Consistent formatting for Dawn/Tint.

This CL updates the clang format files to have a single shared format
between Dawn and Tint. The major changes are tabs are 4 spaces, lines
are 100 columns and namespaces are not indented.

Bug: dawn:1339
Change-Id: I4208742c95643998d9fd14e77a9cc558071ded39
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/87603
Commit-Queue: Dan Sinclair <dsinclair@chromium.org>
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
Kokoro: Kokoro <noreply+kokoro@google.com>
This commit is contained in:
dan sinclair 2022-05-01 14:40:55 +00:00 committed by Dawn LUCI CQ
parent 73b1d1dafa
commit 41e4d9a34c
1827 changed files with 218382 additions and 227741 deletions

View File

@ -1,8 +1,5 @@
# http://clang.llvm.org/docs/ClangFormatStyleOptions.html
BasedOnStyle: Chromium
Standard: Cpp11
AllowShortFunctionsOnASingleLine: false
ColumnLimit: 100
@ -11,10 +8,3 @@ IndentWidth: 4
ObjCBlockIndentWidth: 4
AccessModifierOffset: -2
CompactNamespaces: true
# This should result in only one indentation level with compacted namespaces
NamespaceIndentation: All
# Use this option once clang-format 6 is out.
IndentPPDirectives: AfterHash

View File

@ -121,7 +121,7 @@ def _NonInclusiveFileFilter(file):
"third_party/khronos/KHR/khrplatform.h", # Third party file
"tools/roll-all", # Branch name
"tools/src/container/key.go", # External URL
"tools/src/go.sum", # External URL
"go.sum", # External URL
]
return file.LocalPath() not in filter_list

View File

@ -1 +0,0 @@
filter=-runtime/indentation_namespace

View File

@ -31,126 +31,117 @@
namespace dawn {
template <typename T>
struct IsDawnBitmask {
template <typename T>
struct IsDawnBitmask {
static constexpr bool enable = false;
};
};
template <typename T, typename Enable = void>
struct LowerBitmask {
template <typename T, typename Enable = void>
struct LowerBitmask {
static constexpr bool enable = false;
};
};
template <typename T>
struct LowerBitmask<T, typename std::enable_if<IsDawnBitmask<T>::enable>::type> {
template <typename T>
struct LowerBitmask<T, typename std::enable_if<IsDawnBitmask<T>::enable>::type> {
static constexpr bool enable = true;
using type = T;
constexpr static T Lower(T t) {
return t;
}
};
constexpr static T Lower(T t) { return t; }
};
template <typename T>
struct BoolConvertible {
template <typename T>
struct BoolConvertible {
using Integral = typename std::underlying_type<T>::type;
// NOLINTNEXTLINE(runtime/explicit)
constexpr BoolConvertible(Integral value) : value(value) {
}
constexpr operator bool() const {
return value != 0;
}
constexpr operator T() const {
return static_cast<T>(value);
}
constexpr BoolConvertible(Integral value) : value(value) {}
constexpr operator bool() const { return value != 0; }
constexpr operator T() const { return static_cast<T>(value); }
Integral value;
};
};
template <typename T>
struct LowerBitmask<BoolConvertible<T>> {
template <typename T>
struct LowerBitmask<BoolConvertible<T>> {
static constexpr bool enable = true;
using type = T;
static constexpr type Lower(BoolConvertible<T> t) {
return t;
}
};
static constexpr type Lower(BoolConvertible<T> t) { return t; }
};
template <typename T1,
template <
typename T1,
typename T2,
typename = typename std::enable_if<LowerBitmask<T1>::enable &&
LowerBitmask<T2>::enable>::type>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator|(T1 left, T2 right) {
typename = typename std::enable_if<LowerBitmask<T1>::enable && LowerBitmask<T2>::enable>::type>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator|(T1 left, T2 right) {
using T = typename LowerBitmask<T1>::type;
using Integral = typename std::underlying_type<T>::type;
return static_cast<Integral>(LowerBitmask<T1>::Lower(left)) |
static_cast<Integral>(LowerBitmask<T2>::Lower(right));
}
}
template <typename T1,
template <
typename T1,
typename T2,
typename = typename std::enable_if<LowerBitmask<T1>::enable &&
LowerBitmask<T2>::enable>::type>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator&(T1 left, T2 right) {
typename = typename std::enable_if<LowerBitmask<T1>::enable && LowerBitmask<T2>::enable>::type>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator&(T1 left, T2 right) {
using T = typename LowerBitmask<T1>::type;
using Integral = typename std::underlying_type<T>::type;
return static_cast<Integral>(LowerBitmask<T1>::Lower(left)) &
static_cast<Integral>(LowerBitmask<T2>::Lower(right));
}
}
template <typename T1,
template <
typename T1,
typename T2,
typename = typename std::enable_if<LowerBitmask<T1>::enable &&
LowerBitmask<T2>::enable>::type>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator^(T1 left, T2 right) {
typename = typename std::enable_if<LowerBitmask<T1>::enable && LowerBitmask<T2>::enable>::type>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator^(T1 left, T2 right) {
using T = typename LowerBitmask<T1>::type;
using Integral = typename std::underlying_type<T>::type;
return static_cast<Integral>(LowerBitmask<T1>::Lower(left)) ^
static_cast<Integral>(LowerBitmask<T2>::Lower(right));
}
}
template <typename T1>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator~(T1 t) {
template <typename T1>
constexpr BoolConvertible<typename LowerBitmask<T1>::type> operator~(T1 t) {
using T = typename LowerBitmask<T1>::type;
using Integral = typename std::underlying_type<T>::type;
return ~static_cast<Integral>(LowerBitmask<T1>::Lower(t));
}
}
template <typename T,
template <
typename T,
typename T2,
typename = typename std::enable_if<IsDawnBitmask<T>::enable &&
LowerBitmask<T2>::enable>::type>
constexpr T& operator&=(T& l, T2 right) {
typename = typename std::enable_if<IsDawnBitmask<T>::enable && LowerBitmask<T2>::enable>::type>
constexpr T& operator&=(T& l, T2 right) {
T r = LowerBitmask<T2>::Lower(right);
l = l & r;
return l;
}
}
template <typename T,
template <
typename T,
typename T2,
typename = typename std::enable_if<IsDawnBitmask<T>::enable &&
LowerBitmask<T2>::enable>::type>
constexpr T& operator|=(T& l, T2 right) {
typename = typename std::enable_if<IsDawnBitmask<T>::enable && LowerBitmask<T2>::enable>::type>
constexpr T& operator|=(T& l, T2 right) {
T r = LowerBitmask<T2>::Lower(right);
l = l | r;
return l;
}
}
template <typename T,
template <
typename T,
typename T2,
typename = typename std::enable_if<IsDawnBitmask<T>::enable &&
LowerBitmask<T2>::enable>::type>
constexpr T& operator^=(T& l, T2 right) {
typename = typename std::enable_if<IsDawnBitmask<T>::enable && LowerBitmask<T2>::enable>::type>
constexpr T& operator^=(T& l, T2 right) {
T r = LowerBitmask<T2>::Lower(right);
l = l ^ r;
return l;
}
}
template <typename T>
constexpr bool HasZeroOrOneBits(T value) {
template <typename T>
constexpr bool HasZeroOrOneBits(T value) {
using Integral = typename std::underlying_type<T>::type;
return (static_cast<Integral>(value) & (static_cast<Integral>(value) - 1)) == 0;
}
}
} // namespace dawn

View File

@ -65,7 +65,7 @@ struct DawnWSIContextD3D12 {
#endif
#if defined(DAWN_ENABLE_BACKEND_METAL) && defined(__OBJC__)
# import <Metal/Metal.h>
#import <Metal/Metal.h>
struct DawnWSIContextMetal {
id<MTLDevice> device = nil;

View File

@ -30,35 +30,35 @@ struct ID3D12Resource;
namespace dawn::native::d3d12 {
class D3D11on12ResourceCache;
class D3D11on12ResourceCache;
DAWN_NATIVE_EXPORT Microsoft::WRL::ComPtr<ID3D12Device> GetD3D12Device(WGPUDevice device);
DAWN_NATIVE_EXPORT DawnSwapChainImplementation CreateNativeSwapChainImpl(WGPUDevice device,
DAWN_NATIVE_EXPORT Microsoft::WRL::ComPtr<ID3D12Device> GetD3D12Device(WGPUDevice device);
DAWN_NATIVE_EXPORT DawnSwapChainImplementation CreateNativeSwapChainImpl(WGPUDevice device,
HWND window);
DAWN_NATIVE_EXPORT WGPUTextureFormat
GetNativeSwapChainPreferredFormat(const DawnSwapChainImplementation* swapChain);
DAWN_NATIVE_EXPORT WGPUTextureFormat
GetNativeSwapChainPreferredFormat(const DawnSwapChainImplementation* swapChain);
enum MemorySegment {
enum MemorySegment {
Local,
NonLocal,
};
};
DAWN_NATIVE_EXPORT uint64_t SetExternalMemoryReservation(WGPUDevice device,
DAWN_NATIVE_EXPORT uint64_t SetExternalMemoryReservation(WGPUDevice device,
uint64_t requestedReservationSize,
MemorySegment memorySegment);
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorDXGISharedHandle : ExternalImageDescriptor {
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorDXGISharedHandle : ExternalImageDescriptor {
public:
ExternalImageDescriptorDXGISharedHandle();
// Note: SharedHandle must be a handle to a texture object.
HANDLE sharedHandle;
};
};
// Keyed mutex acquire/release uses a fixed key of 0 to match Chromium behavior.
constexpr UINT64 kDXGIKeyedMutexAcquireReleaseKey = 0;
// Keyed mutex acquire/release uses a fixed key of 0 to match Chromium behavior.
constexpr UINT64 kDXGIKeyedMutexAcquireReleaseKey = 0;
struct DAWN_NATIVE_EXPORT ExternalImageAccessDescriptorDXGIKeyedMutex
struct DAWN_NATIVE_EXPORT ExternalImageAccessDescriptorDXGIKeyedMutex
: ExternalImageAccessDescriptor {
public:
// TODO(chromium:1241533): Remove deprecated keyed mutex params after removing associated
@ -66,9 +66,9 @@ namespace dawn::native::d3d12 {
uint64_t acquireMutexKey;
uint64_t releaseMutexKey;
bool isSwapChainTexture = false;
};
};
class DAWN_NATIVE_EXPORT ExternalImageDXGI {
class DAWN_NATIVE_EXPORT ExternalImageDXGI {
public:
~ExternalImageDXGI();
@ -97,14 +97,14 @@ namespace dawn::native::d3d12 {
uint32_t mSampleCount;
std::unique_ptr<D3D11on12ResourceCache> mD3D11on12ResourceCache;
};
};
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
AdapterDiscoveryOptions();
explicit AdapterDiscoveryOptions(Microsoft::WRL::ComPtr<IDXGIAdapter> adapter);
Microsoft::WRL::ComPtr<IDXGIAdapter> dxgiAdapter;
};
};
} // namespace dawn::native::d3d12

View File

@ -23,50 +23,50 @@
#include "dawn/webgpu.h"
namespace dawn::platform {
class Platform;
class Platform;
} // namespace dawn::platform
namespace wgpu {
struct AdapterProperties;
struct DeviceDescriptor;
struct AdapterProperties;
struct DeviceDescriptor;
} // namespace wgpu
namespace dawn::native {
class InstanceBase;
class AdapterBase;
class InstanceBase;
class AdapterBase;
// An optional parameter of Adapter::CreateDevice() to send additional information when creating
// a Device. For example, we can use it to enable a workaround, optimization or feature.
struct DAWN_NATIVE_EXPORT DawnDeviceDescriptor {
// An optional parameter of Adapter::CreateDevice() to send additional information when creating
// a Device. For example, we can use it to enable a workaround, optimization or feature.
struct DAWN_NATIVE_EXPORT DawnDeviceDescriptor {
std::vector<const char*> requiredFeatures;
std::vector<const char*> forceEnabledToggles;
std::vector<const char*> forceDisabledToggles;
const WGPURequiredLimits* requiredLimits = nullptr;
};
};
// A struct to record the information of a toggle. A toggle is a code path in Dawn device that
// can be manually configured to run or not outside Dawn, including workarounds, special
// features and optimizations.
struct ToggleInfo {
// A struct to record the information of a toggle. A toggle is a code path in Dawn device that
// can be manually configured to run or not outside Dawn, including workarounds, special
// features and optimizations.
struct ToggleInfo {
const char* name;
const char* description;
const char* url;
};
};
// A struct to record the information of a feature. A feature is a GPU feature that is not
// required to be supported by all Dawn backends and can only be used when it is enabled on the
// creation of device.
using FeatureInfo = ToggleInfo;
// A struct to record the information of a feature. A feature is a GPU feature that is not
// required to be supported by all Dawn backends and can only be used when it is enabled on the
// creation of device.
using FeatureInfo = ToggleInfo;
// An adapter is an object that represent on possibility of creating devices in the system.
// Most of the time it will represent a combination of a physical GPU and an API. Not that the
// same GPU can be represented by multiple adapters but on different APIs.
//
// The underlying Dawn adapter is owned by the Dawn instance so this class is not RAII but just
// a reference to an underlying adapter.
class DAWN_NATIVE_EXPORT Adapter {
// An adapter is an object that represent on possibility of creating devices in the system.
// Most of the time it will represent a combination of a physical GPU and an API. Not that the
// same GPU can be represented by multiple adapters but on different APIs.
//
// The underlying Dawn adapter is owned by the Dawn instance so this class is not RAII but just
// a reference to an underlying adapter.
class DAWN_NATIVE_EXPORT Adapter {
public:
Adapter();
// NOLINTNEXTLINE(runtime/explicit)
@ -117,25 +117,25 @@ namespace dawn::native {
private:
AdapterBase* mImpl = nullptr;
};
};
// Base class for options passed to Instance::DiscoverAdapters.
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptionsBase {
// Base class for options passed to Instance::DiscoverAdapters.
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptionsBase {
public:
const WGPUBackendType backendType;
protected:
explicit AdapterDiscoveryOptionsBase(WGPUBackendType type);
};
};
enum BackendValidationLevel { Full, Partial, Disabled };
enum BackendValidationLevel { Full, Partial, Disabled };
// Represents a connection to dawn_native and is used for dependency injection, discovering
// system adapters and injecting custom adapters (like a Swiftshader Vulkan adapter).
//
// This is an RAII class for Dawn instances and also controls the lifetime of all adapters
// for this instance.
class DAWN_NATIVE_EXPORT Instance {
// Represents a connection to dawn_native and is used for dependency injection, discovering
// system adapters and injecting custom adapters (like a Swiftshader Vulkan adapter).
//
// This is an RAII class for Dawn instances and also controls the lifetime of all adapters
// for this instance.
class DAWN_NATIVE_EXPORT Instance {
public:
explicit Instance(const WGPUInstanceDescriptor* desc = nullptr);
~Instance();
@ -172,22 +172,22 @@ namespace dawn::native {
private:
InstanceBase* mImpl = nullptr;
};
};
// Backend-agnostic API for dawn_native
DAWN_NATIVE_EXPORT const DawnProcTable& GetProcs();
// Backend-agnostic API for dawn_native
DAWN_NATIVE_EXPORT const DawnProcTable& GetProcs();
// Query the names of all the toggles that are enabled in device
DAWN_NATIVE_EXPORT std::vector<const char*> GetTogglesUsed(WGPUDevice device);
// Query the names of all the toggles that are enabled in device
DAWN_NATIVE_EXPORT std::vector<const char*> GetTogglesUsed(WGPUDevice device);
// Backdoor to get the number of lazy clears for testing
DAWN_NATIVE_EXPORT size_t GetLazyClearCountForTesting(WGPUDevice device);
// Backdoor to get the number of lazy clears for testing
DAWN_NATIVE_EXPORT size_t GetLazyClearCountForTesting(WGPUDevice device);
// Backdoor to get the number of deprecation warnings for testing
DAWN_NATIVE_EXPORT size_t GetDeprecationWarningCountForTesting(WGPUDevice device);
// Backdoor to get the number of deprecation warnings for testing
DAWN_NATIVE_EXPORT size_t GetDeprecationWarningCountForTesting(WGPUDevice device);
// Query if texture has been initialized
DAWN_NATIVE_EXPORT bool IsTextureSubresourceInitialized(
// Query if texture has been initialized
DAWN_NATIVE_EXPORT bool IsTextureSubresourceInitialized(
WGPUTexture texture,
uint32_t baseMipLevel,
uint32_t levelCount,
@ -195,29 +195,29 @@ namespace dawn::native {
uint32_t layerCount,
WGPUTextureAspect aspect = WGPUTextureAspect_All);
// Backdoor to get the order of the ProcMap for testing
DAWN_NATIVE_EXPORT std::vector<const char*> GetProcMapNamesForTesting();
// Backdoor to get the order of the ProcMap for testing
DAWN_NATIVE_EXPORT std::vector<const char*> GetProcMapNamesForTesting();
DAWN_NATIVE_EXPORT bool DeviceTick(WGPUDevice device);
DAWN_NATIVE_EXPORT bool DeviceTick(WGPUDevice device);
// ErrorInjector functions used for testing only. Defined in dawn_native/ErrorInjector.cpp
DAWN_NATIVE_EXPORT void EnableErrorInjector();
DAWN_NATIVE_EXPORT void DisableErrorInjector();
DAWN_NATIVE_EXPORT void ClearErrorInjector();
DAWN_NATIVE_EXPORT uint64_t AcquireErrorInjectorCallCount();
DAWN_NATIVE_EXPORT void InjectErrorAt(uint64_t index);
// ErrorInjector functions used for testing only. Defined in dawn_native/ErrorInjector.cpp
DAWN_NATIVE_EXPORT void EnableErrorInjector();
DAWN_NATIVE_EXPORT void DisableErrorInjector();
DAWN_NATIVE_EXPORT void ClearErrorInjector();
DAWN_NATIVE_EXPORT uint64_t AcquireErrorInjectorCallCount();
DAWN_NATIVE_EXPORT void InjectErrorAt(uint64_t index);
// The different types of external images
enum ExternalImageType {
// The different types of external images
enum ExternalImageType {
OpaqueFD,
DmaBuf,
IOSurface,
DXGISharedHandle,
EGLImage,
};
};
// Common properties of external images
struct DAWN_NATIVE_EXPORT ExternalImageDescriptor {
// Common properties of external images
struct DAWN_NATIVE_EXPORT ExternalImageDescriptor {
public:
const WGPUTextureDescriptor* cTextureDescriptor; // Must match image creation params
bool isInitialized; // Whether the texture is initialized on import
@ -228,15 +228,15 @@ namespace dawn::native {
private:
ExternalImageType mType;
};
};
struct DAWN_NATIVE_EXPORT ExternalImageAccessDescriptor {
struct DAWN_NATIVE_EXPORT ExternalImageAccessDescriptor {
public:
bool isInitialized; // Whether the texture is initialized on import
WGPUTextureUsageFlags usage;
};
};
struct DAWN_NATIVE_EXPORT ExternalImageExportInfo {
struct DAWN_NATIVE_EXPORT ExternalImageExportInfo {
public:
bool isInitialized; // Whether the texture is initialized after export
ExternalImageType GetType() const;
@ -246,13 +246,13 @@ namespace dawn::native {
private:
ExternalImageType mType;
};
};
DAWN_NATIVE_EXPORT const char* GetObjectLabelForTesting(void* objectHandle);
DAWN_NATIVE_EXPORT const char* GetObjectLabelForTesting(void* objectHandle);
DAWN_NATIVE_EXPORT uint64_t GetAllocatedSizeForTesting(WGPUBuffer buffer);
DAWN_NATIVE_EXPORT uint64_t GetAllocatedSizeForTesting(WGPUBuffer buffer);
DAWN_NATIVE_EXPORT bool BindGroupLayoutBindingsEqualForTesting(WGPUBindGroupLayout a,
DAWN_NATIVE_EXPORT bool BindGroupLayoutBindingsEqualForTesting(WGPUBindGroupLayout a,
WGPUBindGroupLayout b);
} // namespace dawn::native

