spirv-reader: support OpCompositeInsert

This generates intermediate variable to stuff the component into,
then a constant definition to evaluate the result for later use.

Bug: tint:3
Change-Id: If2e6bb24e2b1e621c3602509eb3237c40f53897b
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/41360
Auto-Submit: David Neto <dneto@google.com>
Commit-Queue: dan sinclair <dsinclair@chromium.org>
Reviewed-by: dan sinclair <dsinclair@chromium.org>
This commit is contained in:
David Neto 2021-02-10 15:05:56 +00:00 committed by Commit Bot service account
parent c0f30195a0
commit 0c7f97626f
3 changed files with 603 additions and 29 deletions

View File

@ -3135,6 +3135,10 @@ bool FunctionEmitter::EmitStatement(const spvtools::opt::Instruction& inst) {
// Synthesize a vector insertion in its own statements. // Synthesize a vector insertion in its own statements.
return MakeVectorInsertDynamic(inst); return MakeVectorInsertDynamic(inst);
case SpvOpCompositeInsert:
// Synthesize a composite insertion in its own statements.
return MakeCompositeInsert(inst);
case SpvOpFunctionCall: case SpvOpFunctionCall:
return EmitFunctionCall(inst); return EmitFunctionCall(inst);
@ -3307,7 +3311,6 @@ TypedExpression FunctionEmitter::MaybeEmitCombinatorialValue(
// OpGenericCastToPtrExplicit // Not in Vulkan // OpGenericCastToPtrExplicit // Not in Vulkan
// //
// OpArrayLength // OpArrayLength
// OpCompositeInsert
return {}; return {};
} }
@ -3577,35 +3580,68 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
// This is structurally similar to creating an access chain, but // This is structurally similar to creating an access chain, but
// the SPIR-V instruction has literal indices instead of IDs for indices. // the SPIR-V instruction has literal indices instead of IDs for indices.
// A SPIR-V composite extract is a single instruction with multiple auto composite_index = 0;
// literal indices walking down into composites. The Tint AST represents auto first_index_position = 1;
// this as ever-deeper nested indexing expressions. Start off with an TypedExpression current_expr(MakeOperand(inst, composite_index));
// expression for the composite, and then bury that inside nested indexing const auto composite_id = inst.GetSingleWordInOperand(composite_index);
// expressions. auto current_type_id = def_use_mgr_->GetDef(composite_id)->type_id();
auto source = GetSourceForInst(inst);
TypedExpression current_expr(MakeOperand(inst, 0));
auto make_index = [this, source](uint32_t literal) { return MakeCompositeValueDecomposition(inst, current_expr, current_type_id,
first_index_position);
}
TypedExpression FunctionEmitter::MakeCompositeValueDecomposition(
const spvtools::opt::Instruction& inst,
TypedExpression composite,
uint32_t composite_type_id,
int index_start) {
// This is structurally similar to creating an access chain, but
// the SPIR-V instruction has literal indices instead of IDs for indices.
// A SPIR-V composite extract is a single instruction with multiple
// literal indices walking down into composites.
// A SPIR-V composite insert is similar but also tells you what component
// to inject. This function is respnosible for the the walking-into part
// of composite-insert.
//
// The Tint AST represents this as ever-deeper nested indexing expressions.
// Start off with an expression for the composite, and then bury that inside
// nested indexing expressions.
auto current_expr = composite;
auto current_type_id = composite_type_id;
auto make_index = [this](uint32_t literal) {
return create<ast::ScalarConstructorExpression>( return create<ast::ScalarConstructorExpression>(
source, create<ast::UintLiteral>(source, u32_, literal)); Source{}, create<ast::UintLiteral>(Source{}, u32_, literal));
}; };
const auto composite = inst.GetSingleWordInOperand(0); // Build up a nested expression for the decomposition by walking down the type
auto current_type_id = def_use_mgr_->GetDef(composite)->type_id();
// Build up a nested expression for the access chain by walking down the type
// hierarchy, maintaining |current_type_id| as the SPIR-V ID of the type of // hierarchy, maintaining |current_type_id| as the SPIR-V ID of the type of
// the object pointed to after processing the previous indices. // the object pointed to after processing the previous indices.
