tint: Add new sem::Type helpers

Add:
• sem::Type::is_abstract_or_scalar()
• sem::Type::ElementOf()

Use these to clean up some code in src/tint/sem/constant.cc.

Bug: tint:1504
Change-Id: I78e06b580a750c97ac654af4b0b364ddd3de6596
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/90534
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Reviewed-by: Dan Sinclair <dsinclair@chromium.org>
This commit is contained in:
Ben Clayton 2022-05-19 21:55:29 +00:00 committed by Dawn LUCI CQ
parent e5a67ac891
commit 1b35e3f9a8
5 changed files with 160 additions and 17 deletions

View File

@ -2636,6 +2636,25 @@ class ProgramBuilder {
/// the type declaration has no resolved type.
const sem::Type* TypeOf(const ast::TypeDecl* type_decl) const;
/// @param type a type
/// @returns the name for `type` that closely resembles how it would be
/// declared in WGSL.
std::string FriendlyName(const ast::Type* type) {
return type ? type->FriendlyName(Symbols()) : "<null>";
}
/// @param type a type
/// @returns the name for `type` that closely resembles how it would be
/// declared in WGSL.
std::string FriendlyName(const sem::Type* type) {
return type ? type->FriendlyName(Symbols()) : "<null>";
}
/// Overload of FriendlyName, which removes an ambiguity when passing nullptr.
/// Simplifies test code.
/// @returns "<null>"
std::string FriendlyName(std::nullptr_t) { return "<null>"; }
/// Wraps the ast::Expression in a statement. This is used by tests that
/// construct a partial AST and require the Resolver to reach these
/// nodes.

View File

@ -14,7 +14,6 @@
#include "src/tint/sem/constant.h"
#include <functional>
#include <utility>
#include "src/tint/debug.h"
@ -25,24 +24,19 @@ namespace tint::sem {
namespace {
const Type* ElemType(const Type* ty, size_t num_elements) {
const Type* CheckElemType(const Type* ty, size_t num_scalars) {
diag::List diag;
if (ty->is_scalar()) {
if (num_elements != 1) {
TINT_ICE(Semantic, diag) << "sem::Constant() type <-> num_element mismatch. type: '"
<< ty->TypeInfo().name << "' num_elements: " << num_elements;
if (ty->is_abstract_or_scalar() || ty->IsAnyOf<Vector, Matrix>()) {
uint32_t count = 0;
auto* el_ty = Type::ElementOf(ty, &count);
if (num_scalars != count) {
TINT_ICE(Semantic, diag) << "sem::Constant() type <-> scalar mismatch. type: '"
<< ty->TypeInfo().name << "' scalar: " << num_scalars;
}
return ty;
TINT_ASSERT(Semantic, el_ty->is_abstract_or_scalar());
return el_ty;
}
if (auto* vec = ty->As<Vector>()) {
if (num_elements != vec->Width()) {
TINT_ICE(Semantic, diag) << "sem::Constant() type <-> num_element mismatch. type: '"
<< ty->TypeInfo().name << "' num_elements: " << num_elements;
}
TINT_ASSERT(Semantic, vec->type()->is_scalar());
return vec->type();
}
TINT_UNREACHABLE(Semantic, diag) << "Unsupported sem::Constant type";
TINT_UNREACHABLE(Semantic, diag) << "Unsupported sem::Constant type: " << ty->TypeInfo().name;
return nullptr;
}
@ -51,7 +45,7 @@ const Type* ElemType(const Type* ty, size_t num_elements) {
Constant::Constant() {}
Constant::Constant(const sem::Type* ty, Scalars els)
: type_(ty), elem_type_(ElemType(ty, els.size())), elems_(std::move(els)) {}
: type_(ty), elem_type_(CheckElemType(ty, els.size())), elems_(std::move(els)) {}
Constant::Constant(const Constant&) = default;

View File

@ -16,6 +16,7 @@
#include "src/tint/sem/abstract_float.h"
#include "src/tint/sem/abstract_int.h"
#include "src/tint/sem/array.h"
#include "src/tint/sem/bool.h"
#include "src/tint/sem/f16.h"
#include "src/tint/sem/f32.h"
@ -70,6 +71,10 @@ bool Type::is_scalar() const {
return IsAnyOf<F16, F32, U32, I32, Bool>();
}
bool Type::is_abstract_or_scalar() const {
return IsAnyOf<F16, F32, U32, I32, Bool, AbstractNumeric>();
}
bool Type::is_numeric_scalar() const {
return IsAnyOf<F16, F32, U32, I32>();
}
@ -198,4 +203,33 @@ uint32_t Type::ConversionRank(const Type* from, const Type* to) {
[&](Default) { return kNoConversion; });
}
const Type* Type::ElementOf(const Type* ty, uint32_t* count /* = nullptr */) {
if (ty->is_abstract_or_scalar()) {
if (count) {
*count = 1;
}
return ty;
}
return Switch(
ty, //
[&](const Vector* v) {
if (count) {
*count = v->Width();
}
return v->type();
},
[&](const Matrix* m) {
if (count) {
*count = m->columns() * m->rows();
}
return m->type();
},
[&](const Array* a) {
if (count) {
*count = a->Count();
}
return a->ElemType();
});
}
} // namespace tint::sem