View File

@ -29,16 +29,16 @@ struct __IOSurface;
typedef __IOSurface* IOSurfaceRef;
#ifdef __OBJC__
# import <Metal/Metal.h>
#import <Metal/Metal.h>
#endif // __OBJC__
namespace dawn::native::metal {
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
AdapterDiscoveryOptions();
};
};
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorIOSurface : ExternalImageDescriptor {
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorIOSurface : ExternalImageDescriptor {
public:
ExternalImageDescriptorIOSurface();
@ -46,24 +46,24 @@ namespace dawn::native::metal {
// This has been deprecated.
uint32_t plane;
};
};
DAWN_NATIVE_EXPORT WGPUTexture
WrapIOSurface(WGPUDevice device, const ExternalImageDescriptorIOSurface* descriptor);
DAWN_NATIVE_EXPORT WGPUTexture WrapIOSurface(WGPUDevice device,
const ExternalImageDescriptorIOSurface* descriptor);
// When making Metal interop with other APIs, we need to be careful that QueueSubmit doesn't
// mean that the operations will be visible to other APIs/Metal devices right away. macOS
// does have a global queue of graphics operations, but the command buffers are inserted there
// when they are "scheduled". Submitting other operations before the command buffer is
// scheduled could lead to races in who gets scheduled first and incorrect rendering.
DAWN_NATIVE_EXPORT void WaitForCommandsToBeScheduled(WGPUDevice device);
// When making Metal interop with other APIs, we need to be careful that QueueSubmit doesn't
// mean that the operations will be visible to other APIs/Metal devices right away. macOS
// does have a global queue of graphics operations, but the command buffers are inserted there
// when they are "scheduled". Submitting other operations before the command buffer is
// scheduled could lead to races in who gets scheduled first and incorrect rendering.
DAWN_NATIVE_EXPORT void WaitForCommandsToBeScheduled(WGPUDevice device);
} // namespace dawn::native::metal
#ifdef __OBJC__
namespace dawn::native::metal {
DAWN_NATIVE_EXPORT id<MTLDevice> GetMetalDevice(WGPUDevice device);
DAWN_NATIVE_EXPORT id<MTLDevice> GetMetalDevice(WGPUDevice device);
} // namespace dawn::native::metal
#endif // __OBJC__

View File

@ -19,7 +19,7 @@
#include "dawn/native/DawnNative.h"
namespace dawn::native::null {
DAWN_NATIVE_EXPORT DawnSwapChainImplementation CreateNativeSwapChainImpl();
DAWN_NATIVE_EXPORT DawnSwapChainImplementation CreateNativeSwapChainImpl();
} // namespace dawn::native::null
#endif // INCLUDE_DAWN_NATIVE_NULLBACKEND_H_

View File

@ -22,33 +22,34 @@ typedef void* EGLImage;
namespace dawn::native::opengl {
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
AdapterDiscoveryOptions();
void* (*getProc)(const char*);
};
};
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptionsES : public AdapterDiscoveryOptionsBase {
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptionsES : public AdapterDiscoveryOptionsBase {
AdapterDiscoveryOptionsES();
void* (*getProc)(const char*);
};
};
using PresentCallback = void (*)(void*);
DAWN_NATIVE_EXPORT DawnSwapChainImplementation
CreateNativeSwapChainImpl(WGPUDevice device, PresentCallback present, void* presentUserdata);
DAWN_NATIVE_EXPORT WGPUTextureFormat
GetNativeSwapChainPreferredFormat(const DawnSwapChainImplementation* swapChain);
using PresentCallback = void (*)(void*);
DAWN_NATIVE_EXPORT DawnSwapChainImplementation CreateNativeSwapChainImpl(WGPUDevice device,
PresentCallback present,
void* presentUserdata);
DAWN_NATIVE_EXPORT WGPUTextureFormat
GetNativeSwapChainPreferredFormat(const DawnSwapChainImplementation* swapChain);
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorEGLImage : ExternalImageDescriptor {
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorEGLImage : ExternalImageDescriptor {
public:
ExternalImageDescriptorEGLImage();
::EGLImage image;
};
};
DAWN_NATIVE_EXPORT WGPUTexture
WrapExternalEGLImage(WGPUDevice device, const ExternalImageDescriptorEGLImage* descriptor);
DAWN_NATIVE_EXPORT WGPUTexture
WrapExternalEGLImage(WGPUDevice device, const ExternalImageDescriptorEGLImage* descriptor);
} // namespace dawn::native::opengl

View File

@ -24,22 +24,22 @@
namespace dawn::native::vulkan {
DAWN_NATIVE_EXPORT VkInstance GetInstance(WGPUDevice device);
DAWN_NATIVE_EXPORT VkInstance GetInstance(WGPUDevice device);
DAWN_NATIVE_EXPORT PFN_vkVoidFunction GetInstanceProcAddr(WGPUDevice device, const char* pName);
DAWN_NATIVE_EXPORT PFN_vkVoidFunction GetInstanceProcAddr(WGPUDevice device, const char* pName);
DAWN_NATIVE_EXPORT DawnSwapChainImplementation
CreateNativeSwapChainImpl(WGPUDevice device, ::VkSurfaceKHR surface);
DAWN_NATIVE_EXPORT WGPUTextureFormat
GetNativeSwapChainPreferredFormat(const DawnSwapChainImplementation* swapChain);
DAWN_NATIVE_EXPORT DawnSwapChainImplementation CreateNativeSwapChainImpl(WGPUDevice device,
::VkSurfaceKHR surface);
DAWN_NATIVE_EXPORT WGPUTextureFormat
GetNativeSwapChainPreferredFormat(const DawnSwapChainImplementation* swapChain);
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
struct DAWN_NATIVE_EXPORT AdapterDiscoveryOptions : public AdapterDiscoveryOptionsBase {
AdapterDiscoveryOptions();
bool forceSwiftShader = false;
};
};
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorVk : ExternalImageDescriptor {
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorVk : ExternalImageDescriptor {
public:
// The following members may be ignored if |ExternalImageDescriptor::isInitialized| is false
// since the import does not need to preserve texture contents.
@ -55,9 +55,9 @@ namespace dawn::native::vulkan {
protected:
using ExternalImageDescriptor::ExternalImageDescriptor;
};
};
struct ExternalImageExportInfoVk : ExternalImageExportInfo {
struct ExternalImageExportInfoVk : ExternalImageExportInfo {
public:
// See comments in |ExternalImageDescriptorVk|
// Contains the old/new layouts used in the queue release operation.
@ -66,72 +66,72 @@ namespace dawn::native::vulkan {
protected:
using ExternalImageExportInfo::ExternalImageExportInfo;
};
};
// Can't use DAWN_PLATFORM_LINUX since header included in both Dawn and Chrome
#ifdef __linux__
// Common properties of external images represented by FDs. On successful import the file
// descriptor's ownership is transferred to the Dawn implementation and they shouldn't be
// used outside of Dawn again. TODO(enga): Also transfer ownership in the error case so the
// caller can assume the FD is always consumed.
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorFD : ExternalImageDescriptorVk {
// Common properties of external images represented by FDs. On successful import the file
// descriptor's ownership is transferred to the Dawn implementation and they shouldn't be
// used outside of Dawn again. TODO(enga): Also transfer ownership in the error case so the
// caller can assume the FD is always consumed.
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorFD : ExternalImageDescriptorVk {
public:
int memoryFD; // A file descriptor from an export of the memory of the image
std::vector<int> waitFDs; // File descriptors of semaphores which will be waited on
protected:
using ExternalImageDescriptorVk::ExternalImageDescriptorVk;
};
};
// Descriptor for opaque file descriptor image import
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorOpaqueFD : ExternalImageDescriptorFD {
// Descriptor for opaque file descriptor image import
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorOpaqueFD : ExternalImageDescriptorFD {
ExternalImageDescriptorOpaqueFD();
VkDeviceSize allocationSize; // Must match VkMemoryAllocateInfo from image creation
uint32_t memoryTypeIndex; // Must match VkMemoryAllocateInfo from image creation
};
};
// Descriptor for dma-buf file descriptor image import
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorDmaBuf : ExternalImageDescriptorFD {
// Descriptor for dma-buf file descriptor image import
struct DAWN_NATIVE_EXPORT ExternalImageDescriptorDmaBuf : ExternalImageDescriptorFD {
ExternalImageDescriptorDmaBuf();
uint32_t stride; // Stride of the buffer in bytes
uint64_t drmModifier; // DRM modifier of the buffer
};
};
// Info struct that is written to in |ExportVulkanImage|.
struct DAWN_NATIVE_EXPORT ExternalImageExportInfoFD : ExternalImageExportInfoVk {
// Info struct that is written to in |ExportVulkanImage|.
struct DAWN_NATIVE_EXPORT ExternalImageExportInfoFD : ExternalImageExportInfoVk {
public:
// Contains the exported semaphore handles.
std::vector<int> semaphoreHandles;
protected:
using ExternalImageExportInfoVk::ExternalImageExportInfoVk;
};
};
struct DAWN_NATIVE_EXPORT ExternalImageExportInfoOpaqueFD : ExternalImageExportInfoFD {
struct DAWN_NATIVE_EXPORT ExternalImageExportInfoOpaqueFD : ExternalImageExportInfoFD {
ExternalImageExportInfoOpaqueFD();
};
};
struct DAWN_NATIVE_EXPORT ExternalImageExportInfoDmaBuf : ExternalImageExportInfoFD {
struct DAWN_NATIVE_EXPORT ExternalImageExportInfoDmaBuf : ExternalImageExportInfoFD {
ExternalImageExportInfoDmaBuf();
};
};
#endif // __linux__
// Imports external memory into a Vulkan image. Internally, this uses external memory /
// semaphore extensions to import the image and wait on the provided synchronizaton
// primitives before the texture can be used.
// On failure, returns a nullptr.
DAWN_NATIVE_EXPORT WGPUTexture WrapVulkanImage(WGPUDevice device,
// Imports external memory into a Vulkan image. Internally, this uses external memory /
// semaphore extensions to import the image and wait on the provided synchronizaton
// primitives before the texture can be used.
// On failure, returns a nullptr.
DAWN_NATIVE_EXPORT WGPUTexture WrapVulkanImage(WGPUDevice device,
const ExternalImageDescriptorVk* descriptor);
// Exports external memory from a Vulkan image. This must be called on wrapped textures
// before they are destroyed. It writes the semaphore to wait on and the old/new image
// layouts to |info|. Pass VK_IMAGE_LAYOUT_UNDEFINED as |desiredLayout| if you don't want to
// perform a layout transition.
DAWN_NATIVE_EXPORT bool ExportVulkanImage(WGPUTexture texture,
// Exports external memory from a Vulkan image. This must be called on wrapped textures
// before they are destroyed. It writes the semaphore to wait on and the old/new image
// layouts to |info|. Pass VK_IMAGE_LAYOUT_UNDEFINED as |desiredLayout| if you don't want to
// perform a layout transition.
DAWN_NATIVE_EXPORT bool ExportVulkanImage(WGPUTexture texture,
VkImageLayout desiredLayout,
ExternalImageExportInfoVk* info);

View File

@ -16,21 +16,21 @@
#define INCLUDE_DAWN_NATIVE_DAWN_NATIVE_EXPORT_H_
#if defined(DAWN_NATIVE_SHARED_LIBRARY)
# if defined(_WIN32)
# if defined(DAWN_NATIVE_IMPLEMENTATION)
# define DAWN_NATIVE_EXPORT __declspec(dllexport)
# else
# define DAWN_NATIVE_EXPORT __declspec(dllimport)
# endif
# else // defined(_WIN32)
# if defined(DAWN_NATIVE_IMPLEMENTATION)
# define DAWN_NATIVE_EXPORT __attribute__((visibility("default")))
# else
# define DAWN_NATIVE_EXPORT
# endif
# endif // defined(_WIN32)
#if defined(_WIN32)
#if defined(DAWN_NATIVE_IMPLEMENTATION)
#define DAWN_NATIVE_EXPORT __declspec(dllexport)
#else
#define DAWN_NATIVE_EXPORT __declspec(dllimport)
#endif
#else // defined(_WIN32)
#if defined(DAWN_NATIVE_IMPLEMENTATION)
#define DAWN_NATIVE_EXPORT __attribute__((visibility("default")))
#else
#define DAWN_NATIVE_EXPORT
#endif
#endif // defined(_WIN32)
#else // defined(DAWN_NATIVE_SHARED_LIBRARY)
# define DAWN_NATIVE_EXPORT
#define DAWN_NATIVE_EXPORT
#endif // defined(DAWN_NATIVE_SHARED_LIBRARY)
#endif // INCLUDE_DAWN_NATIVE_DAWN_NATIVE_EXPORT_H_

View File

@ -24,14 +24,14 @@
namespace dawn::platform {
enum class TraceCategory {
enum class TraceCategory {
General, // General trace events
Validation, // Dawn validation
Recording, // Native command recording
GPUWork, // Actual GPU work
};
};
class DAWN_PLATFORM_EXPORT CachingInterface {
class DAWN_PLATFORM_EXPORT CachingInterface {
public:
CachingInterface();
virtual ~CachingInterface();
@ -58,27 +58,27 @@ namespace dawn::platform {
private:
CachingInterface(const CachingInterface&) = delete;
CachingInterface& operator=(const CachingInterface&) = delete;
};
};
class DAWN_PLATFORM_EXPORT WaitableEvent {
class DAWN_PLATFORM_EXPORT WaitableEvent {
public:
WaitableEvent() = default;
virtual ~WaitableEvent() = default;
virtual void Wait() = 0; // Wait for completion
virtual bool IsComplete() = 0; // Non-blocking check if the event is complete
};
};
using PostWorkerTaskCallback = void (*)(void* userdata);
using PostWorkerTaskCallback = void (*)(void* userdata);
class DAWN_PLATFORM_EXPORT WorkerTaskPool {
class DAWN_PLATFORM_EXPORT WorkerTaskPool {
public:
WorkerTaskPool() = default;
virtual ~WorkerTaskPool() = default;
virtual std::unique_ptr<WaitableEvent> PostWorkerTask(PostWorkerTaskCallback,
void* userdata) = 0;
};
};
class DAWN_PLATFORM_EXPORT Platform {
class DAWN_PLATFORM_EXPORT Platform {
public:
Platform();
virtual ~Platform();
@ -101,14 +101,13 @@ namespace dawn::platform {
// The |fingerprint| is provided by Dawn to inform the client to discard the Dawn caches
// when the fingerprint changes. The returned CachingInterface is expected to outlive the
// device which uses it to persistently cache objects.
virtual CachingInterface* GetCachingInterface(const void* fingerprint,
size_t fingerprintSize);
virtual CachingInterface* GetCachingInterface(const void* fingerprint, size_t fingerprintSize);
virtual std::unique_ptr<WorkerTaskPool> CreateWorkerTaskPool();
private:
Platform(const Platform&) = delete;
Platform& operator=(const Platform&) = delete;
};
};
} // namespace dawn::platform

View File

@ -16,21 +16,21 @@
#define INCLUDE_DAWN_PLATFORM_DAWN_PLATFORM_EXPORT_H_
#if defined(DAWN_PLATFORM_SHARED_LIBRARY)
# if defined(_WIN32)
# if defined(DAWN_PLATFORM_IMPLEMENTATION)
# define DAWN_PLATFORM_EXPORT __declspec(dllexport)
# else
# define DAWN_PLATFORM_EXPORT __declspec(dllimport)
# endif
# else // defined(_WIN32)
# if defined(DAWN_PLATFORM_IMPLEMENTATION)
# define DAWN_PLATFORM_EXPORT __attribute__((visibility("default")))
# else
# define DAWN_PLATFORM_EXPORT
# endif
# endif // defined(_WIN32)
#if defined(_WIN32)
#if defined(DAWN_PLATFORM_IMPLEMENTATION)
#define DAWN_PLATFORM_EXPORT __declspec(dllexport)
#else
#define DAWN_PLATFORM_EXPORT __declspec(dllimport)
#endif
#else // defined(_WIN32)
#if defined(DAWN_PLATFORM_IMPLEMENTATION)
#define DAWN_PLATFORM_EXPORT __attribute__((visibility("default")))
#else
#define DAWN_PLATFORM_EXPORT
#endif
#endif // defined(_WIN32)
#else // defined(DAWN_PLATFORM_SHARED_LIBRARY)
# define DAWN_PLATFORM_EXPORT
#define DAWN_PLATFORM_EXPORT
#endif // defined(DAWN_PLATFORM_SHARED_LIBRARY)
#endif // INCLUDE_DAWN_PLATFORM_DAWN_PLATFORM_EXPORT_H_

