Add end2end tests for compute flow control

This replicates a subset of the flow control CTS tests. The purpose of
this is to provide relatively easy-to-repro cases to demonstrate flow
control bugs on Intel Graphics UHD 630 GPUs.

Bug: tint:1868
Change-Id: I34d692230b44d8a0a917dc773cc748bbf288d55a
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/122940
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: Austin Eng <enga@chromium.org>
Commit-Queue: Antonio Maiorano <amaiorano@google.com>
This commit is contained in:
Antonio Maiorano 2023-03-08 18:23:51 +00:00 committed by Dawn LUCI CQ
parent b7a03129fa
commit 22895dbe40
2 changed files with 508 additions and 0 deletions

View File

@ -493,6 +493,7 @@ source_set("end2end_tests_sources") {
"end2end/CompressedTextureFormatTests.cpp",
"end2end/ComputeCopyStorageBufferTests.cpp",
"end2end/ComputeDispatchTests.cpp",
"end2end/ComputeFlowControlTests.cpp",
"end2end/ComputeLayoutMemoryBufferTests.cpp",
"end2end/ComputeSharedMemoryTests.cpp",
"end2end/ComputeStorageBufferBarrierTests.cpp",

View File

@ -0,0 +1,507 @@
// Copyright 2023 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/WGPUHelpers.h"
// Tests flow control in WGSL shaders. This helps to identify bugs either in Tint's WGSL
// compilation, or driver shader compilation.
class ComputeFlowControlTests : public DawnTest {
public:
void RunTest(const char* shader,
const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& expected);
};
void ComputeFlowControlTests::RunTest(const char* shader,
const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& expected) {
// Set up shader and pipeline
auto module = utils::CreateShaderModule(device, shader);
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = module;
csDesc.compute.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&csDesc);
// Set up src storage buffer
wgpu::Buffer src = utils::CreateBufferFromData(
device, inputs.data(), inputs.size() * sizeof(uint32_t),
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst);
// Set up dst storage buffer
std::vector<uint32_t> dst_init_values(expected.size(), 0xDEADBEEF);
dst_init_values[0] = 0; // initial count
wgpu::Buffer dst = utils::CreateBufferFromData(
device, dst_init_values.data(), dst_init_values.size() * sizeof(uint32_t),
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst);
// Set up bind group and issue dispatch
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, src},
{1, dst},
});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected.data(), dst, 0, expected.size());
}
// Test no branching with one call to push_output
TEST_P(ComputeFlowControlTests, One) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
})";
auto inputs = std::vector<uint32_t>{
0 // ignored
};
auto expected = std::vector<uint32_t>{1, // count
0xA0, // first
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Test no branching with two calls to push_output
TEST_P(ComputeFlowControlTests, Two) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
push_output(0xA1);
})";
auto inputs = std::vector<uint32_t>{
0 // ignored
};
auto expected = std::vector<uint32_t>{2, // count
0xA0, // first
0xA1, // second
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Test no branching with three calls to push_output
TEST_P(ComputeFlowControlTests, Three) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
push_output(0xA1);
push_output(0xA2);
})";
auto inputs = std::vector<uint32_t>{
0 // ignored
};
auto expected = std::vector<uint32_t>{3, // count
0xA0, // first
0xA1, // second
0xA2, // third
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Test if statement with branch taken
TEST_P(ComputeFlowControlTests, IfTrue) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
if (inputs[0] != 0) {
push_output(0xA1);
}
push_output(0xA3);
})";
auto inputs = std::vector<uint32_t>{
1 // take branch
};
auto expected = std::vector<uint32_t>{3, // count
0xA0, // before if-else
0xA1, // branch
0xA3, // after if-else
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Test if statement with branch not taken