View File

@ -71,6 +71,8 @@ class Type : public Castable<Type, Node> {
/// @returns true if this type is a scalar
bool is_scalar() const;
/// @returns true if this type is a scalar or an abstract numeric
bool is_abstract_or_scalar() const;
/// @returns true if this type is a numeric scalar
bool is_numeric_scalar() const;
/// @returns true if this type is a float scalar
@ -127,6 +129,12 @@ class Type : public Castable<Type, Node> {
/// @see https://www.w3.org/TR/WGSL/#conversion-rank
static uint32_t ConversionRank(const Type* from, const Type* to);
/// @param ty the type to obtain the element type from
/// @param count if not null, then this is assigned the number of elements in the type
/// @returns `ty` if `ty` is an abstract or scalar, the element type if ty is a vector, matrix
/// or array, otherwise nullptr.
static const Type* ElementOf(const Type* ty, uint32_t* count = nullptr);
protected:
Type();
};

View File

@ -91,5 +91,93 @@ TEST_F(TypeTest, ConversionRank) {
EXPECT_EQ(Type::ConversionRank(f16, ai), Type::kNoConversion);
}
/// Helper macro for testing that a semantic type was as expected
#define EXPECT_TYPE(GOT, EXPECT) \
if ((GOT) != (EXPECT)) { \
FAIL() << #GOT " != " #EXPECT "\n" \
<< " " #GOT ": " << FriendlyName(GOT) << "\n" \
<< " " #EXPECT ": " << FriendlyName(EXPECT); \
} \
do { \
} while (false)
TEST_F(TypeTest, ElementOf) {
auto* f32 = create<F32>();
auto* f16 = create<F16>();
auto* i32 = create<I32>();
auto* u32 = create<U32>();
auto* vec2_f32 = create<Vector>(f32, 2u);
auto* vec3_f16 = create<Vector>(f16, 3u);
auto* vec4_f32 = create<Vector>(f32, 4u);
auto* vec3_u32 = create<Vector>(u32, 3u);
auto* vec3_i32 = create<Vector>(i32, 3u);
auto* mat2x4_f32 = create<Matrix>(vec4_f32, 2u);
auto* mat4x2_f32 = create<Matrix>(vec2_f32, 4u);
auto* mat4x3_f16 = create<Matrix>(vec3_f16, 4u);
auto* arr_i32 = create<Array>(
/* element */ i32,
/* count */ 5u,
/* align */ 4u,
/* size */ 5u * 4u,
/* stride */ 5u * 4u,
/* implicit_stride */ 5u * 4u);
// No count
EXPECT_TYPE(Type::ElementOf(f32), f32);
EXPECT_TYPE(Type::ElementOf(f16), f16);
EXPECT_TYPE(Type::ElementOf(i32), i32);
EXPECT_TYPE(Type::ElementOf(u32), u32);
EXPECT_TYPE(Type::ElementOf(vec2_f32), f32);
EXPECT_TYPE(Type::ElementOf(vec3_f16), f16);
EXPECT_TYPE(Type::ElementOf(vec4_f32), f32);
EXPECT_TYPE(Type::ElementOf(vec3_u32), u32);
EXPECT_TYPE(Type::ElementOf(vec3_i32), i32);
EXPECT_TYPE(Type::ElementOf(mat2x4_f32), f32);
EXPECT_TYPE(Type::ElementOf(mat4x2_f32), f32);
EXPECT_TYPE(Type::ElementOf(mat4x3_f16), f16);
EXPECT_TYPE(Type::ElementOf(arr_i32), i32);
// With count
uint32_t count = 0;
EXPECT_TYPE(Type::ElementOf(f32, &count), f32);
EXPECT_EQ(count, 1u);
count = 0;
EXPECT_TYPE(Type::ElementOf(f16, &count), f16);
EXPECT_EQ(count, 1u);
count = 0;
EXPECT_TYPE(Type::ElementOf(i32, &count), i32);
EXPECT_EQ(count, 1u);
count = 0;
EXPECT_TYPE(Type::ElementOf(u32, &count), u32);
EXPECT_EQ(count, 1u);
count = 0;
EXPECT_TYPE(Type::ElementOf(vec2_f32, &count), f32);
EXPECT_EQ(count, 2u);
count = 0;
EXPECT_TYPE(Type::ElementOf(vec3_f16, &count), f16);
EXPECT_EQ(count, 3u);
count = 0;
EXPECT_TYPE(Type::ElementOf(vec4_f32, &count), f32);
EXPECT_EQ(count, 4u);
count = 0;
EXPECT_TYPE(Type::ElementOf(vec3_u32, &count), u32);
EXPECT_EQ(count, 3u);
count = 0;
EXPECT_TYPE(Type::ElementOf(vec3_i32, &count), i32);
EXPECT_EQ(count, 3u);
count = 0;
EXPECT_TYPE(Type::ElementOf(mat2x4_f32, &count), f32);
EXPECT_EQ(count, 8u);
count = 0;
EXPECT_TYPE(Type::ElementOf(mat4x2_f32, &count), f32);
EXPECT_EQ(count, 8u);
count = 0;
EXPECT_TYPE(Type::ElementOf(mat4x3_f16, &count), f16);
EXPECT_EQ(count, 12u);
count = 0;
EXPECT_TYPE(Type::ElementOf(arr_i32, &count), i32);
EXPECT_EQ(count, 5u);
}
} // namespace
} // namespace tint::sem