View File

@ -23,7 +23,7 @@
namespace dawn::wire {
class DAWN_WIRE_EXPORT CommandSerializer {
class DAWN_WIRE_EXPORT CommandSerializer {
public:
CommandSerializer();
virtual ~CommandSerializer();
@ -38,9 +38,9 @@ namespace dawn::wire {
virtual bool Flush() = 0;
virtual size_t GetMaximumAllocationSize() const = 0;
virtual void OnSerializeError();
};
};
class DAWN_WIRE_EXPORT CommandHandler {
class DAWN_WIRE_EXPORT CommandHandler {
public:
CommandHandler();
virtual ~CommandHandler();
@ -48,26 +48,25 @@ namespace dawn::wire {
CommandHandler& operator=(const CommandHandler& rhs) = delete;
virtual const volatile char* HandleCommands(const volatile char* commands, size_t size) = 0;
};
};
DAWN_WIRE_EXPORT size_t
SerializedWGPUDevicePropertiesSize(const WGPUDeviceProperties* deviceProperties);
DAWN_WIRE_EXPORT size_t
SerializedWGPUDevicePropertiesSize(const WGPUDeviceProperties* deviceProperties);
DAWN_WIRE_EXPORT void SerializeWGPUDeviceProperties(
const WGPUDeviceProperties* deviceProperties,
DAWN_WIRE_EXPORT void SerializeWGPUDeviceProperties(const WGPUDeviceProperties* deviceProperties,
char* serializeBuffer);
DAWN_WIRE_EXPORT bool DeserializeWGPUDeviceProperties(WGPUDeviceProperties* deviceProperties,
DAWN_WIRE_EXPORT bool DeserializeWGPUDeviceProperties(WGPUDeviceProperties* deviceProperties,
const volatile char* deserializeBuffer,
size_t deserializeBufferSize);
DAWN_WIRE_EXPORT size_t
SerializedWGPUSupportedLimitsSize(const WGPUSupportedLimits* supportedLimits);
DAWN_WIRE_EXPORT size_t
SerializedWGPUSupportedLimitsSize(const WGPUSupportedLimits* supportedLimits);
DAWN_WIRE_EXPORT void SerializeWGPUSupportedLimits(const WGPUSupportedLimits* supportedLimits,
DAWN_WIRE_EXPORT void SerializeWGPUSupportedLimits(const WGPUSupportedLimits* supportedLimits,
char* serializeBuffer);
DAWN_WIRE_EXPORT bool DeserializeWGPUSupportedLimits(WGPUSupportedLimits* supportedLimits,
DAWN_WIRE_EXPORT bool DeserializeWGPUSupportedLimits(WGPUSupportedLimits* supportedLimits,
const volatile char* deserializeBuffer,
size_t deserializeBufferSize);

View File

@ -23,47 +23,47 @@
namespace dawn::wire {
namespace client {
class Client;
class MemoryTransferService;
namespace client {
class Client;
class MemoryTransferService;
DAWN_WIRE_EXPORT const DawnProcTable& GetProcs();
} // namespace client
DAWN_WIRE_EXPORT const DawnProcTable& GetProcs();
} // namespace client
struct ReservedTexture {
struct ReservedTexture {
WGPUTexture texture;
uint32_t id;
uint32_t generation;
uint32_t deviceId;
uint32_t deviceGeneration;
};
};
struct ReservedSwapChain {
struct ReservedSwapChain {
WGPUSwapChain swapchain;
uint32_t id;
uint32_t generation;
uint32_t deviceId;
uint32_t deviceGeneration;
};
};
struct ReservedDevice {
struct ReservedDevice {
WGPUDevice device;
uint32_t id;
uint32_t generation;
};
};
struct ReservedInstance {
struct ReservedInstance {
WGPUInstance instance;
uint32_t id;
uint32_t generation;
};
};
struct DAWN_WIRE_EXPORT WireClientDescriptor {
struct DAWN_WIRE_EXPORT WireClientDescriptor {
CommandSerializer* serializer;
client::MemoryTransferService* memoryTransferService = nullptr;
};
};
class DAWN_WIRE_EXPORT WireClient : public CommandHandler {
class DAWN_WIRE_EXPORT WireClient : public CommandHandler {
public:
explicit WireClient(const WireClientDescriptor& descriptor);
~WireClient() override;
@ -86,10 +86,10 @@ namespace dawn::wire {
private:
std::unique_ptr<client::Client> mImpl;
};
};
namespace client {
class DAWN_WIRE_EXPORT MemoryTransferService {
namespace client {
class DAWN_WIRE_EXPORT MemoryTransferService {
public:
MemoryTransferService();
virtual ~MemoryTransferService();
@ -160,9 +160,7 @@ namespace dawn::wire {
// the subrange (offset, offset + size) of the allocation at buffer unmap
// This subrange is always the whole mapped region for now
// There could be nothing to be serialized (if using shared memory)
virtual void SerializeDataUpdate(void* serializePointer,
size_t offset,
size_t size) = 0;
virtual void SerializeDataUpdate(void* serializePointer, size_t offset, size_t size) = 0;
private:
WriteHandle(const WriteHandle&) = delete;
@ -172,11 +170,11 @@ namespace dawn::wire {
private:
MemoryTransferService(const MemoryTransferService&) = delete;
MemoryTransferService& operator=(const MemoryTransferService&) = delete;
};
};
// Backdoor to get the order of the ProcMap for testing
DAWN_WIRE_EXPORT std::vector<const char*> GetProcMapNamesForTesting();
} // namespace client
// Backdoor to get the order of the ProcMap for testing
DAWN_WIRE_EXPORT std::vector<const char*> GetProcMapNamesForTesting();
} // namespace client
} // namespace dawn::wire
#endif // INCLUDE_DAWN_WIRE_WIRECLIENT_H_

View File

@ -23,18 +23,18 @@ struct DawnProcTable;
namespace dawn::wire {
namespace server {
class Server;
class MemoryTransferService;
} // namespace server
namespace server {
class Server;
class MemoryTransferService;
} // namespace server
struct DAWN_WIRE_EXPORT WireServerDescriptor {
struct DAWN_WIRE_EXPORT WireServerDescriptor {
const DawnProcTable* procs;
CommandSerializer* serializer;
server::MemoryTransferService* memoryTransferService = nullptr;
};
};
class DAWN_WIRE_EXPORT WireServer : public CommandHandler {
class DAWN_WIRE_EXPORT WireServer : public CommandHandler {
public:
explicit WireServer(const WireServerDescriptor& descriptor);
~WireServer() override;
@ -67,10 +67,10 @@ namespace dawn::wire {
private:
std::unique_ptr<server::Server> mImpl;
};
};
namespace server {
class DAWN_WIRE_EXPORT MemoryTransferService {
namespace server {
class DAWN_WIRE_EXPORT MemoryTransferService {
public:
MemoryTransferService();
virtual ~MemoryTransferService();
@ -141,8 +141,8 @@ namespace dawn::wire {
private:
MemoryTransferService(const MemoryTransferService&) = delete;
MemoryTransferService& operator=(const MemoryTransferService&) = delete;
};
} // namespace server
};
} // namespace server
} // namespace dawn::wire

View File

@ -16,21 +16,21 @@
#define INCLUDE_DAWN_WIRE_DAWN_WIRE_EXPORT_H_
#if defined(DAWN_WIRE_SHARED_LIBRARY)
# if defined(_WIN32)
# if defined(DAWN_WIRE_IMPLEMENTATION)
# define DAWN_WIRE_EXPORT __declspec(dllexport)
# else
# define DAWN_WIRE_EXPORT __declspec(dllimport)
# endif
# else // defined(_WIN32)
# if defined(DAWN_WIRE_IMPLEMENTATION)
# define DAWN_WIRE_EXPORT __attribute__((visibility("default")))
# else
# define DAWN_WIRE_EXPORT
# endif
# endif // defined(_WIN32)
#if defined(_WIN32)
#if defined(DAWN_WIRE_IMPLEMENTATION)
#define DAWN_WIRE_EXPORT __declspec(dllexport)
#else
#define DAWN_WIRE_EXPORT __declspec(dllimport)
#endif
#else // defined(_WIN32)
#if defined(DAWN_WIRE_IMPLEMENTATION)
#define DAWN_WIRE_EXPORT __attribute__((visibility("default")))
#else
#define DAWN_WIRE_EXPORT
#endif
#endif // defined(_WIN32)
#else // defined(DAWN_WIRE_SHARED_LIBRARY)
# define DAWN_WIRE_EXPORT
#define DAWN_WIRE_EXPORT
#endif // defined(DAWN_WIRE_SHARED_LIBRARY)
#endif // INCLUDE_DAWN_WIRE_DAWN_WIRE_EXPORT_H_

View File

@ -1,2 +0,0 @@
# http://clang.llvm.org/docs/ClangFormatStyleOptions.html
BasedOnStyle: Chromium

View File

@ -1 +0,0 @@
filter=-runtime/indentation_namespace

View File

@ -32,32 +32,32 @@
// MSVC triggers a warning in /W4 for do {} while(0). SDL worked around this by using (0,0) and
// points out that it looks like an owl face.
#if defined(DAWN_COMPILER_MSVC)
# define DAWN_ASSERT_LOOP_CONDITION (0, 0)
#define DAWN_ASSERT_LOOP_CONDITION (0, 0)
#else
# define DAWN_ASSERT_LOOP_CONDITION (0)
#define DAWN_ASSERT_LOOP_CONDITION (0)
#endif
// DAWN_ASSERT_CALLSITE_HELPER generates the actual assert code. In Debug it does what you would
// expect of an assert and in release it tries to give hints to make the compiler generate better
// code.
#if defined(DAWN_ENABLE_ASSERTS)
# define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) \
#define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) \
do { \
if (!(condition)) { \
HandleAssertionFailure(file, func, line, #condition); \
} \
} while (DAWN_ASSERT_LOOP_CONDITION)
#else
# if defined(DAWN_COMPILER_MSVC)
# define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) __assume(condition)
# elif defined(DAWN_COMPILER_CLANG) && defined(__builtin_assume)
# define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) __builtin_assume(condition)
# else
# define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) \
#if defined(DAWN_COMPILER_MSVC)
#define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) __assume(condition)
#elif defined(DAWN_COMPILER_CLANG) && defined(__builtin_assume)
#define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) __builtin_assume(condition)
#else
#define DAWN_ASSERT_CALLSITE_HELPER(file, func, line, condition) \
do { \
DAWN_UNUSED(sizeof(condition)); \
} while (DAWN_ASSERT_LOOP_CONDITION)
# endif
#endif
#endif
#define DAWN_ASSERT(condition) DAWN_ASSERT_CALLSITE_HELPER(__FILE__, __func__, __LINE__, condition)
@ -68,8 +68,8 @@
} while (DAWN_ASSERT_LOOP_CONDITION)
#if !defined(DAWN_SKIP_ASSERT_SHORTHANDS)
# define ASSERT DAWN_ASSERT
# define UNREACHABLE DAWN_UNREACHABLE
#define ASSERT DAWN_ASSERT
#define UNREACHABLE DAWN_UNREACHABLE
#endif
void HandleAssertionFailure(const char* file,

View File

@ -62,24 +62,18 @@ class BitSetIterator final {
uint32_t mOffset;
};
Iterator begin() const {
return Iterator(mBits);
}
Iterator end() const {
return Iterator(std::bitset<N>(0));
}
Iterator begin() const { return Iterator(mBits); }
Iterator end() const { return Iterator(std::bitset<N>(0)); }
private:
const std::bitset<N> mBits;
};
template <size_t N, typename T>
BitSetIterator<N, T>::BitSetIterator(const std::bitset<N>& bitset) : mBits(bitset) {
}
BitSetIterator<N, T>::BitSetIterator(const std::bitset<N>& bitset) : mBits(bitset) {}
template <size_t N, typename T>
BitSetIterator<N, T>::BitSetIterator(const BitSetIterator& other) : mBits(other.mBits) {
}
BitSetIterator<N, T>::BitSetIterator(const BitSetIterator& other) : mBits(other.mBits) {}
template <size_t N, typename T>
BitSetIterator<N, T>& BitSetIterator<N, T>::operator=(const BitSetIterator& other) {

View File

@ -29,50 +29,50 @@
// Clang and GCC, check for __clang__ too to catch clang-cl masquarading as MSVC
#if defined(__GNUC__) || defined(__clang__)
# if defined(__clang__)
# define DAWN_COMPILER_CLANG
# else
# define DAWN_COMPILER_GCC
# endif
#if defined(__clang__)
#define DAWN_COMPILER_CLANG
#else
#define DAWN_COMPILER_GCC
#endif
# if defined(__i386__) || defined(__x86_64__)
# define DAWN_BREAKPOINT() __asm__ __volatile__("int $3\n\t")
# else
#if defined(__i386__) || defined(__x86_64__)
#define DAWN_BREAKPOINT() __asm__ __volatile__("int $3\n\t")
#else
// TODO(cwallez@chromium.org): Implement breakpoint on all supported architectures
# define DAWN_BREAKPOINT()
# endif
#define DAWN_BREAKPOINT()
#endif
# define DAWN_BUILTIN_UNREACHABLE() __builtin_unreachable()
# define DAWN_LIKELY(x) __builtin_expect(!!(x), 1)
# define DAWN_UNLIKELY(x) __builtin_expect(!!(x), 0)
#define DAWN_BUILTIN_UNREACHABLE() __builtin_unreachable()
#define DAWN_LIKELY(x) __builtin_expect(!!(x), 1)
#define DAWN_UNLIKELY(x) __builtin_expect(!!(x), 0)
# if !defined(__has_cpp_attribute)
# define __has_cpp_attribute(name) 0
# endif
#if !defined(__has_cpp_attribute)
#define __has_cpp_attribute(name) 0
#endif
# define DAWN_DECLARE_UNUSED __attribute__((unused))
# if defined(NDEBUG)
# define DAWN_FORCE_INLINE inline __attribute__((always_inline))
# endif
# define DAWN_NOINLINE __attribute__((noinline))
#define DAWN_DECLARE_UNUSED __attribute__((unused))
#if defined(NDEBUG)
#define DAWN_FORCE_INLINE inline __attribute__((always_inline))
#endif
#define DAWN_NOINLINE __attribute__((noinline))
// MSVC
#elif defined(_MSC_VER)
# define DAWN_COMPILER_MSVC
#define DAWN_COMPILER_MSVC
extern void __cdecl __debugbreak(void);
# define DAWN_BREAKPOINT() __debugbreak()
#define DAWN_BREAKPOINT() __debugbreak()
# define DAWN_BUILTIN_UNREACHABLE() __assume(false)
#define DAWN_BUILTIN_UNREACHABLE() __assume(false)
# define DAWN_DECLARE_UNUSED
# if defined(NDEBUG)
# define DAWN_FORCE_INLINE __forceinline
# endif
# define DAWN_NOINLINE __declspec(noinline)
#define DAWN_DECLARE_UNUSED
#if defined(NDEBUG)
#define DAWN_FORCE_INLINE __forceinline
#endif
#define DAWN_NOINLINE __declspec(noinline)
#else
# error "Unsupported compiler"
#error "Unsupported compiler"
#endif
// It seems that (void) EXPR works on all compilers to silence the unused variable warning.
@ -82,16 +82,16 @@ extern void __cdecl __debugbreak(void);
// Add noop replacements for macros for features that aren't supported by the compiler.
#if !defined(DAWN_LIKELY)
# define DAWN_LIKELY(X) X
#define DAWN_LIKELY(X) X
#endif
#if !defined(DAWN_UNLIKELY)
# define DAWN_UNLIKELY(X) X
#define DAWN_UNLIKELY(X) X
#endif
#if !defined(DAWN_FORCE_INLINE)
# define DAWN_FORCE_INLINE inline
#define DAWN_FORCE_INLINE inline
#endif
#if !defined(DAWN_NOINLINE)
# define DAWN_NOINLINE
#define DAWN_NOINLINE
#endif
#endif // SRC_DAWN_COMMON_COMPILER_H_

View File

@ -22,12 +22,8 @@
template <typename T>
struct CoreFoundationRefTraits {
static constexpr T kNullValue = nullptr;
static void Reference(T value) {
CFRetain(value);
}
static void Release(T value) {
CFRelease(value);
}
static void Reference(T value) { CFRetain(value); }
static void Release(T value) { CFRelease(value); }
};
template <typename T>

View File

@ -19,14 +19,14 @@
#include "dawn/common/Platform.h"
#if DAWN_PLATFORM_WINDOWS
# include "dawn/common/windows_with_undefs.h"
# if DAWN_PLATFORM_WINUWP
# include "dawn/common/WindowsUtils.h"
# endif
#include "dawn/common/windows_with_undefs.h"
#if DAWN_PLATFORM_WINUWP
#include "dawn/common/WindowsUtils.h"
#endif
#elif DAWN_PLATFORM_POSIX
# include <dlfcn.h>
#include <dlfcn.h>
#else
# error "Unsupported platform for DynamicLib"
#error "Unsupported platform for DynamicLib"
#endif
DynamicLib::~DynamicLib() {
@ -48,11 +48,11 @@ bool DynamicLib::Valid() const {
bool DynamicLib::Open(const std::string& filename, std::string* error) {
#if DAWN_PLATFORM_WINDOWS
# if DAWN_PLATFORM_WINUWP
#if DAWN_PLATFORM_WINUWP
mHandle = LoadPackagedLibrary(UTF8ToWStr(filename.c_str()).c_str(), 0);
# else
#else
mHandle = LoadLibraryA(filename.c_str());
# endif
#endif
if (mHandle == nullptr && error != nullptr) {
*error = "Windows Error: " + std::to_string(GetLastError());
}
@ -63,7 +63,7 @@ bool DynamicLib::Open(const std::string& filename, std::string* error) {
*error = dlerror();
}
#else
# error "Unsupported platform for DynamicLib"
#error "Unsupported platform for DynamicLib"
#endif
return mHandle != nullptr;
@ -79,7 +79,7 @@ void DynamicLib::Close() {
#elif DAWN_PLATFORM_POSIX
dlclose(mHandle);
#else
# error "Unsupported platform for DynamicLib"
#error "Unsupported platform for DynamicLib"
#endif
mHandle = nullptr;
@ -101,7 +101,7 @@ void* DynamicLib::GetProc(const std::string& procName, std::string* error) const
*error = dlerror();
}
#else
# error "Unsupported platform for DynamicLib"
#error "Unsupported platform for DynamicLib"
#endif
return proc;