const auto num_in_operands = inst.NumInOperands(); const auto num_in_operands = inst.NumInOperands();
for (uint32_t index = 1; index < num_in_operands; ++index) { for (uint32_t index = index_start; index < num_in_operands; ++index) {
const uint32_t index_val = inst.GetSingleWordInOperand(index); const uint32_t index_val = inst.GetSingleWordInOperand(index);
const auto* current_type_inst = def_use_mgr_->GetDef(current_type_id); const auto* current_type_inst = def_use_mgr_->GetDef(current_type_id);
if (!current_type_inst) { if (!current_type_inst) {
Fail() << "composite type %" << current_type_id Fail() << "composite type %" << current_type_id
<< " is invalid after following " << (index - 1) << " is invalid after following " << (index - index_start)
<< " indices: " << inst.PrettyPrint(); << " indices: " << inst.PrettyPrint();
return {}; return {};
} }
const char* operation_name = nullptr;
switch (inst.opcode()) {
case SpvOpCompositeExtract:
operation_name = "OpCompositeExtract";
break;
case SpvOpCompositeInsert:
operation_name = "OpCompositeInsert";
break;
default:
Fail() << "internal error: unhandled " << inst.PrettyPrint();
return {};
}
ast::Expression* next_expr = nullptr; ast::Expression* next_expr = nullptr;
switch (current_type_inst->opcode()) { switch (current_type_inst->opcode()) {
case SpvOpTypeVector: { case SpvOpTypeVector: {
@ -3613,8 +3649,9 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
// like "foo.z", which is more idiomatic than "foo[2]". // like "foo.z", which is more idiomatic than "foo[2]".
const auto num_elems = current_type_inst->GetSingleWordInOperand(1); const auto num_elems = current_type_inst->GetSingleWordInOperand(1);
if (num_elems <= index_val) { if (num_elems <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value " Fail() << operation_name << " %" << inst.result_id()
<< index_val << " is out of bounds for vector of " << num_elems << " index value " << index_val
<< " is out of bounds for vector of " << num_elems
<< " elements"; << " elements";
return {}; return {};
} }
@ -3632,8 +3669,9 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
// Check bounds // Check bounds
const auto num_elems = current_type_inst->GetSingleWordInOperand(1); const auto num_elems = current_type_inst->GetSingleWordInOperand(1);
if (num_elems <= index_val) { if (num_elems <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value " Fail() << operation_name << " %" << inst.result_id()
<< index_val << " is out of bounds for matrix of " << num_elems << " index value " << index_val
<< " is out of bounds for matrix of " << num_elems
<< " elements"; << " elements";
return {}; return {};
} }
@ -3657,14 +3695,16 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
current_type_id = current_type_inst->GetSingleWordInOperand(0); current_type_id = current_type_inst->GetSingleWordInOperand(0);
break; break;
case SpvOpTypeRuntimeArray: case SpvOpTypeRuntimeArray:
Fail() << "can't do OpCompositeExtract on a runtime array"; Fail() << "can't do " << operation_name
<< " on a runtime array: " << inst.PrettyPrint();
return {}; return {};
case SpvOpTypeStruct: { case SpvOpTypeStruct: {
const auto num_members = current_type_inst->NumInOperands(); const auto num_members = current_type_inst->NumInOperands();
if (num_members <= index_val) { if (num_members <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value " Fail() << operation_name << " %" << inst.result_id()
<< index_val << " is out of bounds for structure %" << " index value " << index_val
<< current_type_id << " having " << num_members << " members"; << " is out of bounds for structure %" << current_type_id
<< " having " << num_members << " members";
return {}; return {};
} }
auto name = namer_.GetMemberName(current_type_id, uint32_t(index_val)); auto name = namer_.GetMemberName(current_type_id, uint32_t(index_val));
@ -3677,8 +3717,8 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
break; break;
} }
default: default:
Fail() << "CompositeExtract with bad type %" << current_type_id << ": " Fail() << operation_name << " with bad type %" << current_type_id
<< current_type_inst->PrettyPrint(); << ": " << current_type_inst->PrettyPrint();
return {}; return {};
} }
current_expr = current_expr =
@ -4909,6 +4949,59 @@ bool FunctionEmitter::MakeVectorInsertDynamic(
{ast_type, create<ast::IdentifierExpression>(registered_temp_name)}); {ast_type, create<ast::IdentifierExpression>(registered_temp_name)});
} }
bool FunctionEmitter::MakeCompositeInsert(
const spvtools::opt::Instruction& inst) {
// For
// %result = OpCompositeInsert %type %object %composite 1 2 3 ...
