(target_type ? target_type : i32v(v->Width()));
},
[&](const sem::AbstractInt*) { return target_ty ? target_ty : i32v(v->Width()); },
[&](const sem::AbstractFloat*) {
return materialize(target_type ? target_type : f32v(v->Width()));
},
[&](Default) { return expr; });
return target_ty ? target_ty : f32v(v->Width());
});
},
[&](const sem::Matrix* m) {
return Switch(
m->type(), //
[&](const sem::AbstractFloat*) {
return materialize(target_type ? target_type : f32m(m->columns(), m->rows()));
},
[&](Default) { return expr; });
},
[&](Default) { return expr; });
return Switch(m->type(), //
[&](const sem::AbstractFloat*) {
return target_ty ? target_ty : f32m(m->columns(), m->rows());
});
});
}
const sem::Expression* Resolver::Materialize(const sem::Expression* expr,
const sem::Type* target_type /* = nullptr */) {
if (!expr) {
// Allow for Materialize(Expression(blah)), where failures pass through Materialize()
return nullptr;
}
auto* decl = expr->Declaration();
auto* concrete_ty = ConcreteType(expr->Type(), target_type);
if (!concrete_ty) {
return expr; // Does not require materialization
}
auto* src_ty = expr->Type();
if (!validator_.Materialize(concrete_ty, src_ty, decl->source)) {
return nullptr;
}
auto expr_val = expr->ConstantValue();
if (!expr_val) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< decl->source << "Materialize(" << decl->TypeInfo().name
<< ") called on expression with no constant value";
return nullptr;
}
auto materialized_val = const_eval_.Convert(concrete_ty, expr_val, decl->source);
if (!materialized_val) {
// ConvertValue() has already failed and raised an diagnostic error.
return nullptr;
}
if (!materialized_val.Get()) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< decl->source << "ConvertValue(" << builder_->FriendlyName(expr_val->Type()) << " -> "
<< builder_->FriendlyName(concrete_ty) << ") returned invalid value";
return nullptr;
}
auto* m = builder_->create<sem::Materialize>(expr, current_statement_, materialized_val.Get());
m->Behaviors() = expr->Behaviors();
builder_->Sem().Replace(decl, m);
return m;
}
bool Resolver::MaterializeArguments(utils::VectorRef<const sem::Expression*> args,

View File

@ -230,6 +230,13 @@ class Resolver {
/// `parameter_ty` should be materialized.
bool ShouldMaterializeArgument(const sem::Type* parameter_ty) const;
/// @param ty the type that may hold abstract numeric types
/// @param target_ty the target type for the expression (variable type, parameter type, etc).
/// May be nullptr.
/// @returns the concrete (materialized) type for the given type, or nullptr if the type is
/// already concrete.
const sem::Type* ConcreteType(const sem::Type* ty, const sem::Type* target_ty);
// Statement resolving methods
// Each return true on success, false on failure.
sem::Statement* AssignmentStatement(const ast::AssignmentStatement*);