View File

@ -20,66 +20,66 @@
#include "dawn/common/Assert.h"
namespace gpu_info {
namespace {
// Intel
// Referenced from the following Mesa source code:
// https://github.com/mesa3d/mesa/blob/master/include/pci_ids/i965_pci_ids.h
// gen9
const std::array<uint32_t, 25> Skylake = {
{0x1902, 0x1906, 0x190A, 0x190B, 0x190E, 0x1912, 0x1913, 0x1915, 0x1916,
0x1917, 0x191A, 0x191B, 0x191D, 0x191E, 0x1921, 0x1923, 0x1926, 0x1927,
0x192A, 0x192B, 0x192D, 0x1932, 0x193A, 0x193B, 0x193D}};
// gen9p5
const std::array<uint32_t, 20> Kabylake = {
{0x5916, 0x5913, 0x5906, 0x5926, 0x5921, 0x5915, 0x590E, 0x591E, 0x5912, 0x5917,
0x5902, 0x591B, 0x593B, 0x590B, 0x591A, 0x590A, 0x591D, 0x5908, 0x5923, 0x5927}};
const std::array<uint32_t, 17> Coffeelake = {
{0x87CA, 0x3E90, 0x3E93, 0x3E99, 0x3E9C, 0x3E91, 0x3E92, 0x3E96, 0x3E98, 0x3E9A, 0x3E9B,
0x3E94, 0x3EA9, 0x3EA5, 0x3EA6, 0x3EA7, 0x3EA8}};
const std::array<uint32_t, 5> Whiskylake = {{0x3EA1, 0x3EA4, 0x3EA0, 0x3EA3, 0x3EA2}};
const std::array<uint32_t, 21> Cometlake = {
namespace {
// Intel
// Referenced from the following Mesa source code:
// https://github.com/mesa3d/mesa/blob/master/include/pci_ids/i965_pci_ids.h
// gen9
const std::array<uint32_t, 25> Skylake = {{0x1902, 0x1906, 0x190A, 0x190B, 0x190E, 0x1912, 0x1913,
0x1915, 0x1916, 0x1917, 0x191A, 0x191B, 0x191D, 0x191E,
0x1921, 0x1923, 0x1926, 0x1927, 0x192A, 0x192B, 0x192D,
0x1932, 0x193A, 0x193B, 0x193D}};
// gen9p5
const std::array<uint32_t, 20> Kabylake = {{0x5916, 0x5913, 0x5906, 0x5926, 0x5921, 0x5915, 0x590E,
0x591E, 0x5912, 0x5917, 0x5902, 0x591B, 0x593B, 0x590B,
0x591A, 0x590A, 0x591D, 0x5908, 0x5923, 0x5927}};
const std::array<uint32_t, 17> Coffeelake = {{0x87CA, 0x3E90, 0x3E93, 0x3E99, 0x3E9C, 0x3E91,
0x3E92, 0x3E96, 0x3E98, 0x3E9A, 0x3E9B, 0x3E94,
0x3EA9, 0x3EA5, 0x3EA6, 0x3EA7, 0x3EA8}};
const std::array<uint32_t, 5> Whiskylake = {{0x3EA1, 0x3EA4, 0x3EA0, 0x3EA3, 0x3EA2}};
const std::array<uint32_t, 21> Cometlake = {
{0x9B21, 0x9BA0, 0x9BA2, 0x9BA4, 0x9BA5, 0x9BA8, 0x9BAA, 0x9BAB, 0x9BAC, 0x9B41, 0x9BC0,
0x9BC2, 0x9BC4, 0x9BC5, 0x9BC6, 0x9BC8, 0x9BCA, 0x9BCB, 0x9BCC, 0x9BE6, 0x9BF6}};
// According to Intel graphics driver version schema, build number is generated from the
// last two fields.
// See https://www.intel.com/content/www/us/en/support/articles/000005654/graphics.html for
// more details.
uint32_t GetIntelD3DDriverBuildNumber(const D3DDriverVersion& driverVersion) {
// According to Intel graphics driver version schema, build number is generated from the
// last two fields.
// See https://www.intel.com/content/www/us/en/support/articles/000005654/graphics.html for
// more details.
uint32_t GetIntelD3DDriverBuildNumber(const D3DDriverVersion& driverVersion) {
return driverVersion[2] * 10000 + driverVersion[3];
}
}
} // anonymous namespace
} // anonymous namespace
bool IsAMD(PCIVendorID vendorId) {
bool IsAMD(PCIVendorID vendorId) {
return vendorId == kVendorID_AMD;
}
bool IsARM(PCIVendorID vendorId) {
}
bool IsARM(PCIVendorID vendorId) {
return vendorId == kVendorID_ARM;
}
bool IsImgTec(PCIVendorID vendorId) {
}
bool IsImgTec(PCIVendorID vendorId) {
return vendorId == kVendorID_ImgTec;
}
bool IsIntel(PCIVendorID vendorId) {
}
bool IsIntel(PCIVendorID vendorId) {
return vendorId == kVendorID_Intel;
}
bool IsMesa(PCIVendorID vendorId) {
}
bool IsMesa(PCIVendorID vendorId) {
return vendorId == kVendorID_Mesa;
}
bool IsNvidia(PCIVendorID vendorId) {
}
bool IsNvidia(PCIVendorID vendorId) {
return vendorId == kVendorID_Nvidia;
}
bool IsQualcomm(PCIVendorID vendorId) {
}
bool IsQualcomm(PCIVendorID vendorId) {
return vendorId == kVendorID_Qualcomm;
}
bool IsSwiftshader(PCIVendorID vendorId, PCIDeviceID deviceId) {
}
bool IsSwiftshader(PCIVendorID vendorId, PCIDeviceID deviceId) {
return vendorId == kVendorID_Google && deviceId == kDeviceID_Swiftshader;
}
bool IsWARP(PCIVendorID vendorId, PCIDeviceID deviceId) {
}
bool IsWARP(PCIVendorID vendorId, PCIDeviceID deviceId) {
return vendorId == kVendorID_Microsoft && deviceId == kDeviceID_WARP;
}
}
int CompareD3DDriverVersion(PCIVendorID vendorId,
int CompareD3DDriverVersion(PCIVendorID vendorId,
const D3DDriverVersion& version1,
const D3DDriverVersion& version2) {
if (IsIntel(vendorId)) {
@ -91,18 +91,18 @@ namespace gpu_info {
// TODO(crbug.com/dawn/823): support other GPU vendors
UNREACHABLE();
return 0;
}
}
// Intel GPUs
bool IsSkylake(PCIDeviceID deviceId) {
// Intel GPUs
bool IsSkylake(PCIDeviceID deviceId) {
return std::find(Skylake.cbegin(), Skylake.cend(), deviceId) != Skylake.cend();
}
bool IsKabylake(PCIDeviceID deviceId) {
}
bool IsKabylake(PCIDeviceID deviceId) {
return std::find(Kabylake.cbegin(), Kabylake.cend(), deviceId) != Kabylake.cend();
}
bool IsCoffeelake(PCIDeviceID deviceId) {
}
bool IsCoffeelake(PCIDeviceID deviceId) {
return (std::find(Coffeelake.cbegin(), Coffeelake.cend(), deviceId) != Coffeelake.cend()) ||
(std::find(Whiskylake.cbegin(), Whiskylake.cend(), deviceId) != Whiskylake.cend()) ||
(std::find(Cometlake.cbegin(), Cometlake.cend(), deviceId) != Cometlake.cend());
}
}
} // namespace gpu_info

View File

@ -23,44 +23,44 @@ using PCIDeviceID = uint32_t;
namespace gpu_info {
static constexpr PCIVendorID kVendorID_AMD = 0x1002;
static constexpr PCIVendorID kVendorID_ARM = 0x13B5;
static constexpr PCIVendorID kVendorID_ImgTec = 0x1010;
static constexpr PCIVendorID kVendorID_Intel = 0x8086;
static constexpr PCIVendorID kVendorID_Mesa = 0x10005;
static constexpr PCIVendorID kVendorID_Nvidia = 0x10DE;
static constexpr PCIVendorID kVendorID_Qualcomm = 0x5143;
static constexpr PCIVendorID kVendorID_Google = 0x1AE0;
static constexpr PCIVendorID kVendorID_Microsoft = 0x1414;
static constexpr PCIVendorID kVendorID_AMD = 0x1002;
static constexpr PCIVendorID kVendorID_ARM = 0x13B5;
static constexpr PCIVendorID kVendorID_ImgTec = 0x1010;
static constexpr PCIVendorID kVendorID_Intel = 0x8086;
static constexpr PCIVendorID kVendorID_Mesa = 0x10005;
static constexpr PCIVendorID kVendorID_Nvidia = 0x10DE;
static constexpr PCIVendorID kVendorID_Qualcomm = 0x5143;
static constexpr PCIVendorID kVendorID_Google = 0x1AE0;
static constexpr PCIVendorID kVendorID_Microsoft = 0x1414;
static constexpr PCIDeviceID kDeviceID_Swiftshader = 0xC0DE;
static constexpr PCIDeviceID kDeviceID_WARP = 0x8c;
static constexpr PCIDeviceID kDeviceID_Swiftshader = 0xC0DE;
static constexpr PCIDeviceID kDeviceID_WARP = 0x8c;
bool IsAMD(PCIVendorID vendorId);
bool IsARM(PCIVendorID vendorId);
bool IsImgTec(PCIVendorID vendorId);
bool IsIntel(PCIVendorID vendorId);
bool IsMesa(PCIVendorID vendorId);
bool IsNvidia(PCIVendorID vendorId);
bool IsQualcomm(PCIVendorID vendorId);
bool IsSwiftshader(PCIVendorID vendorId, PCIDeviceID deviceId);
bool IsWARP(PCIVendorID vendorId, PCIDeviceID deviceId);
bool IsAMD(PCIVendorID vendorId);
bool IsARM(PCIVendorID vendorId);
bool IsImgTec(PCIVendorID vendorId);
bool IsIntel(PCIVendorID vendorId);
bool IsMesa(PCIVendorID vendorId);
bool IsNvidia(PCIVendorID vendorId);
bool IsQualcomm(PCIVendorID vendorId);
bool IsSwiftshader(PCIVendorID vendorId, PCIDeviceID deviceId);
bool IsWARP(PCIVendorID vendorId, PCIDeviceID deviceId);
using D3DDriverVersion = std::array<uint16_t, 4>;
using D3DDriverVersion = std::array<uint16_t, 4>;
// Do comparison between two driver versions. Currently we only support the comparison between
// Intel D3D driver versions.
// - Return -1 if build number of version1 is smaller
// - Return 1 if build number of version1 is bigger
// - Return 0 if version1 and version2 represent same driver version
int CompareD3DDriverVersion(PCIVendorID vendorId,
// Do comparison between two driver versions. Currently we only support the comparison between
// Intel D3D driver versions.
// - Return -1 if build number of version1 is smaller
// - Return 1 if build number of version1 is bigger
// - Return 0 if version1 and version2 represent same driver version
int CompareD3DDriverVersion(PCIVendorID vendorId,
const D3DDriverVersion& version1,
const D3DDriverVersion& version2);
// Intel architectures
bool IsSkylake(PCIDeviceID deviceId);
bool IsKabylake(PCIDeviceID deviceId);
bool IsCoffeelake(PCIDeviceID deviceId);
// Intel architectures
bool IsSkylake(PCIDeviceID deviceId);
bool IsKabylake(PCIDeviceID deviceId);
bool IsCoffeelake(PCIDeviceID deviceId);
} // namespace gpu_info
#endif // SRC_DAWN_COMMON_GPUINFO_H_

View File

@ -50,7 +50,7 @@ void HashCombine(size_t* hash, const T& value) {
#elif defined(DAWN_PLATFORM_32_BIT)
const size_t offset = 0x9e3779b9;
#else
# error "Unsupported platform"
#error "Unsupported platform"
#endif
*hash ^= Hash(value) + offset + (*hash << 6) + (*hash >> 2);
}
@ -89,13 +89,13 @@ size_t Hash(const std::bitset<N>& value) {
#endif
namespace std {
template <typename Index, size_t N>
struct hash<ityp::bitset<Index, N>> {
template <typename Index, size_t N>
struct hash<ityp::bitset<Index, N>> {
public:
size_t operator()(const ityp::bitset<Index, N>& value) const {
return Hash(static_cast<const std::bitset<N>&>(value));
}
};
};
} // namespace std
#endif // SRC_DAWN_COMMON_HASHUTILS_H_

View File

@ -22,12 +22,8 @@
template <typename T>
struct IOKitRefTraits {
static constexpr T kNullValue = IO_OBJECT_NULL;
static void Reference(T value) {
IOObjectRetain(value);
}
static void Release(T value) {
IOObjectRelease(value);
}
static void Reference(T value) { IOObjectRetain(value); }
static void Release(T value) { IOObjectRelease(value); }
};
template <typename T>

View File

@ -99,10 +99,8 @@ class LinkedList;
template <typename T>
class LinkNode {
public:
LinkNode() : previous_(nullptr), next_(nullptr) {
}
LinkNode(LinkNode<T>* previous, LinkNode<T>* next) : previous_(previous), next_(next) {
}
LinkNode() : previous_(nullptr), next_(nullptr) {}
LinkNode(LinkNode<T>* previous, LinkNode<T>* next) : previous_(previous), next_(next) {}
LinkNode(LinkNode<T>&& rhs) {
next_ = rhs.next_;
@ -154,22 +152,14 @@ class LinkNode {
return true;
}
LinkNode<T>* previous() const {
return previous_;
}
LinkNode<T>* previous() const { return previous_; }
LinkNode<T>* next() const {
return next_;
}
LinkNode<T>* next() const { return next_; }
// Cast from the node-type to the value type.
const T* value() const {
return static_cast<const T*>(this);
}
const T* value() const { return static_cast<const T*>(this); }
T* value() {
return static_cast<T*>(this);
}
T* value() { return static_cast<T*>(this); }
private:
friend class LinkedList<T>;
@ -183,8 +173,7 @@ class LinkedList {
// The "root" node is self-referential, and forms the basis of a circular
// list (root_.next() will point back to the start of the list,
// and root_->previous() wraps around to the end of the list).
LinkedList() : root_(&root_, &root_) {
}
LinkedList() : root_(&root_, &root_) {}
~LinkedList() {
// If any LinkNodes still exist in the LinkedList, there will be outstanding references to
@ -194,9 +183,7 @@ class LinkedList {
}
// Appends |e| to the end of the linked list.
void Append(LinkNode<T>* e) {
e->InsertBefore(&root_);
}
void Append(LinkNode<T>* e) { e->InsertBefore(&root_); }
// Moves all elements (in order) of the list and appends them into |l| leaving the list empty.
void MoveInto(LinkedList<T>* l) {
@ -212,21 +199,13 @@ class LinkedList {
root_.previous_ = &root_;
}
LinkNode<T>* head() const {
return root_.next();
}
LinkNode<T>* head() const { return root_.next(); }
LinkNode<T>* tail() const {
return root_.previous();
}
LinkNode<T>* tail() const { return root_.previous(); }
const LinkNode<T>* end() const {
return &root_;
}
const LinkNode<T>* end() const { return &root_; }
bool empty() const {
return head() == end();
}
bool empty() const { return head() == end(); }
private:
LinkNode<T> root_;
@ -235,8 +214,7 @@ class LinkedList {
template <typename T>
class LinkedListIterator {
public:
explicit LinkedListIterator(LinkNode<T>* node) : current_(node), next_(node->next()) {
}
explicit LinkedListIterator(LinkNode<T>* node) : current_(node), next_(node->next()) {}
// We keep an early reference to the next node in the list so that even if the current element
// is modified or removed from the list, we have a valid next node.
@ -246,13 +224,9 @@ class LinkedListIterator {
return *this;
}
bool operator!=(const LinkedListIterator<T>& other) const {
return current_ != other.current_;
}
bool operator!=(const LinkedListIterator<T>& other) const { return current_ != other.current_; }
LinkNode<T>* operator*() const {
return current_;
}
LinkNode<T>* operator*() const { return current_; }
private:
LinkNode<T>* current_;

View File

@ -21,14 +21,14 @@
#include "dawn/common/Platform.h"
#if defined(DAWN_PLATFORM_ANDROID)
# include <android/log.h>
#include <android/log.h>
#endif
namespace dawn {
namespace {
namespace {
const char* SeverityName(LogSeverity severity) {
const char* SeverityName(LogSeverity severity) {
switch (severity) {
case LogSeverity::Debug:
return "Debug";
@ -42,10 +42,10 @@ namespace dawn {
UNREACHABLE();
return "";
}
}
}
#if defined(DAWN_PLATFORM_ANDROID)
android_LogPriority AndroidLogPriority(LogSeverity severity) {
android_LogPriority AndroidLogPriority(LogSeverity severity) {
switch (severity) {
case LogSeverity::Debug:
return ANDROID_LOG_INFO;
@ -59,15 +59,14 @@ namespace dawn {
UNREACHABLE();
return ANDROID_LOG_ERROR;
}
}
}
#endif // defined(DAWN_PLATFORM_ANDROID)
} // anonymous namespace
} // anonymous namespace
LogMessage::LogMessage(LogSeverity severity) : mSeverity(severity) {
}
LogMessage::LogMessage(LogSeverity severity) : mSeverity(severity) {}
LogMessage::~LogMessage() {
LogMessage::~LogMessage() {
std::string fullMessage = mStream.str();
// If this message has been moved, its stream is empty.
@ -90,28 +89,28 @@ namespace dawn {
fprintf(outputStream, "%s: %s\n", severityName, fullMessage.c_str());
fflush(outputStream);
#endif // defined(DAWN_PLATFORM_ANDROID)
}
}
LogMessage DebugLog() {
LogMessage DebugLog() {
return LogMessage(LogSeverity::Debug);
}
}
LogMessage InfoLog() {
LogMessage InfoLog() {
return LogMessage(LogSeverity::Info);
}
}
LogMessage WarningLog() {
LogMessage WarningLog() {
return LogMessage(LogSeverity::Warning);
}
}
LogMessage ErrorLog() {
LogMessage ErrorLog() {
return LogMessage(LogSeverity::Error);
}
}
LogMessage DebugLog(const char* file, const char* function, int line) {
LogMessage DebugLog(const char* file, const char* function, int line) {
LogMessage message = DebugLog();
message << file << ":" << line << "(" << function << ")";
return message;
}
}
} // namespace dawn