// generate statements like this:
//
// var temp : type = composite;
// temp[index].x = object;
// const result : type = temp;
//
// Then use result everywhere the original SPIR-V id is used. Using a const
// like this avoids constantly reloading the value many times.
//
// This technique is a combination of:
// - making a temporary variable and constant declaration, like what we do
// for VectorInsertDynamic, and
// - building up an access-chain like access like for CompositeExtract, but
// on the left-hand side of the assignment.
auto* ast_type = parser_impl_.ConvertType(inst.type_id());
auto component = MakeOperand(inst, 0);
auto src_composite = MakeOperand(inst, 1);
// Synthesize the temporary variable.
// It doesn't correspond to a SPIR-V ID, so we don't use the ordinary
// API in parser_impl_.
auto result_name = namer_.Name(inst.result_id());
auto temp_name = namer_.MakeDerivedName(result_name);
auto registered_temp_name = builder_.Symbols().Register(temp_name);
auto* temp_var = create<ast::Variable>(
Source{}, registered_temp_name, ast::StorageClass::kFunction, ast_type,
false, src_composite.expr, ast::VariableDecorationList{});
AddStatement(create<ast::VariableDeclStatement>(Source{}, temp_var));
TypedExpression seed_expr{ast_type, create<ast::IdentifierExpression>(
Source{}, registered_temp_name)};
// The left-hand side of the assignment *looks* like a decomposition.
TypedExpression lhs =
MakeCompositeValueDecomposition(inst, seed_expr, inst.type_id(), 2);
if (!lhs.expr) {
return false;
}
AddStatement(
create<ast::AssignmentStatement>(Source{}, lhs.expr, component.expr));
return EmitConstDefinition(
inst,
{ast_type, create<ast::IdentifierExpression>(registered_temp_name)});
}
FunctionEmitter::FunctionDeclaration::FunctionDeclaration() = default; FunctionEmitter::FunctionDeclaration::FunctionDeclaration() = default;
FunctionEmitter::FunctionDeclaration::~FunctionDeclaration() = default; FunctionEmitter::FunctionDeclaration::~FunctionDeclaration() = default;

View File

@ -729,6 +729,21 @@ class FunctionEmitter {
/// @returns an AST expression for the instruction, or nullptr. /// @returns an AST expression for the instruction, or nullptr.
TypedExpression MakeCompositeExtract(const spvtools::opt::Instruction& inst); TypedExpression MakeCompositeExtract(const spvtools::opt::Instruction& inst);
/// Creates an expression for indexing into a composite value. The literal
/// indices that step into the value start at instruction input operand
/// `start_index` and run to the end of the instruction.