TEST_P(ComputeFlowControlTests, IfFalse) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
if (inputs[0] != 0) {
push_output(0xA1);
}
push_output(0xA3);
})";
auto inputs = std::vector<uint32_t>{
0 // don't take branch
};
auto expected = std::vector<uint32_t>{2, // count
0xA0, // before if-else
0xA3, // after if-else
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Same as IfFalse test, but with push_output calls inlined
TEST_P(ComputeFlowControlTests, IfFalseInlined) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
{
let i = outputs.count;
outputs.data[i] = 0xA0u;
outputs.count++;
}
if (inputs[0] != 0) {
let i = outputs.count;
outputs.data[i] = 0xA1u;
outputs.count++;
}
{
var i = outputs.count;
outputs.data[i] = 0xA3u;
outputs.count++;
}
})";
auto inputs = std::vector<uint32_t>{
0 // don't take branch
};
auto expected = std::vector<uint32_t>{2, // count
0xA0, // before if-else
0xA3, // after if-else
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Same as IfFalse test, but with fixed-size storage arrays
TEST_P(ComputeFlowControlTests, IfFalseFixedSizeArrays) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32, 2>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32, 1>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
if (inputs[0] != 0) {
push_output(0xA1);
}
push_output(0xA3);
})";
auto inputs = std::vector<uint32_t>{
0 // don't take branch
};
auto expected = std::vector<uint32_t>{2, // count
0xA0, // before if-else
0xA3, // after if-else
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Same as IfFalse test, but `outputs.count++` is replaced by `outputs.count = i + 1`
TEST_P(ComputeFlowControlTests, IfFalseNoCountPlusPlus) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count = i + 1;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
if (inputs[0] != 0) {
push_output(0xA1);
}
push_output(0xA3);
})";
auto inputs = std::vector<uint32_t>{
0 // don't take branch
};
auto expected = std::vector<uint32_t>{2, // count
0xA0, // before if-else
0xA3, // after if-else
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Same as IfFalse test, but `outputs.count++` is replaced by `outputs.count += 4`
TEST_P(ComputeFlowControlTests, IfFalseIncCountByFour) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count += 4;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
if (inputs[0] != 0) {
push_output(0xA1);
}
push_output(0xA3);
})";
auto inputs = std::vector<uint32_t>{
0 // don't take branch
};
const uint32_t D = 0xDEADBEEF;
auto expected = std::vector<uint32_t>{8, // count
0xA0, D, D, D, // before if-else
0xA3, D, D, D}; // after if-else
RunTest(shader, inputs, expected);
}
// Test if-else statement with true branch taken
TEST_P(ComputeFlowControlTests, IfElseTrue) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
if (inputs[0] != 0) {
push_output(0xA1);
} else {
push_output(0xA2);
}
push_output(0xA3);
})";
auto inputs = std::vector<uint32_t>{
1 // take true branch
};
auto expected = std::vector<uint32_t>{3, // count
0xA0, // before if-else
0xA1, // true branch
0xA3, // after if-else
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
// Test if-else statement with false branch taken
TEST_P(ComputeFlowControlTests, IfElseFalse) {
const char* shader = R"(
struct Outputs {
count : u32,
data : array<u32>,
};
@group(0) @binding(0) var<storage, read> inputs : array<u32>;
@group(0) @binding(1) var<storage, read_write> outputs : Outputs;
fn push_output(value : u32) {
let i = outputs.count;
outputs.data[i] = value;
outputs.count++;
}
@compute @workgroup_size(1)
fn main() {
_ = &inputs;
_ = &outputs;
push_output(0xA0);
if (inputs[0] != 0) {
push_output(0xA1);
} else {
push_output(0xA2);
}
push_output(0xA3);
})";
auto inputs = std::vector<uint32_t>{
0 // take false branch
};
auto expected = std::vector<uint32_t>{3, // count
0xA0, // before if-else
0xA2, // false branch
0xA3, // after if-else
0xDEADBEEF}; // unwritten
RunTest(shader, inputs, expected);
}
DAWN_INSTANTIATE_TEST(ComputeFlowControlTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());