View File

@ -47,17 +47,17 @@
namespace dawn {
// Log levels mostly used to signal intent where the log message is produced and used to route
// the message to the correct output.
enum class LogSeverity {
// Log levels mostly used to signal intent where the log message is produced and used to route
// the message to the correct output.
enum class LogSeverity {
Debug,
Info,
Warning,
Error,
};
};
// Essentially an ostringstream that will print itself in its destructor.
class LogMessage {
// Essentially an ostringstream that will print itself in its destructor.
class LogMessage {
public:
explicit LogMessage(LogSeverity severity);
~LogMessage();
@ -77,17 +77,17 @@ namespace dawn {
LogSeverity mSeverity;
std::ostringstream mStream;
};
};
// Short-hands to create a LogMessage with the respective severity.
LogMessage DebugLog();
LogMessage InfoLog();
LogMessage WarningLog();
LogMessage ErrorLog();
// Short-hands to create a LogMessage with the respective severity.
LogMessage DebugLog();
LogMessage InfoLog();
LogMessage WarningLog();
LogMessage ErrorLog();
// DAWN_DEBUG is a helper macro that creates a DebugLog and outputs file/line/function
// information
LogMessage DebugLog(const char* file, const char* function, int line);
// DAWN_DEBUG is a helper macro that creates a DebugLog and outputs file/line/function
// information
LogMessage DebugLog(const char* file, const char* function, int line);
#define DAWN_DEBUG() ::dawn::DebugLog(__FILE__, __func__, __LINE__)
} // namespace dawn

View File

@ -22,7 +22,7 @@
#include "dawn/common/Platform.h"
#if defined(DAWN_COMPILER_MSVC)
# include <intrin.h>
#include <intrin.h>
#endif
uint32_t ScanForward(uint32_t bits) {
@ -54,13 +54,13 @@ uint32_t Log2(uint32_t value) {
uint32_t Log2(uint64_t value) {
ASSERT(value != 0);
#if defined(DAWN_COMPILER_MSVC)
# if defined(DAWN_PLATFORM_64_BIT)
#if defined(DAWN_PLATFORM_64_BIT)
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanReverse64(&firstBitIndex, value);
ASSERT(ret != 0);
return firstBitIndex;
# else // defined(DAWN_PLATFORM_64_BIT)
#else // defined(DAWN_PLATFORM_64_BIT)
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;
if (_BitScanReverse(&firstBitIndex, value >> 32)) {
@ -69,7 +69,7 @@ uint32_t Log2(uint64_t value) {
unsigned char ret = _BitScanReverse(&firstBitIndex, value & 0xFFFFFFFF);
ASSERT(ret != 0);
return firstBitIndex;
# endif // defined(DAWN_PLATFORM_64_BIT)
#endif // defined(DAWN_PLATFORM_64_BIT)
#else // defined(DAWN_COMPILER_MSVC)
return 63 - static_cast<uint32_t>(__builtin_clzll(value));
#endif // defined(DAWN_COMPILER_MSVC)

View File

@ -20,7 +20,7 @@
#import <Foundation/NSObject.h>
#if !defined(__OBJC__)
# error "NSRef can only be used in Objective C/C++ code."
#error "NSRef can only be used in Objective C/C++ code."
#endif
// This file contains smart pointers that automatically reference and release Objective C objects
@ -67,12 +67,8 @@
template <typename T>
struct NSRefTraits {
static constexpr T kNullValue = nullptr;
static void Reference(T value) {
[value retain];
}
static void Release(T value) {
[value release];
}
static void Reference(T value) { [value retain]; }
static void Release(T value) { [value release]; }
};
template <typename T>
@ -80,13 +76,9 @@ class NSRef : public RefBase<T*, NSRefTraits<T*>> {
public:
using RefBase<T*, NSRefTraits<T*>>::RefBase;
const T* operator*() const {
return this->Get();
}
const T* operator*() const { return this->Get(); }
T* operator*() {
return this->Get();
}
T* operator*() { return this->Get(); }
};
template <typename T>
@ -104,13 +96,9 @@ class NSPRef : public RefBase<T, NSRefTraits<T>> {
public:
using RefBase<T, NSRefTraits<T>>::RefBase;
const T operator*() const {
return this->Get();
}
const T operator*() const { return this->Get(); }
T operator*() {
return this->Get();
}
T operator*() { return this->Get(); }
};
template <typename T>

View File

@ -22,17 +22,17 @@
namespace detail {
template <typename T>
inline constexpr uint32_t u32_sizeof() {
template <typename T>
inline constexpr uint32_t u32_sizeof() {
static_assert(sizeof(T) <= std::numeric_limits<uint32_t>::max());
return uint32_t(sizeof(T));
}
}
template <typename T>
inline constexpr uint32_t u32_alignof() {
template <typename T>
inline constexpr uint32_t u32_alignof() {
static_assert(alignof(T) <= std::numeric_limits<uint32_t>::max());
return uint32_t(alignof(T));
}
}
} // namespace detail

View File

@ -16,67 +16,67 @@
#define SRC_DAWN_COMMON_PLATFORM_H_
#if defined(_WIN32) || defined(_WIN64)
# include <winapifamily.h>
# define DAWN_PLATFORM_WINDOWS 1
# if WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP
# define DAWN_PLATFORM_WIN32 1
# elif WINAPI_FAMILY == WINAPI_FAMILY_PC_APP
# define DAWN_PLATFORM_WINUWP 1
# else
# error "Unsupported Windows platform."
# endif
#include <winapifamily.h>
#define DAWN_PLATFORM_WINDOWS 1
#if WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP
#define DAWN_PLATFORM_WIN32 1
#elif WINAPI_FAMILY == WINAPI_FAMILY_PC_APP
#define DAWN_PLATFORM_WINUWP 1
#else
#error "Unsupported Windows platform."
#endif
#elif defined(__linux__)
# define DAWN_PLATFORM_LINUX 1
# define DAWN_PLATFORM_POSIX 1
# if defined(__ANDROID__)
# define DAWN_PLATFORM_ANDROID 1
# endif
#define DAWN_PLATFORM_LINUX 1
#define DAWN_PLATFORM_POSIX 1
#if defined(__ANDROID__)
#define DAWN_PLATFORM_ANDROID 1
#endif
#elif defined(__APPLE__)
# define DAWN_PLATFORM_APPLE 1
# define DAWN_PLATFORM_POSIX 1
# include <TargetConditionals.h>
# if TARGET_OS_IPHONE
# define DAWN_PLATFORM_IOS
# elif TARGET_OS_MAC
# define DAWN_PLATFORM_MACOS
# else
# error "Unsupported Apple platform."
# endif
#define DAWN_PLATFORM_APPLE 1
#define DAWN_PLATFORM_POSIX 1
#include <TargetConditionals.h>
#if TARGET_OS_IPHONE
#define DAWN_PLATFORM_IOS
#elif TARGET_OS_MAC
#define DAWN_PLATFORM_MACOS
#else
#error "Unsupported Apple platform."
#endif
#elif defined(__Fuchsia__)
# define DAWN_PLATFORM_FUCHSIA 1
# define DAWN_PLATFORM_POSIX 1
#define DAWN_PLATFORM_FUCHSIA 1
#define DAWN_PLATFORM_POSIX 1
#elif defined(__EMSCRIPTEN__)
# define DAWN_PLATFORM_EMSCRIPTEN 1
# define DAWN_PLATFORM_POSIX 1
#define DAWN_PLATFORM_EMSCRIPTEN 1
#define DAWN_PLATFORM_POSIX 1
#else
# error "Unsupported platform."
#error "Unsupported platform."
#endif
// Distinguish mips32.
#if defined(__mips__) && (_MIPS_SIM == _ABIO32) && !defined(__mips32__)
# define __mips32__
#define __mips32__
#endif
// Distinguish mips64.
#if defined(__mips__) && (_MIPS_SIM == _ABI64) && !defined(__mips64__)
# define __mips64__
#define __mips64__
#endif
#if defined(_WIN64) || defined(__aarch64__) || defined(__x86_64__) || defined(__mips64__) || \
defined(__s390x__) || defined(__PPC64__)
# define DAWN_PLATFORM_64_BIT 1
#define DAWN_PLATFORM_64_BIT 1
static_assert(sizeof(sizeof(char)) == 8, "Expect sizeof(size_t) == 8");
#elif defined(_WIN32) || defined(__arm__) || defined(__i386__) || defined(__mips32__) || \
defined(__s390__) || defined(__EMSCRIPTEN__)
# define DAWN_PLATFORM_32_BIT 1
#define DAWN_PLATFORM_32_BIT 1
static_assert(sizeof(sizeof(char)) == 4, "Expect sizeof(size_t) == 4");
#else
# error "Unsupported platform"
#error "Unsupported platform"
#endif
#endif // SRC_DAWN_COMMON_PLATFORM_H_

View File

@ -36,17 +36,13 @@ template <typename T, typename Traits>
class RefBase {
public:
// Default constructor and destructor.
RefBase() : mValue(Traits::kNullValue) {
}
RefBase() : mValue(Traits::kNullValue) {}
~RefBase() {
Release(mValue);
}
~RefBase() { Release(mValue); }
// Constructors from nullptr.
// NOLINTNEXTLINE(runtime/explicit)
constexpr RefBase(std::nullptr_t) : RefBase() {
}
constexpr RefBase(std::nullptr_t) : RefBase() {}
RefBase<T, Traits>& operator=(std::nullptr_t) {
Set(Traits::kNullValue);
@ -55,9 +51,7 @@ class RefBase {
// Constructors from a value T.
// NOLINTNEXTLINE(runtime/explicit)
RefBase(T value) : mValue(value) {
Reference(value);
}
RefBase(T value) : mValue(value) { Reference(value); }
RefBase<T, Traits>& operator=(const T& value) {
Set(value);
@ -65,18 +59,14 @@ class RefBase {
}
// Constructors from a RefBase<T>
RefBase(const RefBase<T, Traits>& other) : mValue(other.mValue) {
Reference(other.mValue);
}
RefBase(const RefBase<T, Traits>& other) : mValue(other.mValue) { Reference(other.mValue); }
RefBase<T, Traits>& operator=(const RefBase<T, Traits>& other) {
Set(other.mValue);
return *this;
}
RefBase(RefBase<T, Traits>&& other) {
mValue = other.Detach();
}
RefBase(RefBase<T, Traits>&& other) { mValue = other.Detach(); }
RefBase<T, Traits>& operator=(RefBase<T, Traits>&& other) {
if (&other != this) {
@ -113,28 +103,16 @@ class RefBase {
}
// Comparison operators.
bool operator==(const T& other) const {
return mValue == other;
}
bool operator==(const T& other) const { return mValue == other; }
bool operator!=(const T& other) const {
return mValue != other;
}
bool operator!=(const T& other) const { return mValue != other; }
const T operator->() const {
return mValue;
}
T operator->() {
return mValue;
}
const T operator->() const { return mValue; }
T operator->() { return mValue; }
// Smart pointer methods.
const T& Get() const {
return mValue;
}
T& Get() {
return mValue;
}
const T& Get() const { return mValue; }
T& Get() { return mValue; }
[[nodiscard]] T Detach() {
T value{std::move(mValue)};

View File

@ -45,12 +45,8 @@ class RefCounted {
template <typename T>
struct RefCountedTraits {
static constexpr T* kNullValue = nullptr;
static void Reference(T* value) {
value->Reference();
}
static void Release(T* value) {
value->Release();
}
static void Reference(T* value) { value->Reference(); }
static void Release(T* value) { value->Release(); }
};
template <typename T>

View File

@ -17,14 +17,14 @@
// Implementation details of the tagged pointer Results
namespace detail {
intptr_t MakePayload(const void* pointer, PayloadType type) {
intptr_t MakePayload(const void* pointer, PayloadType type) {
intptr_t payload = reinterpret_cast<intptr_t>(pointer);
ASSERT((payload & 3) == 0);
return payload | type;
}
}
PayloadType GetPayloadType(intptr_t payload) {
PayloadType GetPayloadType(intptr_t payload) {
return static_cast<PayloadType>(payload & 3);
}
}
} // namespace detail

View File

@ -63,7 +63,7 @@ class [[nodiscard]] Result<void, E> {
Result();
Result(std::unique_ptr<E> error);
Result(Result<void, E> && other);
Result(Result<void, E>&& other);
Result<void, E>& operator=(Result<void, E>&& other);
~Result();
@ -89,23 +89,23 @@ constexpr size_t alignof_if_defined_else_default<T, Default, decltype(alignof(T)
// tagged pointer. The tag for Success is 0 so that returning the value is fastest.
namespace detail {
// Utility functions to manipulate the tagged pointer. Some of them don't need to be templated
// but we really want them inlined so we keep them in the headers
enum PayloadType {
// Utility functions to manipulate the tagged pointer. Some of them don't need to be templated
// but we really want them inlined so we keep them in the headers
enum PayloadType {
Success = 0,
Error = 1,
Empty = 2,
};
};
intptr_t MakePayload(const void* pointer, PayloadType type);
PayloadType GetPayloadType(intptr_t payload);
intptr_t MakePayload(const void* pointer, PayloadType type);
PayloadType GetPayloadType(intptr_t payload);
template <typename T>
static T* GetSuccessFromPayload(intptr_t payload);
template <typename E>
static E* GetErrorFromPayload(intptr_t payload);
template <typename T>
static T* GetSuccessFromPayload(intptr_t payload);
template <typename E>
static E* GetErrorFromPayload(intptr_t payload);
constexpr static intptr_t kEmptyPayload = Empty;
constexpr static intptr_t kEmptyPayload = Empty;
} // namespace detail
template <typename T, typename E>
@ -116,12 +116,12 @@ class [[nodiscard]] Result<T*, E> {
static_assert(alignof_if_defined_else_default<E, 4> >= 4,
"Result<T*, E*> reserves two bits for tagging pointers");
Result(T * success);
Result(T* success);
Result(std::unique_ptr<E> error);
// Support returning a Result<T*, E*> from a Result<TChild*, E*>
template <typename TChild>
Result(Result<TChild*, E> && other);
Result(Result<TChild*, E>&& other);
template <typename TChild>
Result<T*, E>& operator=(Result<TChild*, E>&& other);
@ -151,7 +151,7 @@ class [[nodiscard]] Result<const T*, E> {
Result(const T* success);
Result(std::unique_ptr<E> error);
Result(Result<const T*, E> && other);
Result(Result<const T*, E>&& other);
Result<const T*, E>& operator=(Result<const T*, E>&& other);
~Result();
@ -178,13 +178,13 @@ class [[nodiscard]] Result<Ref<T>, E> {
"Result<Ref<T>, E> reserves two bits for tagging pointers");
template <typename U>
Result(Ref<U> && success);
Result(Ref<U>&& success);
template <typename U>
Result(const Ref<U>& success);
Result(std::unique_ptr<E> error);
template <typename U>
Result(Result<Ref<U>, E> && other);
Result(Result<Ref<U>, E>&& other);
template <typename U>
Result<Ref<U>, E>& operator=(Result<Ref<U>, E>&& other);
@ -209,10 +209,10 @@ class [[nodiscard]] Result<Ref<T>, E> {
template <typename T, typename E>
class [[nodiscard]] Result {
public:
Result(T && success);
Result(T&& success);
Result(std::unique_ptr<E> error);
Result(Result<T, E> && other);
Result(Result<T, E>&& other);
Result<T, E>& operator=(Result<T, E>&& other);
~Result();
@ -237,16 +237,13 @@ class [[nodiscard]] Result {
// Implementation of Result<void, E>
template <typename E>
Result<void, E>::Result() {
}
Result<void, E>::Result() {}
template <typename E>
Result<void, E>::Result(std::unique_ptr<E> error) : mError(std::move(error)) {
}
Result<void, E>::Result(std::unique_ptr<E> error) : mError(std::move(error)) {}
template <typename E>
Result<void, E>::Result(Result<void, E>&& other) : mError(std::move(other.mError)) {
}
Result<void, E>::Result(Result<void, E>&& other) : mError(std::move(other.mError)) {}
template <typename E>
Result<void, E>& Result<void, E>::operator=(Result<void, E>&& other) {
@ -271,8 +268,7 @@ bool Result<void, E>::IsSuccess() const {
}
template <typename E>
void Result<void, E>::AcquireSuccess() {
}
void Result<void, E>::AcquireSuccess() {}
template <typename E>
std::unique_ptr<E> Result<void, E>::AcquireError() {
@ -282,29 +278,27 @@ std::unique_ptr<E> Result<void, E>::AcquireError() {
// Implementation details of the tagged pointer Results
namespace detail {
template <typename T>
T* GetSuccessFromPayload(intptr_t payload) {
template <typename T>
T* GetSuccessFromPayload(intptr_t payload) {
ASSERT(GetPayloadType(payload) == Success);
return reinterpret_cast<T*>(payload);
}
}
template <typename E>
E* GetErrorFromPayload(intptr_t payload) {
template <typename E>
E* GetErrorFromPayload(intptr_t payload) {
ASSERT(GetPayloadType(payload) == Error);
return reinterpret_cast<E*>(payload ^ 1);
}
}
} // namespace detail
// Implementation of Result<T*, E>
template <typename T, typename E>
Result<T*, E>::Result(T* success) : mPayload(detail::MakePayload(success, detail::Success)) {
}
Result<T*, E>::Result(T* success) : mPayload(detail::MakePayload(success, detail::Success)) {}
template <typename T, typename E>
Result<T*, E>::Result(std::unique_ptr<E> error)
: mPayload(detail::MakePayload(error.release(), detail::Error)) {
}
: mPayload(detail::MakePayload(error.release(), detail::Error)) {}
template <typename T, typename E>
template <typename TChild>
@ -355,13 +349,11 @@ std::unique_ptr<E> Result<T*, E>::AcquireError() {
// Implementation of Result<const T*, E*>
template <typename T, typename E>
Result<const T*, E>::Result(const T* success)
: mPayload(detail::MakePayload(success, detail::Success)) {
}
: mPayload(detail::MakePayload(success, detail::Success)) {}
template <typename T, typename E>
Result<const T*, E>::Result(std::unique_ptr<E> error)
: mPayload(detail::MakePayload(error.release(), detail::Error)) {
}
: mPayload(detail::MakePayload(error.release(), detail::Error)) {}
template <typename T, typename E>
Result<const T*, E>::Result(Result<const T*, E>&& other) : mPayload(other.mPayload) {
@ -415,13 +407,11 @@ Result<Ref<T>, E>::Result(Ref<U>&& success)
template <typename T, typename E>
template <typename U>
Result<Ref<T>, E>::Result(const Ref<U>& success) : Result(Ref<U>(success)) {
}
Result<Ref<T>, E>::Result(const Ref<U>& success) : Result(Ref<U>(success)) {}
template <typename T, typename E>
Result<Ref<T>, E>::Result(std::unique_ptr<E> error)
: mPayload(detail::MakePayload(error.release(), detail::Error)) {
}
: mPayload(detail::MakePayload(error.release(), detail::Error)) {}
template <typename T, typename E>
template <typename U>
@ -473,12 +463,10 @@ std::unique_ptr<E> Result<Ref<T>, E>::AcquireError() {
// Implementation of Result<T, E>
template <typename T, typename E>
Result<T, E>::Result(T&& success) : mType(Success), mSuccess(std::move(success)) {
}
Result<T, E>::Result(T&& success) : mType(Success), mSuccess(std::move(success)) {}
template <typename T, typename E>
Result<T, E>::Result(std::unique_ptr<E> error) : mType(Error), mError(std::move(error)) {
}
Result<T, E>::Result(std::unique_ptr<E> error) : mType(Error), mError(std::move(error)) {}
template <typename T, typename E>
Result<T, E>::~Result() {