/// @param inst the original instruction
/// @param composite the typed expression for the composite
/// @param composite_type_id the SPIR-V type ID for the composite
/// @param index_start the index of the first operand in `inst` that is an
/// index into the composite type
/// @returns an AST expression for the decomposed composite, or {} on error
TypedExpression MakeCompositeValueDecomposition(
const spvtools::opt::Instruction& inst,
TypedExpression composite,
uint32_t composite_type_id,
int index_start);
/// Creates an expression for OpVectorShuffle /// Creates an expression for OpVectorShuffle
/// @param inst an OpVectorShuffle instruction. /// @param inst an OpVectorShuffle instruction.
/// @returns an AST expression for the instruction, or nullptr. /// @returns an AST expression for the instruction, or nullptr.
@ -911,6 +926,12 @@ class FunctionEmitter {
/// @returns an expression /// @returns an expression
bool MakeVectorInsertDynamic(const spvtools::opt::Instruction& inst); bool MakeVectorInsertDynamic(const spvtools::opt::Instruction& inst);
/// Generates statements for a SPIR-V OpComposite instruction.
/// Registers a const declaration for the result.
/// @param inst the SPIR-V instruction
/// @returns an expression
bool MakeCompositeInsert(const spvtools::opt::Instruction& inst);
/// Get the SPIR-V instruction for the image memory object declaration for /// Get the SPIR-V instruction for the image memory object declaration for
/// the image operand to the given instruction. /// the image operand to the given instruction.
/// @param inst the SPIR-V instruction /// @param inst the SPIR-V instruction

View File

@ -287,7 +287,7 @@ TEST_F(SpvParserTest_CompositeExtract, Vector_IndexTooBigError) {
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100)); FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody()); EXPECT_FALSE(fe.EmitBody());
EXPECT_THAT(p->error(), Eq("CompositeExtract %1 index value 900 is out of " EXPECT_THAT(p->error(), Eq("OpCompositeExtract %1 index value 900 is out of "
"bounds for vector of 2 elements")); "bounds for vector of 2 elements"));
} }
@ -338,7 +338,7 @@ TEST_F(SpvParserTest_CompositeExtract, Matrix_IndexTooBigError) {
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100)); FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody()) << p->error(); EXPECT_FALSE(fe.EmitBody()) << p->error();
EXPECT_THAT(p->error(), Eq("CompositeExtract %2 index value 3 is out of " EXPECT_THAT(p->error(), Eq("OpCompositeExtract %2 index value 3 is out of "
"bounds for matrix of 3 elements")); "bounds for matrix of 3 elements"));
} }
@ -424,7 +424,8 @@ TEST_F(SpvParserTest_CompositeExtract, RuntimeArray_IsError) {
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100)); FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody()) << p->error(); EXPECT_FALSE(fe.EmitBody()) << p->error();
EXPECT_THAT(p->error(), Eq("can't do OpCompositeExtract on a runtime array")); EXPECT_THAT(p->error(),
HasSubstr("can't do OpCompositeExtract on a runtime array: "));
} }
TEST_F(SpvParserTest_CompositeExtract, Struct) { TEST_F(SpvParserTest_CompositeExtract, Struct) {
@ -530,7 +531,7 @@ TEST_F(SpvParserTest_CompositeExtract, Struct_IndexTooBigError) {
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly; ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100)); FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody()); EXPECT_FALSE(fe.EmitBody());
EXPECT_THAT(p->error(), Eq("CompositeExtract %2 index value 40 is out of " EXPECT_THAT(p->error(), Eq("OpCompositeExtract %2 index value 40 is out of "
"bounds for structure %26 having 3 members")); "bounds for structure %26 having 3 members"));
} }
@ -576,6 +577,465 @@ TEST_F(SpvParserTest_CompositeExtract, Struct_Array_Matrix_Vector) {