View File

@ -193,8 +193,7 @@ typename SerialStorage<Derived>::StorageIterator SerialStorage<Derived>::FindUpT
template <typename Derived>
SerialStorage<Derived>::BeginEnd::BeginEnd(typename SerialStorage<Derived>::StorageIterator start,
typename SerialStorage<Derived>::StorageIterator end)
: mStartIt(start), mEndIt(end) {
}
: mStartIt(start), mEndIt(end) {}
template <typename Derived>
typename SerialStorage<Derived>::Iterator SerialStorage<Derived>::BeginEnd::begin() const {
@ -210,8 +209,7 @@ typename SerialStorage<Derived>::Iterator SerialStorage<Derived>::BeginEnd::end(
template <typename Derived>
SerialStorage<Derived>::Iterator::Iterator(typename SerialStorage<Derived>::StorageIterator start)
: mStorageIterator(start), mSerialIterator(nullptr) {
}
: mStorageIterator(start), mSerialIterator(nullptr) {}
template <typename Derived>
typename SerialStorage<Derived>::Iterator& SerialStorage<Derived>::Iterator::operator++() {
@ -257,8 +255,7 @@ template <typename Derived>
SerialStorage<Derived>::ConstBeginEnd::ConstBeginEnd(
typename SerialStorage<Derived>::ConstStorageIterator start,
typename SerialStorage<Derived>::ConstStorageIterator end)
: mStartIt(start), mEndIt(end) {
}
: mStartIt(start), mEndIt(end) {}
template <typename Derived>
typename SerialStorage<Derived>::ConstIterator SerialStorage<Derived>::ConstBeginEnd::begin()
@ -276,8 +273,7 @@ typename SerialStorage<Derived>::ConstIterator SerialStorage<Derived>::ConstBegi
template <typename Derived>
SerialStorage<Derived>::ConstIterator::ConstIterator(
typename SerialStorage<Derived>::ConstStorageIterator start)
: mStorageIterator(start), mSerialIterator(nullptr) {
}
: mStorageIterator(start), mSerialIterator(nullptr) {}
template <typename Derived>
typename SerialStorage<Derived>::ConstIterator&

View File

@ -25,19 +25,16 @@
// IndexLinkNode
SlabAllocatorImpl::IndexLinkNode::IndexLinkNode(Index index, Index nextIndex)
: index(index), nextIndex(nextIndex) {
}
: index(index), nextIndex(nextIndex) {}
// Slab
SlabAllocatorImpl::Slab::Slab(char allocation[], IndexLinkNode* head)
: allocation(allocation), freeList(head), prev(nullptr), next(nullptr), blocksInUse(0) {
}
: allocation(allocation), freeList(head), prev(nullptr), next(nullptr), blocksInUse(0) {}
SlabAllocatorImpl::Slab::Slab(Slab&& rhs) = default;
SlabAllocatorImpl::SentinelSlab::SentinelSlab() : Slab(nullptr, nullptr) {
}
SlabAllocatorImpl::SentinelSlab::SentinelSlab() : Slab(nullptr, nullptr) {}
SlabAllocatorImpl::SentinelSlab::SentinelSlab(SentinelSlab&& rhs) = default;
@ -83,8 +80,7 @@ SlabAllocatorImpl::SlabAllocatorImpl(SlabAllocatorImpl&& rhs)
mTotalAllocationSize(rhs.mTotalAllocationSize),
mAvailableSlabs(std::move(rhs.mAvailableSlabs)),
mFullSlabs(std::move(rhs.mFullSlabs)),
mRecycledSlabs(std::move(rhs.mRecycledSlabs)) {
}
mRecycledSlabs(std::move(rhs.mRecycledSlabs)) {}
SlabAllocatorImpl::~SlabAllocatorImpl() = default;

View File

@ -168,8 +168,7 @@ class SlabAllocator : public SlabAllocatorImpl {
SlabAllocator(size_t totalObjectBytes,
uint32_t objectSize = u32_sizeof<T>,
uint32_t objectAlignment = u32_alignof<T>)
: SlabAllocatorImpl(totalObjectBytes / objectSize, objectSize, objectAlignment) {
}
: SlabAllocatorImpl(totalObjectBytes / objectSize, objectSize, objectAlignment) {}
template <typename... Args>
T* Allocate(Args&&... args) {
@ -177,9 +176,7 @@ class SlabAllocator : public SlabAllocatorImpl {
return new (ptr) T(std::forward<Args>(args)...);
}
void Deallocate(T* object) {
SlabAllocatorImpl::Deallocate(object);
}
void Deallocate(T* object) { SlabAllocatorImpl::Deallocate(object); }
};
#endif // SRC_DAWN_COMMON_SLABALLOCATOR_H_

View File

@ -41,16 +41,11 @@ class StackAllocator : public std::allocator<T> {
// maintaining this for as long as any containers using this allocator are
// live.
struct Source {
Source() : used_stack_buffer_(false) {
}
Source() : used_stack_buffer_(false) {}
// Casts the buffer in its right type.
T* stack_buffer() {
return reinterpret_cast<T*>(stack_buffer_);
}
const T* stack_buffer() const {
return reinterpret_cast<const T*>(&stack_buffer_);
}
T* stack_buffer() { return reinterpret_cast<T*>(stack_buffer_); }
const T* stack_buffer() const { return reinterpret_cast<const T*>(&stack_buffer_); }
// The buffer itself. It is not of type T because we don't want the
// constructors and destructors to be automatically called. Define a POD
@ -73,8 +68,7 @@ class StackAllocator : public std::allocator<T> {
// For the straight up copy c-tor, we can share storage.
StackAllocator(const StackAllocator<T, stack_capacity>& rhs)
: std::allocator<T>(), source_(rhs.source_) {
}
: std::allocator<T>(), source_(rhs.source_) {}
// ISO C++ requires the following constructor to be defined,
// and std::vector in VC++2008SP1 Release fails with an error
@ -84,18 +78,15 @@ class StackAllocator : public std::allocator<T> {
// no guarantee that the Source buffer of Ts is large enough
// for Us.
template <typename U, size_t other_capacity>
StackAllocator(const StackAllocator<U, other_capacity>& other) : source_(nullptr) {
}
StackAllocator(const StackAllocator<U, other_capacity>& other) : source_(nullptr) {}
// This constructor must exist. It creates a default allocator that doesn't
// actually have a stack buffer. glibc's std::string() will compare the
// current allocator against the default-constructed allocator, so this
// should be fast.
StackAllocator() : source_(nullptr) {
}
StackAllocator() : source_(nullptr) {}
explicit StackAllocator(Source* source) : source_(source) {
}
explicit StackAllocator(Source* source) : source_(source) {}
// Actually do the allocation. Use the stack buffer if nobody has used it yet
// and the size requested fits. Otherwise, fall through to the standard
@ -154,28 +145,18 @@ class StackContainer {
// shorter lifetimes than the source. The copy will share the same allocator
// and therefore the same stack buffer as the original. Use std::copy to
// copy into a "real" container for longer-lived objects.
ContainerType& container() {
return container_;
}
const ContainerType& container() const {
return container_;
}
ContainerType& container() { return container_; }
const ContainerType& container() const { return container_; }
// Support operator-> to get to the container. This allows nicer syntax like:
// StackContainer<...> foo;
// std::sort(foo->begin(), foo->end());
ContainerType* operator->() {
return &container_;
}
const ContainerType* operator->() const {
return &container_;
}
ContainerType* operator->() { return &container_; }
const ContainerType* operator->() const { return &container_; }
// Retrieves the stack source so that that unit tests can verify that the
// buffer is being used properly.
const typename Allocator::Source& stack_data() const {
return stack_data_;
}
const typename Allocator::Source& stack_data() const { return stack_data_; }
protected:
typename Allocator::Source stack_data_;
@ -225,8 +206,7 @@ class StackVector
: public StackContainer<std::vector<T, StackAllocator<T, stack_capacity>>, stack_capacity> {
public:
StackVector()
: StackContainer<std::vector<T, StackAllocator<T, stack_capacity>>, stack_capacity>() {
}
: StackContainer<std::vector<T, StackAllocator<T, stack_capacity>>, stack_capacity>() {}
// We need to put this in STL containers sometimes, which requires a copy
// constructor. We can't call the regular copy constructor because that will
@ -244,12 +224,8 @@ class StackVector
// Vectors are commonly indexed, which isn't very convenient even with
// operator-> (using "->at()" does exception stuff we don't want).
T& operator[](size_t i) {
return this->container().operator[](i);
}
const T& operator[](size_t i) const {
return this->container().operator[](i);
}
T& operator[](size_t i) { return this->container().operator[](i); }
const T& operator[](size_t i) const { return this->container().operator[](i); }
private:
// StackVector(const StackVector& rhs) = delete;

View File

@ -18,17 +18,17 @@
#include "dawn/common/Log.h"
#if defined(DAWN_PLATFORM_WINDOWS)
# include <Windows.h>
# include <vector>
#include <Windows.h>
#include <vector>
#elif defined(DAWN_PLATFORM_LINUX)
# include <dlfcn.h>
# include <limits.h>
# include <unistd.h>
# include <cstdlib>
#include <dlfcn.h>
#include <limits.h>
#include <unistd.h>
#include <cstdlib>
#elif defined(DAWN_PLATFORM_MACOS) || defined(DAWN_PLATFORM_IOS)
# include <dlfcn.h>
# include <mach-o/dyld.h>
# include <vector>
#include <dlfcn.h>
#include <mach-o/dyld.h>
#include <vector>
#endif
#include <array>
@ -84,7 +84,7 @@ bool SetEnvironmentVar(const char* variableName, const char* value) {
return setenv(variableName, value, 1) == 0;
}
#else
# error "Implement Get/SetEnvironmentVar for your platform."
#error "Implement Get/SetEnvironmentVar for your platform."
#endif
#if defined(DAWN_PLATFORM_WINDOWS)
@ -134,7 +134,7 @@ std::optional<std::string> GetExecutablePath() {
return {};
}
#else
# error "Implement GetExecutablePath for your platform."
#error "Implement GetExecutablePath for your platform."
#endif
std::optional<std::string> GetExecutableDirectory() {
@ -168,15 +168,15 @@ std::optional<std::string> GetModulePath() {
static int placeholderSymbol = 0;
HMODULE module = nullptr;
// GetModuleHandleEx is unavailable on UWP
# if defined(DAWN_IS_WINUWP)
#if defined(DAWN_IS_WINUWP)
return {};
# else
#else
if (!GetModuleHandleExA(
GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT,
reinterpret_cast<LPCSTR>(&placeholderSymbol), &module)) {
return {};
}
# endif
#endif
return GetHModulePath(module);
}
#elif defined(DAWN_PLATFORM_FUCHSIA)
@ -188,7 +188,7 @@ std::optional<std::string> GetModulePath() {
return {};
}
#else
# error "Implement GetModulePath for your platform."
#error "Implement GetModulePath for your platform."
#endif
std::optional<std::string> GetModuleDirectory() {
@ -208,8 +208,7 @@ std::optional<std::string> GetModuleDirectory() {
ScopedEnvironmentVar::ScopedEnvironmentVar(const char* variableName, const char* value)
: mName(variableName),
mOriginalValue(GetEnvironmentVar(variableName)),
mIsSet(SetEnvironmentVar(variableName, value)) {
}
mIsSet(SetEnvironmentVar(variableName, value)) {}
ScopedEnvironmentVar::~ScopedEnvironmentVar() {
if (mIsSet) {

View File

@ -50,8 +50,8 @@
// uint32_t aValue = static_cast<uint32_t>(a);
//
namespace detail {
template <typename Tag, typename T>
class TypedIntegerImpl;
template <typename Tag, typename T>
class TypedIntegerImpl;
} // namespace detail
template <typename Tag, typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
@ -62,8 +62,8 @@ using TypedInteger = T;
#endif
namespace detail {
template <typename Tag, typename T>
class alignas(T) TypedIntegerImpl {
template <typename Tag, typename T>
class alignas(T) TypedIntegerImpl {
static_assert(std::is_integral<T>::value, "TypedInteger must be integral");
T mValue;
@ -75,25 +75,20 @@ namespace detail {
// Construction from non-narrowing integral types.
template <typename I,
typename = std::enable_if_t<
std::is_integral<I>::value &&
typename =
std::enable_if_t<std::is_integral<I>::value &&
std::numeric_limits<I>::max() <= std::numeric_limits<T>::max() &&
std::numeric_limits<I>::min() >= std::numeric_limits<T>::min()>>
explicit constexpr TypedIntegerImpl(I rhs) : mValue(static_cast<T>(rhs)) {
}
explicit constexpr TypedIntegerImpl(I rhs) : mValue(static_cast<T>(rhs)) {}
// Allow explicit casts only to the underlying type. If you're casting out of an
// TypedInteger, you should know what what you're doing, and exactly what type you
// expect.
explicit constexpr operator T() const {
return static_cast<T>(this->mValue);
}
explicit constexpr operator T() const { return static_cast<T>(this->mValue); }
// Same-tag TypedInteger comparison operators
#define TYPED_COMPARISON(op) \
constexpr bool operator op(const TypedIntegerImpl& rhs) const { \
return mValue op rhs.mValue; \
}
constexpr bool operator op(const TypedIntegerImpl& rhs) const { return mValue op rhs.mValue; }
TYPED_COMPARISON(<)
TYPED_COMPARISON(<=)
TYPED_COMPARISON(>)
@ -132,8 +127,9 @@ namespace detail {
}
template <typename T2 = T>
static constexpr std::enable_if_t<std::is_unsigned<T2>::value, decltype(T(0) + T2(0))>
AddImpl(TypedIntegerImpl<Tag, T> lhs, TypedIntegerImpl<Tag, T2> rhs) {
static constexpr std::enable_if_t<std::is_unsigned<T2>::value, decltype(T(0) + T2(0))> AddImpl(
TypedIntegerImpl<Tag, T> lhs,
TypedIntegerImpl<Tag, T2> rhs) {
static_assert(std::is_same<T, T2>::value);
// Overflow would wrap around
@ -142,8 +138,9 @@ namespace detail {
}
template <typename T2 = T>
static constexpr std::enable_if_t<std::is_signed<T2>::value, decltype(T(0) + T2(0))>
AddImpl(TypedIntegerImpl<Tag, T> lhs, TypedIntegerImpl<Tag, T2> rhs) {
static constexpr std::enable_if_t<std::is_signed<T2>::value, decltype(T(0) + T2(0))> AddImpl(
TypedIntegerImpl<Tag, T> lhs,
TypedIntegerImpl<Tag, T2> rhs) {
static_assert(std::is_same<T, T2>::value);
if (lhs.mValue > 0) {
@ -160,8 +157,9 @@ namespace detail {
}
template <typename T2 = T>
static constexpr std::enable_if_t<std::is_unsigned<T>::value, decltype(T(0) - T2(0))>
SubImpl(TypedIntegerImpl<Tag, T> lhs, TypedIntegerImpl<Tag, T2> rhs) {
static constexpr std::enable_if_t<std::is_unsigned<T>::value, decltype(T(0) - T2(0))> SubImpl(
TypedIntegerImpl<Tag, T> lhs,
TypedIntegerImpl<Tag, T2> rhs) {
static_assert(std::is_same<T, T2>::value);
// Overflow would wrap around
@ -207,14 +205,14 @@ namespace detail {
static_assert(std::is_same<T, decltype(result)>::value, "Use ityp::Sub instead.");
return TypedIntegerImpl(result);
}
};
};
} // namespace detail
namespace std {
template <typename Tag, typename T>
class numeric_limits<detail::TypedIntegerImpl<Tag, T>> : public numeric_limits<T> {
template <typename Tag, typename T>
class numeric_limits<detail::TypedIntegerImpl<Tag, T>> : public numeric_limits<T> {
public:
static detail::TypedIntegerImpl<Tag, T> max() noexcept {
return detail::TypedIntegerImpl<Tag, T>(std::numeric_limits<T>::max());
@ -222,40 +220,40 @@ namespace std {
static detail::TypedIntegerImpl<Tag, T> min() noexcept {
return detail::TypedIntegerImpl<Tag, T>(std::numeric_limits<T>::min());
}
};
};
} // namespace std
namespace ityp {
// These helpers below are provided since the default arithmetic operators for small integer
// types like uint8_t and uint16_t return integers, not their same type. To avoid lots of
// casting or conditional code between Release/Debug. Callsites should use ityp::Add(a, b) and
// ityp::Sub(a, b) instead.
// These helpers below are provided since the default arithmetic operators for small integer
// types like uint8_t and uint16_t return integers, not their same type. To avoid lots of
// casting or conditional code between Release/Debug. Callsites should use ityp::Add(a, b) and
// ityp::Sub(a, b) instead.
template <typename Tag, typename T>
constexpr ::detail::TypedIntegerImpl<Tag, T> Add(::detail::TypedIntegerImpl<Tag, T> lhs,
template <typename Tag, typename T>
constexpr ::detail::TypedIntegerImpl<Tag, T> Add(::detail::TypedIntegerImpl<Tag, T> lhs,
::detail::TypedIntegerImpl<Tag, T> rhs) {
return ::detail::TypedIntegerImpl<Tag, T>(
static_cast<T>(::detail::TypedIntegerImpl<Tag, T>::AddImpl(lhs, rhs)));
}
}
template <typename Tag, typename T>
constexpr ::detail::TypedIntegerImpl<Tag, T> Sub(::detail::TypedIntegerImpl<Tag, T> lhs,
template <typename Tag, typename T>
constexpr ::detail::TypedIntegerImpl<Tag, T> Sub(::detail::TypedIntegerImpl<Tag, T> lhs,
::detail::TypedIntegerImpl<Tag, T> rhs) {
return ::detail::TypedIntegerImpl<Tag, T>(
static_cast<T>(::detail::TypedIntegerImpl<Tag, T>::SubImpl(lhs, rhs)));
}
}
template <typename T>
constexpr std::enable_if_t<std::is_integral<T>::value, T> Add(T lhs, T rhs) {
template <typename T>
constexpr std::enable_if_t<std::is_integral<T>::value, T> Add(T lhs, T rhs) {
return static_cast<T>(lhs + rhs);
}
}
template <typename T>
constexpr std::enable_if_t<std::is_integral<T>::value, T> Sub(T lhs, T rhs) {
template <typename T>
constexpr std::enable_if_t<std::is_integral<T>::value, T> Sub(T lhs, T rhs) {
return static_cast<T>(lhs - rhs);
}
}
} // namespace ityp