<< ToString(p->builder(), fe.ast_body()); << ToString(p->builder(), fe.ast_body());
} }
using SpvParserTest_CompositeInsert = SpvParserTest;
TEST_F(SpvParserTest_CompositeInsert, Vector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCompositeInsert %v2float %float_70 %v2float_50_60 1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto body_str = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_1_1
function
__vec_2__f32
{
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{50.000000}
ScalarConstructor[not set]{60.000000}
}
}
}
}
Assignment{
MemberAccessor[not set]{
Identifier[not set]{x_1_1}
Identifier[not set]{y}
}
ScalarConstructor[not set]{70.000000}
}
VariableDeclStatement{
VariableConst{
x_1
none
__vec_2__f32
{
Identifier[not set]{x_1_1}
}
}
})")) << body_str;
}
TEST_F(SpvParserTest_CompositeInsert, Vector_IndexTooBigError) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCompositeInsert %v2float %float_70 %v2float_50_60 900
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody());
EXPECT_THAT(p->error(), Eq("OpCompositeInsert %1 index value 900 is out of "
"bounds for vector of 2 elements"));
}
TEST_F(SpvParserTest_CompositeInsert, Matrix) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %m3v2float %var
%2 = OpCompositeInsert %m3v2float %v2float_50_60 %1 2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto body_str = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_2_1
function
__mat_2_3__f32
{
Identifier[not set]{x_1}
}
}
}
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_2_1}
ScalarConstructor[not set]{2}
}
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{50.000000}
ScalarConstructor[not set]{60.000000}
}
}
VariableDeclStatement{
VariableConst{
x_2
none
__mat_2_3__f32
{
Identifier[not set]{x_2_1}
}
}
})")) << body_str;
}
TEST_F(SpvParserTest_CompositeInsert, Matrix_IndexTooBigError) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %m3v2float %var
%2 = OpCompositeInsert %m3v2float %v2float_50_60 %1 3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody()) << p->error();
EXPECT_THAT(p->error(), Eq("OpCompositeInsert %2 index value 3 is out of "
"bounds for matrix of 3 elements"));
}
TEST_F(SpvParserTest_CompositeInsert, Matrix_Vector) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %m3v2float %var
%2 = OpCompositeInsert %m3v2float %v2float_50_60 %1 2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto body_str = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_2_1
function
__mat_2_3__f32
{
Identifier[not set]{x_1}
}
}
}
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_2_1}
ScalarConstructor[not set]{2}
}
TypeConstructor[not set]{
__vec_2__f32
ScalarConstructor[not set]{50.000000}
ScalarConstructor[not set]{60.000000}
}
}
VariableDeclStatement{
VariableConst{
x_2
none
__mat_2_3__f32
{
Identifier[not set]{x_2_1}
}
}
})")) << body_str;
}
TEST_F(SpvParserTest_CompositeInsert, Array) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %a_u_5
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %a_u_5 %var
%2 = OpCompositeInsert %a_u_5 %uint_20 %1 3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto body_str = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_2_1
function
__array__u32_5
{
Identifier[not set]{x_1}
}
}
}
Assignment{
ArrayAccessor[not set]{
Identifier[not set]{x_2_1}
ScalarConstructor[not set]{3}
}
ScalarConstructor[not set]{20}
}
VariableDeclStatement{
VariableConst{
x_2
none
__array__u32_5
{
Identifier[not set]{x_2_1}
}
}
})")) << body_str;
}
TEST_F(SpvParserTest_CompositeInsert, RuntimeArray_IsError) {
const auto assembly = Preamble() + R"(
%rtarr = OpTypeRuntimeArray %uint
%ptr = OpTypePointer Function %rtarr
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %rtarr %var
%2 = OpCompositeInsert %rtarr %uint_20 %1 3
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody()) << p->error();
EXPECT_THAT(p->error(),
HasSubstr("can't do OpCompositeInsert on a runtime array: "));
}
TEST_F(SpvParserTest_CompositeInsert, Struct) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %s_v2f_u_i
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %s_v2f_u_i %var
%2 = OpCompositeInsert %s_v2f_u_i %int_30 %1 2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto body_str = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_2_1
function
__struct_S
{
Identifier[not set]{x_1}
}
}
}
Assignment{
MemberAccessor[not set]{
Identifier[not set]{x_2_1}
Identifier[not set]{field2}
}
ScalarConstructor[not set]{30}
}
VariableDeclStatement{
VariableConst{
x_2
none
__struct_S
{
Identifier[not set]{x_2_1}
}
}
})")) << body_str;
}
TEST_F(SpvParserTest_CompositeInsert, Struct_DifferOnlyInMemberName) {
const auto assembly =
R"(
OpMemberName %s0 0 "algo"
OpMemberName %s1 0 "rithm"
)" + Preamble() +
R"(
%s0 = OpTypeStruct %uint
%s1 = OpTypeStruct %uint
%ptr0 = OpTypePointer Function %s0
%ptr1 = OpTypePointer Function %s1
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var0 = OpVariable %ptr0 Function
%var1 = OpVariable %ptr1 Function
%1 = OpLoad %s0 %var0
%2 = OpCompositeInsert %s0 %uint_10 %1 0
%3 = OpLoad %s1 %var1
%4 = OpCompositeInsert %s1 %uint_10 %3 0
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto body_str = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_2_1
function
__struct_S_1
{
Identifier[not set]{x_1}
}
}
}
Assignment{
MemberAccessor[not set]{
Identifier[not set]{x_2_1}
Identifier[not set]{algo}
}
ScalarConstructor[not set]{10}
}
VariableDeclStatement{
VariableConst{
x_2
none
__struct_S_1
{
Identifier[not set]{x_2_1}
}
}
}
)")) << body_str;
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_4_1
function
__struct_S_2
{
Identifier[not set]{x_3}
}
}
}
Assignment{
MemberAccessor[not set]{
Identifier[not set]{x_4_1}
Identifier[not set]{rithm}
}
ScalarConstructor[not set]{10}
}
VariableDeclStatement{
VariableConst{
x_4
none
__struct_S_2
{
Identifier[not set]{x_4_1}
}
}
})")) << body_str;
}
TEST_F(SpvParserTest_CompositeInsert, Struct_IndexTooBigError) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %s_v2f_u_i
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %s_v2f_u_i %var
%2 = OpCompositeInsert %s_v2f_u_i %uint_10 %1 40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_FALSE(fe.EmitBody());
EXPECT_THAT(p->error(), Eq("OpCompositeInsert %2 index value 40 is out of "
"bounds for structure %26 having 3 members"));
}
TEST_F(SpvParserTest_CompositeInsert, Struct_Array_Matrix_Vector) {
const auto assembly = Preamble() + R"(
%a_mat = OpTypeArray %m3v2float %uint_3
%s = OpTypeStruct %uint %a_mat
%ptr = OpTypePointer Function %s
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var = OpVariable %ptr Function
%1 = OpLoad %s %var
%2 = OpCompositeInsert %s %float_70 %1 1 2 0 1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p.get(), *spirv_function(p.get(), 100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto body_str = ToString(p->builder(), fe.ast_body());
EXPECT_THAT(body_str, HasSubstr(R"(VariableDeclStatement{
Variable{
x_2_1
function
__struct_S_1
{
Identifier[not set]{x_1}
}
}
}
Assignment{
MemberAccessor[not set]{
ArrayAccessor[not set]{
ArrayAccessor[not set]{
MemberAccessor[not set]{
Identifier[not set]{x_2_1}
Identifier[not set]{field1}
}
ScalarConstructor[not set]{2}
}
ScalarConstructor[not set]{0}
}
Identifier[not set]{y}
}
ScalarConstructor[not set]{70.000000}
}
VariableDeclStatement{
VariableConst{
x_2
none
__struct_S_1
{
Identifier[not set]{x_2_1}
}
}
})")) << body_str;
}
using SpvParserTest_CopyObject = SpvParserTest; using SpvParserTest_CopyObject = SpvParserTest;
TEST_F(SpvParserTest_CopyObject, Scalar) { TEST_F(SpvParserTest_CopyObject, Scalar) {