View File

@ -22,27 +22,27 @@
// template parameter. It includes a specialization for detail::TypedIntegerImpl which yields
// the wrapped integer type.
namespace detail {
template <typename T, typename Enable = void>
struct UnderlyingTypeImpl;
template <typename T, typename Enable = void>
struct UnderlyingTypeImpl;
template <typename I>
struct UnderlyingTypeImpl<I, typename std::enable_if_t<std::is_integral<I>::value>> {
template <typename I>
struct UnderlyingTypeImpl<I, typename std::enable_if_t<std::is_integral<I>::value>> {
using type = I;
};
};
template <typename E>
struct UnderlyingTypeImpl<E, typename std::enable_if_t<std::is_enum<E>::value>> {
template <typename E>
struct UnderlyingTypeImpl<E, typename std::enable_if_t<std::is_enum<E>::value>> {
using type = std::underlying_type_t<E>;
};
};
// Forward declare the TypedInteger impl.
template <typename Tag, typename T>
class TypedIntegerImpl;
// Forward declare the TypedInteger impl.
template <typename Tag, typename T>
class TypedIntegerImpl;
template <typename Tag, typename I>
struct UnderlyingTypeImpl<TypedIntegerImpl<Tag, I>> {
template <typename Tag, typename I>
struct UnderlyingTypeImpl<TypedIntegerImpl<Tag, I>> {
using type = typename UnderlyingTypeImpl<I>::type;
};
};
} // namespace detail
template <typename T>

View File

@ -26,12 +26,12 @@
namespace ityp {
// ityp::array is a helper class that wraps std::array with the restriction that
// indices must be a particular type |Index|. Dawn uses multiple flat maps of
// index-->data, and this class helps ensure an indices cannot be passed interchangably
// to a flat map of a different type.
template <typename Index, typename Value, size_t Size>
class array : private std::array<Value, Size> {
// ityp::array is a helper class that wraps std::array with the restriction that
// indices must be a particular type |Index|. Dawn uses multiple flat maps of
// index-->data, and this class helps ensure an indices cannot be passed interchangably
// to a flat map of a different type.
template <typename Index, typename Value, size_t Size>
class array : private std::array<Value, Size> {
using I = UnderlyingType<Index>;
using Base = std::array<Value, Size>;
@ -42,8 +42,7 @@ namespace ityp {
template <typename... Values>
// NOLINTNEXTLINE(runtime/explicit)
constexpr array(Values&&... values) : Base{std::forward<Values>(values)...} {
}
constexpr array(Values&&... values) : Base{std::forward<Values>(values)...} {}
Value& operator[](Index i) {
I index = static_cast<I>(i);
@ -69,32 +68,22 @@ namespace ityp {
return Base::at(index);
}
typename Base::iterator begin() noexcept {
return Base::begin();
}
typename Base::iterator begin() noexcept { return Base::begin(); }
typename Base::const_iterator begin() const noexcept {
return Base::begin();
}
typename Base::const_iterator begin() const noexcept { return Base::begin(); }
typename Base::iterator end() noexcept {
return Base::end();
}
typename Base::iterator end() noexcept { return Base::end(); }
typename Base::const_iterator end() const noexcept {
return Base::end();
}
typename Base::const_iterator end() const noexcept { return Base::end(); }
constexpr Index size() const {
return Index(I(Size));
}
constexpr Index size() const { return Index(I(Size)); }
using Base::back;
using Base::data;
using Base::empty;
using Base::fill;
using Base::front;
};
};
} // namespace ityp

View File

@ -21,39 +21,30 @@
namespace ityp {
// ityp::bitset is a helper class that wraps std::bitset with the restriction that
// indices must be a particular type |Index|.
template <typename Index, size_t N>
class bitset : private std::bitset<N> {
// ityp::bitset is a helper class that wraps std::bitset with the restriction that
// indices must be a particular type |Index|.
template <typename Index, size_t N>
class bitset : private std::bitset<N> {
using I = UnderlyingType<Index>;
using Base = std::bitset<N>;
static_assert(sizeof(I) <= sizeof(size_t));
explicit constexpr bitset(const Base& rhs) : Base(rhs) {
}
explicit constexpr bitset(const Base& rhs) : Base(rhs) {}
public:
using reference = typename Base::reference;
constexpr bitset() noexcept : Base() {
}
constexpr bitset() noexcept : Base() {}
// NOLINTNEXTLINE(runtime/explicit)
constexpr bitset(uint64_t value) noexcept : Base(value) {
}
constexpr bitset(uint64_t value) noexcept : Base(value) {}
constexpr bool operator[](Index i) const {
return Base::operator[](static_cast<I>(i));
}
constexpr bool operator[](Index i) const { return Base::operator[](static_cast<I>(i)); }
typename Base::reference operator[](Index i) {
return Base::operator[](static_cast<I>(i));
}
typename Base::reference operator[](Index i) { return Base::operator[](static_cast<I>(i)); }
bool test(Index i) const {
return Base::test(static_cast<I>(i));
}
bool test(Index i) const { return Base::test(static_cast<I>(i)); }
using Base::all;
using Base::any;
@ -81,33 +72,21 @@ namespace ityp {
return static_cast<bitset&>(Base::operator^=(static_cast<const Base&>(other)));
}
bitset operator~() const noexcept {
return bitset(*this).flip();
}
bitset operator~() const noexcept { return bitset(*this).flip(); }
bitset& set() noexcept {
return static_cast<bitset&>(Base::set());
}
bitset& set() noexcept { return static_cast<bitset&>(Base::set()); }
bitset& set(Index i, bool value = true) {
return static_cast<bitset&>(Base::set(static_cast<I>(i), value));
}
bitset& reset() noexcept {
return static_cast<bitset&>(Base::reset());
}
bitset& reset() noexcept { return static_cast<bitset&>(Base::reset()); }
bitset& reset(Index i) {
return static_cast<bitset&>(Base::reset(static_cast<I>(i)));
}
bitset& reset(Index i) { return static_cast<bitset&>(Base::reset(static_cast<I>(i))); }
bitset& flip() noexcept {
return static_cast<bitset&>(Base::flip());
}
bitset& flip() noexcept { return static_cast<bitset&>(Base::flip()); }
bitset& flip(Index i) {
return static_cast<bitset&>(Base::flip(static_cast<I>(i)));
}
bitset& flip(Index i) { return static_cast<bitset&>(Base::flip(static_cast<I>(i))); }
using Base::to_string;
using Base::to_ullong;
@ -130,7 +109,7 @@ namespace ityp {
}
friend struct std::hash<bitset>;
};
};
} // namespace ityp
@ -147,7 +126,7 @@ Index GetHighestBitIndexPlusOne(const ityp::bitset<Index, N>& bitset) {
using I = UnderlyingType<Index>;
#if defined(DAWN_COMPILER_MSVC)
if constexpr (N > 32) {
# if defined(DAWN_PLATFORM_64_BIT)
#if defined(DAWN_PLATFORM_64_BIT)
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanReverse64(&firstBitIndex, bitset.to_ullong());
@ -155,7 +134,7 @@ Index GetHighestBitIndexPlusOne(const ityp::bitset<Index, N>& bitset) {
return Index(static_cast<I>(0));
}
return Index(static_cast<I>(firstBitIndex + 1));
# else // defined(DAWN_PLATFORM_64_BIT)
#else // defined(DAWN_PLATFORM_64_BIT)
if (bitset.none()) {
return Index(static_cast<I>(0));
}
@ -165,7 +144,7 @@ Index GetHighestBitIndexPlusOne(const ityp::bitset<Index, N>& bitset) {
}
}
UNREACHABLE();
# endif // defined(DAWN_PLATFORM_64_BIT)
#endif // defined(DAWN_PLATFORM_64_BIT)
} else {
// NOLINTNEXTLINE(runtime/int)
unsigned long firstBitIndex = 0ul;

View File

@ -22,48 +22,34 @@
namespace ityp {
// ityp::span is a helper class that wraps an unowned packed array of type |Value|.
// It stores the size and pointer to first element. It has the restriction that
// indices must be a particular type |Index|. This provides a type-safe way to index
// raw pointers.
template <typename Index, typename Value>
class span {
// ityp::span is a helper class that wraps an unowned packed array of type |Value|.
// It stores the size and pointer to first element. It has the restriction that
// indices must be a particular type |Index|. This provides a type-safe way to index
// raw pointers.
template <typename Index, typename Value>
class span {
using I = UnderlyingType<Index>;
public:
constexpr span() : mData(nullptr), mSize(0) {
}
constexpr span(Value* data, Index size) : mData(data), mSize(size) {
}
constexpr span() : mData(nullptr), mSize(0) {}
constexpr span(Value* data, Index size) : mData(data), mSize(size) {}
constexpr Value& operator[](Index i) const {
ASSERT(i < mSize);
return mData[static_cast<I>(i)];
}
Value* data() noexcept {
return mData;
}
Value* data() noexcept { return mData; }
const Value* data() const noexcept {
return mData;
}
const Value* data() const noexcept { return mData; }
Value* begin() noexcept {
return mData;
}
Value* begin() noexcept { return mData; }
const Value* begin() const noexcept {
return mData;
}
const Value* begin() const noexcept { return mData; }
Value* end() noexcept {
return mData + static_cast<I>(mSize);
}
Value* end() noexcept { return mData + static_cast<I>(mSize); }
const Value* end() const noexcept {
return mData + static_cast<I>(mSize);
}
const Value* end() const noexcept { return mData + static_cast<I>(mSize); }
Value& front() {
ASSERT(mData != nullptr);
@ -89,14 +75,12 @@ namespace ityp {
return *(mData + static_cast<I>(mSize) - 1);
}
Index size() const {
return mSize;
}
Index size() const { return mSize; }
private:
Value* mData;
Index mSize;
};
};
} // namespace ityp

View File

@ -24,19 +24,16 @@
namespace ityp {
template <typename Index, typename Value, size_t StaticCapacity>
class stack_vec : private StackVector<Value, StaticCapacity> {
template <typename Index, typename Value, size_t StaticCapacity>
class stack_vec : private StackVector<Value, StaticCapacity> {
using I = UnderlyingType<Index>;
using Base = StackVector<Value, StaticCapacity>;
using VectorBase = std::vector<Value, StackAllocator<Value, StaticCapacity>>;
static_assert(StaticCapacity <= std::numeric_limits<I>::max());
public:
stack_vec() : Base() {
}
explicit stack_vec(Index size) : Base() {
this->container().resize(static_cast<I>(size));
}
stack_vec() : Base() {}
explicit stack_vec(Index size) : Base() { this->container().resize(static_cast<I>(size)); }
Value& operator[](Index i) {
ASSERT(i < size());
@ -48,58 +45,32 @@ namespace ityp {
return Base::operator[](static_cast<I>(i));
}
void resize(Index size) {
this->container().resize(static_cast<I>(size));
}
void resize(Index size) { this->container().resize(static_cast<I>(size)); }
void reserve(Index size) {
this->container().reserve(static_cast<I>(size));
}
void reserve(Index size) { this->container().reserve(static_cast<I>(size)); }
Value* data() {
return this->container().data();
}
Value* data() { return this->container().data(); }
const Value* data() const {
return this->container().data();
}
const Value* data() const { return this->container().data(); }
typename VectorBase::iterator begin() noexcept {
return this->container().begin();
}
typename VectorBase::iterator begin() noexcept { return this->container().begin(); }
typename VectorBase::const_iterator begin() const noexcept {
return this->container().begin();
}
typename VectorBase::const_iterator begin() const noexcept { return this->container().begin(); }
typename VectorBase::iterator end() noexcept {
return this->container().end();
}
typename VectorBase::iterator end() noexcept { return this->container().end(); }
typename VectorBase::const_iterator end() const noexcept {
return this->container().end();
}
typename VectorBase::const_iterator end() const noexcept { return this->container().end(); }
typename VectorBase::reference front() {
return this->container().front();
}
typename VectorBase::reference front() { return this->container().front(); }
typename VectorBase::const_reference front() const {
return this->container().front();
}
typename VectorBase::const_reference front() const { return this->container().front(); }
typename VectorBase::reference back() {
return this->container().back();
}
typename VectorBase::reference back() { return this->container().back(); }
typename VectorBase::const_reference back() const {
return this->container().back();
}
typename VectorBase::const_reference back() const { return this->container().back(); }
Index size() const {
return Index(static_cast<I>(this->container().size()));
}
};
Index size() const { return Index(static_cast<I>(this->container().size())); }
};
} // namespace ityp

View File

@ -24,10 +24,10 @@
namespace ityp {
// ityp::vector is a helper class that wraps std::vector with the restriction that
// indices must be a particular type |Index|.
template <typename Index, typename Value>
class vector : public std::vector<Value> {
// ityp::vector is a helper class that wraps std::vector with the restriction that
// indices must be a particular type |Index|.
template <typename Index, typename Value>
class vector : public std::vector<Value> {
using I = UnderlyingType<Index>;
using Base = std::vector<Value>;
@ -42,23 +42,17 @@ namespace ityp {
using Base::size;
public:
vector() : Base() {
}
vector() : Base() {}
explicit vector(Index size) : Base(static_cast<I>(size)) {
}
explicit vector(Index size) : Base(static_cast<I>(size)) {}
vector(Index size, const Value& init) : Base(static_cast<I>(size), init) {
}
vector(Index size, const Value& init) : Base(static_cast<I>(size), init) {}
vector(const vector& rhs) : Base(static_cast<const Base&>(rhs)) {
}
vector(const vector& rhs) : Base(static_cast<const Base&>(rhs)) {}
vector(vector&& rhs) : Base(static_cast<Base&&>(rhs)) {
}
vector(vector&& rhs) : Base(static_cast<Base&&>(rhs)) {}
vector(std::initializer_list<Value> init) : Base(init) {
}
vector(std::initializer_list<Value> init) : Base(init) {}
vector& operator=(const vector& rhs) {
Base::operator=(static_cast<const Base&>(rhs));
@ -95,14 +89,10 @@ namespace ityp {
return Index(static_cast<I>(Base::size()));
}
void resize(Index size) {
Base::resize(static_cast<I>(size));
}
void resize(Index size) { Base::resize(static_cast<I>(size)); }
void reserve(Index size) {
Base::reserve(static_cast<I>(size));
}
};
void reserve(Index size) { Base::reserve(static_cast<I>(size)); }
};
} // namespace ityp

View File

@ -16,10 +16,10 @@
#define SRC_DAWN_COMMON_VULKAN_PLATFORM_H_
#if !defined(DAWN_ENABLE_BACKEND_VULKAN)
# error "vulkan_platform.h included without the Vulkan backend enabled"
#error "vulkan_platform.h included without the Vulkan backend enabled"
#endif
#if defined(VULKAN_CORE_H_)
# error "vulkan.h included before vulkan_platform.h"
#error "vulkan.h included before vulkan_platform.h"
#endif
#include <cstddef>
@ -36,7 +36,7 @@
// (like vulkan.h on 64 bit) but makes sure the types are different on 32 bit architectures.
#if defined(DAWN_PLATFORM_64_BIT)
# define DAWN_DEFINE_NATIVE_NON_DISPATCHABLE_HANDLE(object) using object = struct object##_T*;
#define DAWN_DEFINE_NATIVE_NON_DISPATCHABLE_HANDLE(object) using object = struct object##_T*;
// This function is needed because MSVC doesn't accept reinterpret_cast from uint64_t from uint64_t
// TODO(cwallez@chromium.org): Remove this once we rework vulkan_platform.h
template <typename T>
@ -44,13 +44,13 @@ T NativeNonDispatachableHandleFromU64(uint64_t u64) {
return reinterpret_cast<T>(u64);
}
#elif defined(DAWN_PLATFORM_32_BIT)
# define DAWN_DEFINE_NATIVE_NON_DISPATCHABLE_HANDLE(object) using object = uint64_t;
#define DAWN_DEFINE_NATIVE_NON_DISPATCHABLE_HANDLE(object) using object = uint64_t;
template <typename T>
T NativeNonDispatachableHandleFromU64(uint64_t u64) {
return u64;
}
#else
# error "Unsupported platform"
#error "Unsupported platform"
#endif
// Define a placeholder Vulkan handle for use before we include vulkan.h
@ -67,78 +67,62 @@ DAWN_DEFINE_NATIVE_NON_DISPATCHABLE_HANDLE(VkSomeHandle)
namespace dawn::native::vulkan {
namespace detail {
template <typename T>
struct WrapperStruct {
namespace detail {
template <typename T>
struct WrapperStruct {
T member;
};
};
template <typename T>
static constexpr size_t AlignOfInStruct = alignof(WrapperStruct<T>);
template <typename T>
static constexpr size_t AlignOfInStruct = alignof(WrapperStruct<T>);
static constexpr size_t kNativeVkHandleAlignment = AlignOfInStruct<VkSomeHandle>;
static constexpr size_t kUint64Alignment = AlignOfInStruct<uint64_t>;
static constexpr size_t kNativeVkHandleAlignment = AlignOfInStruct<VkSomeHandle>;
static constexpr size_t kUint64Alignment = AlignOfInStruct<uint64_t>;
// Simple handle types that supports "nullptr_t" as a 0 value.
template <typename Tag, typename HandleType>
class alignas(detail::kNativeVkHandleAlignment) VkHandle {
// Simple handle types that supports "nullptr_t" as a 0 value.
template <typename Tag, typename HandleType>
class alignas(detail::kNativeVkHandleAlignment) VkHandle {
public:
// Default constructor and assigning of VK_NULL_HANDLE
VkHandle() = default;
VkHandle(std::nullptr_t) {
}
VkHandle(std::nullptr_t) {}
// Use default copy constructor/assignment
VkHandle(const VkHandle<Tag, HandleType>& other) = default;
VkHandle& operator=(const VkHandle<Tag, HandleType>&) = default;
// Comparisons between handles
bool operator==(VkHandle<Tag, HandleType> other) const {
return mHandle == other.mHandle;
}
bool operator!=(VkHandle<Tag, HandleType> other) const {
return mHandle != other.mHandle;
}
bool operator==(VkHandle<Tag, HandleType> other) const { return mHandle == other.mHandle; }
bool operator!=(VkHandle<Tag, HandleType> other) const { return mHandle != other.mHandle; }
// Comparisons between handles and VK_NULL_HANDLE
bool operator==(std::nullptr_t) const {
return mHandle == 0;
}
bool operator!=(std::nullptr_t) const {
return mHandle != 0;
}
bool operator==(std::nullptr_t) const { return mHandle == 0; }
bool operator!=(std::nullptr_t) const { return mHandle != 0; }
// Implicit conversion to real Vulkan types.
operator HandleType() const {
return GetHandle();
}
operator HandleType() const { return GetHandle(); }
HandleType GetHandle() const {
return mHandle;
}
HandleType GetHandle() const { return mHandle; }
HandleType& operator*() {
return mHandle;
}
HandleType& operator*() { return mHandle; }
static VkHandle<Tag, HandleType> CreateFromHandle(HandleType handle) {
return VkHandle{handle};
}
private:
explicit VkHandle(HandleType handle) : mHandle(handle) {
}
explicit VkHandle(HandleType handle) : mHandle(handle) {}
HandleType mHandle = 0;
};
} // namespace detail
};
} // namespace detail
static constexpr std::nullptr_t VK_NULL_HANDLE = nullptr;
static constexpr std::nullptr_t VK_NULL_HANDLE = nullptr;
template <typename Tag, typename HandleType>
HandleType* AsVkArray(detail::VkHandle<Tag, HandleType>* handle) {
template <typename Tag, typename HandleType>
HandleType* AsVkArray(detail::VkHandle<Tag, HandleType>* handle) {
return reinterpret_cast<HandleType*>(handle);
}
}
} // namespace dawn::native::vulkan
@ -157,36 +141,36 @@ namespace dawn::native::vulkan {
// defines are defined already in the Vulkan-Header BUILD.gn, but are needed when building with
// CMake, hence they cannot be removed at the moment.
#if defined(DAWN_PLATFORM_WINDOWS)
# ifndef VK_USE_PLATFORM_WIN32_KHR
# define VK_USE_PLATFORM_WIN32_KHR
# endif
# include "dawn/common/windows_with_undefs.h"
#ifndef VK_USE_PLATFORM_WIN32_KHR
#define VK_USE_PLATFORM_WIN32_KHR
#endif
#include "dawn/common/windows_with_undefs.h"
#endif // DAWN_PLATFORM_WINDOWS
#if defined(DAWN_USE_X11)
# define VK_USE_PLATFORM_XLIB_KHR
# ifndef VK_USE_PLATFORM_XCB_KHR
# define VK_USE_PLATFORM_XCB_KHR
# endif
# include "dawn/common/xlib_with_undefs.h"
#define VK_USE_PLATFORM_XLIB_KHR
#ifndef VK_USE_PLATFORM_XCB_KHR
#define VK_USE_PLATFORM_XCB_KHR
#endif
#include "dawn/common/xlib_with_undefs.h"
#endif // defined(DAWN_USE_X11)
#if defined(DAWN_ENABLE_BACKEND_METAL)
# ifndef VK_USE_PLATFORM_METAL_EXT
# define VK_USE_PLATFORM_METAL_EXT
# endif
#ifndef VK_USE_PLATFORM_METAL_EXT
#define VK_USE_PLATFORM_METAL_EXT
#endif
#endif // defined(DAWN_ENABLE_BACKEND_METAL)
#if defined(DAWN_PLATFORM_ANDROID)
# ifndef VK_USE_PLATFORM_ANDROID_KHR
# define VK_USE_PLATFORM_ANDROID_KHR
# endif
#ifndef VK_USE_PLATFORM_ANDROID_KHR
#define VK_USE_PLATFORM_ANDROID_KHR
#endif
#endif // defined(DAWN_PLATFORM_ANDROID)
#if defined(DAWN_PLATFORM_FUCHSIA)
# ifndef VK_USE_PLATFORM_FUCHSIA
# define VK_USE_PLATFORM_FUCHSIA
# endif
#ifndef VK_USE_PLATFORM_FUCHSIA
#define VK_USE_PLATFORM_FUCHSIA
#endif
#endif // defined(DAWN_PLATFORM_FUCHSIA)
// The actual inclusion of vulkan.h!
@ -200,7 +184,7 @@ static constexpr std::nullptr_t VK_NULL_HANDLE = nullptr;
#elif defined(DAWN_PLATFORM_32_BIT)
static constexpr uint64_t VK_NULL_HANDLE = 0;
#else
# error "Unsupported platform"
#error "Unsupported platform"
#endif
#endif // SRC_DAWN_COMMON_VULKAN_PLATFORM_H_

View File

@ -18,7 +18,7 @@
#include "dawn/common/Platform.h"
#if !defined(DAWN_PLATFORM_WINDOWS)
# error "windows_with_undefs.h included on non-Windows"
#error "windows_with_undefs.h included on non-Windows"
#endif
// This header includes <windows.h> but removes all the extra defines that conflict with identifiers

View File

@ -18,7 +18,7 @@
#include "dawn/common/Platform.h"
#if !defined(DAWN_PLATFORM_LINUX)
# error "xlib_with_undefs.h included on non-Linux"
#error "xlib_with_undefs.h included on non-Linux"
#endif
// This header includes <X11/Xlib.h> but removes all the extra defines that conflict with

View File

@ -29,7 +29,7 @@
namespace {
class DevNull : public dawn::wire::CommandSerializer {
class DevNull : public dawn::wire::CommandSerializer {
public:
size_t GetMaximumAllocationSize() const override {
// Some fuzzer bots have a 2GB allocation limit. Pick a value reasonably below that.
@ -41,27 +41,25 @@ namespace {
}
return buf.data();
}
bool Flush() override {
return true;
}
bool Flush() override { return true; }
private:
std::vector<char> buf;
};
};
std::unique_ptr<dawn::native::Instance> sInstance;
WGPUProcDeviceCreateSwapChain sOriginalDeviceCreateSwapChain = nullptr;
std::unique_ptr<dawn::native::Instance> sInstance;
WGPUProcDeviceCreateSwapChain sOriginalDeviceCreateSwapChain = nullptr;
bool sCommandsComplete = false;
bool sCommandsComplete = false;
WGPUSwapChain ErrorDeviceCreateSwapChain(WGPUDevice device,
WGPUSwapChain ErrorDeviceCreateSwapChain(WGPUDevice device,
WGPUSurface surface,
const WGPUSwapChainDescriptor*) {
WGPUSwapChainDescriptor desc = {};
// A 0 implementation will trigger a swapchain creation error.
desc.implementation = 0;
return sOriginalDeviceCreateSwapChain(device, surface, &desc);
}
}
} // namespace

View File

@ -22,17 +22,17 @@
namespace dawn::native {
class Instance;
class Instance;
} // namespace dawn::native
namespace DawnWireServerFuzzer {
using MakeDeviceFn = std::function<wgpu::Device(dawn::native::Instance*)>;
using MakeDeviceFn = std::function<wgpu::Device(dawn::native::Instance*)>;
int Initialize(int* argc, char*** argv);
int Initialize(int* argc, char*** argv);
int Run(const uint8_t* data, size_t size, MakeDeviceFn MakeDevice, bool supportsErrorInjection);
int Run(const uint8_t* data, size_t size, MakeDeviceFn MakeDevice, bool supportsErrorInjection);
} // namespace DawnWireServerFuzzer

View File

@ -24,13 +24,13 @@
namespace dawn::native {
AdapterBase::AdapterBase(InstanceBase* instance, wgpu::BackendType backend)
AdapterBase::AdapterBase(InstanceBase* instance, wgpu::BackendType backend)
: mInstance(instance), mBackend(backend) {
mSupportedFeatures.EnableFeature(Feature::DawnNative);
mSupportedFeatures.EnableFeature(Feature::DawnInternalUsages);
}
}
MaybeError AdapterBase::Initialize() {
MaybeError AdapterBase::Initialize() {
DAWN_TRY_CONTEXT(InitializeImpl(), "initializing adapter (backend=%s)", mBackend);
DAWN_TRY_CONTEXT(
InitializeSupportedFeaturesImpl(),
@ -53,14 +53,14 @@ namespace dawn::native {
std::min(mLimits.v1.maxVertexBuffers, uint32_t(kMaxVertexBuffers));
mLimits.v1.maxInterStageShaderComponents =
std::min(mLimits.v1.maxInterStageShaderComponents, kMaxInterStageShaderComponents);
mLimits.v1.maxSampledTexturesPerShaderStage = std::min(
mLimits.v1.maxSampledTexturesPerShaderStage, kMaxSampledTexturesPerShaderStage);
mLimits.v1.maxSampledTexturesPerShaderStage =
std::min(mLimits.v1.maxSampledTexturesPerShaderStage, kMaxSampledTexturesPerShaderStage);
mLimits.v1.maxSamplersPerShaderStage =
std::min(mLimits.v1.maxSamplersPerShaderStage, kMaxSamplersPerShaderStage);
mLimits.v1.maxStorageBuffersPerShaderStage =
std::min(mLimits.v1.maxStorageBuffersPerShaderStage, kMaxStorageBuffersPerShaderStage);
mLimits.v1.maxStorageTexturesPerShaderStage = std::min(
mLimits.v1.maxStorageTexturesPerShaderStage, kMaxStorageTexturesPerShaderStage);
mLimits.v1.maxStorageTexturesPerShaderStage =
std::min(mLimits.v1.maxStorageTexturesPerShaderStage, kMaxStorageTexturesPerShaderStage);
mLimits.v1.maxUniformBuffersPerShaderStage =
std::min(mLimits.v1.maxUniformBuffersPerShaderStage, kMaxUniformBuffersPerShaderStage);
mLimits.v1.maxDynamicUniformBuffersPerPipelineLayout =
@ -71,30 +71,30 @@ namespace dawn::native {
kMaxDynamicStorageBuffersPerPipelineLayout);
return {};
}
}
bool AdapterBase::APIGetLimits(SupportedLimits* limits) const {
bool AdapterBase::APIGetLimits(SupportedLimits* limits) const {
return GetLimits(limits);
}
}
void AdapterBase::APIGetProperties(AdapterProperties* properties) const {
void AdapterBase::APIGetProperties(AdapterProperties* properties) const {
properties->vendorID = mVendorId;
properties->deviceID = mDeviceId;
properties->name = mName.c_str();
properties->driverDescription = mDriverDescription.c_str();
properties->adapterType = mAdapterType;
properties->backendType = mBackend;
}
}
bool AdapterBase::APIHasFeature(wgpu::FeatureName feature) const {
bool AdapterBase::APIHasFeature(wgpu::FeatureName feature) const {
return mSupportedFeatures.IsEnabled(feature);
}
}
size_t AdapterBase::APIEnumerateFeatures(wgpu::FeatureName* features) const {
size_t AdapterBase::APIEnumerateFeatures(wgpu::FeatureName* features) const {
return mSupportedFeatures.EnumerateFeatures(features);
}
}
DeviceBase* AdapterBase::APICreateDevice(const DeviceDescriptor* descriptor) {
DeviceBase* AdapterBase::APICreateDevice(const DeviceDescriptor* descriptor) {
DeviceDescriptor defaultDesc = {};
if (descriptor == nullptr) {
descriptor = &defaultDesc;
@ -105,9 +105,9 @@ namespace dawn::native {
return nullptr;
}
return result.AcquireSuccess().Detach();
}
}
void AdapterBase::APIRequestDevice(const DeviceDescriptor* descriptor,
void AdapterBase::APIRequestDevice(const DeviceDescriptor* descriptor,
WGPURequestDeviceCallback callback,
void* userdata) {
static constexpr DeviceDescriptor kDefaultDescriptor = {};
@ -119,8 +119,8 @@ namespace dawn::native {
if (result.IsError()) {
std::unique_ptr<ErrorData> errorData = result.AcquireError();
// TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents
callback(WGPURequestDeviceStatus_Error, nullptr,
errorData->GetFormattedMessage().c_str(), userdata);
callback(WGPURequestDeviceStatus_Error, nullptr, errorData->GetFormattedMessage().c_str(),
userdata);
return;
}
@ -130,29 +130,29 @@ namespace dawn::native {
device == nullptr ? WGPURequestDeviceStatus_Unknown : WGPURequestDeviceStatus_Success;
// TODO(crbug.com/dawn/1122): Call callbacks only on wgpuInstanceProcessEvents
callback(status, ToAPI(device.Detach()), nullptr, userdata);
}
}
uint32_t AdapterBase::GetVendorId() const {
uint32_t AdapterBase::GetVendorId() const {
return mVendorId;
}
}
uint32_t AdapterBase::GetDeviceId() const {
uint32_t AdapterBase::GetDeviceId() const {
return mDeviceId;
}
}
wgpu::BackendType AdapterBase::GetBackendType() const {
wgpu::BackendType AdapterBase::GetBackendType() const {
return mBackend;
}
}
InstanceBase* AdapterBase::GetInstance() const {
InstanceBase* AdapterBase::GetInstance() const {
return mInstance;
}
}
FeaturesSet AdapterBase::GetSupportedFeatures() const {
FeaturesSet AdapterBase::GetSupportedFeatures() const {
return mSupportedFeatures;
}
}
bool AdapterBase::SupportsAllRequiredFeatures(
bool AdapterBase::SupportsAllRequiredFeatures(
const ityp::span<size_t, const wgpu::FeatureName>& features) const {
for (wgpu::FeatureName f : features) {
if (!mSupportedFeatures.IsEnabled(f)) {
@ -160,9 +160,9 @@ namespace dawn::native {
}
}
return true;
}
}
WGPUDeviceProperties AdapterBase::GetAdapterProperties() const {
WGPUDeviceProperties AdapterBase::GetAdapterProperties() const {
WGPUDeviceProperties adapterProperties = {};
adapterProperties.deviceID = mDeviceId;
adapterProperties.vendorID = mVendorId;
@ -176,9 +176,9 @@ namespace dawn::native {
// send the adapter properties across the wire.
GetLimits(FromAPI(&adapterProperties.limits));
return adapterProperties;
}
}
bool AdapterBase::GetLimits(SupportedLimits* limits) const {
bool AdapterBase::GetLimits(SupportedLimits* limits) const {
ASSERT(limits != nullptr);
if (limits->nextInChain != nullptr) {
return false;
@ -189,22 +189,21 @@ namespace dawn::native {
limits->limits = mLimits.v1;
}
return true;
}
}
ResultOrError<Ref<DeviceBase>> AdapterBase::CreateDeviceInternal(
ResultOrError<Ref<DeviceBase>> AdapterBase::CreateDeviceInternal(
const DeviceDescriptor* descriptor) {
ASSERT(descriptor != nullptr);
for (uint32_t i = 0; i < descriptor->requiredFeaturesCount; ++i) {
wgpu::FeatureName f = descriptor->requiredFeatures[i];
DAWN_TRY(ValidateFeatureName(f));
DAWN_INVALID_IF(!mSupportedFeatures.IsEnabled(f),
"Requested feature %s is not supported.", f);
DAWN_INVALID_IF(!mSupportedFeatures.IsEnabled(f), "Requested feature %s is not supported.",
f);
}
if (descriptor->requiredLimits != nullptr) {
DAWN_TRY_CONTEXT(
ValidateLimits(mUseTieredLimits ? ApplyLimitTiers(mLimits.v1) : mLimits.v1,
DAWN_TRY_CONTEXT(ValidateLimits(mUseTieredLimits ? ApplyLimitTiers(mLimits.v1) : mLimits.v1,
descriptor->requiredLimits->limits),
"validating required limits");
@ -212,19 +211,19 @@ namespace dawn::native {
"nextInChain is not nullptr.");
}
return CreateDeviceImpl(descriptor);
}
}
void AdapterBase::SetUseTieredLimits(bool useTieredLimits) {
void AdapterBase::SetUseTieredLimits(bool useTieredLimits) {
mUseTieredLimits = useTieredLimits;
}
}
void AdapterBase::ResetInternalDeviceForTesting() {
void AdapterBase::ResetInternalDeviceForTesting() {
mInstance->ConsumedError(ResetInternalDeviceForTestingImpl());
}
}
MaybeError AdapterBase::ResetInternalDeviceForTestingImpl() {
MaybeError AdapterBase::ResetInternalDeviceForTestingImpl() {
return DAWN_INTERNAL_ERROR(
"ResetInternalDeviceForTesting should only be used with the D3D12 backend.");
}
}
} // namespace dawn::native

View File

@ -28,9 +28,9 @@
namespace dawn::native {
class DeviceBase;
class DeviceBase;
class AdapterBase : public RefCounted {
class AdapterBase : public RefCounted {
public:
AdapterBase(InstanceBase* instance, wgpu::BackendType backend);
virtual ~AdapterBase() = default;
@ -74,8 +74,7 @@ namespace dawn::native {
FeaturesSet mSupportedFeatures;
private:
virtual ResultOrError<Ref<DeviceBase>> CreateDeviceImpl(
const DeviceDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<DeviceBase>> CreateDeviceImpl(const DeviceDescriptor* descriptor) = 0;
virtual MaybeError InitializeImpl() = 0;
@ -92,7 +91,7 @@ namespace dawn::native {
wgpu::BackendType mBackend;
CombinedLimits mLimits;
bool mUseTieredLimits = false;
};
};
} // namespace dawn::native

View File

@ -20,11 +20,10 @@
namespace dawn::native {
AsyncTaskManager::AsyncTaskManager(dawn::platform::WorkerTaskPool* workerTaskPool)
: mWorkerTaskPool(workerTaskPool) {
}
AsyncTaskManager::AsyncTaskManager(dawn::platform::WorkerTaskPool* workerTaskPool)
: mWorkerTaskPool(workerTaskPool) {}
void AsyncTaskManager::PostTask(AsyncTask asyncTask) {
void AsyncTaskManager::PostTask(AsyncTask asyncTask) {
// If these allocations becomes expensive, we can slab-allocate tasks.
Ref<WaitableTask> waitableTask = AcquireRef(new WaitableTask());
waitableTask->taskManager = this;
@ -44,17 +43,17 @@ namespace dawn::native {
waitableTask->Reference();
waitableTask->waitableEvent =
mWorkerTaskPool->PostWorkerTask(DoWaitableTask, waitableTask.Get());
}
}
void AsyncTaskManager::HandleTaskCompletion(WaitableTask* task) {
void AsyncTaskManager::HandleTaskCompletion(WaitableTask* task) {
std::lock_guard<std::mutex> lock(mPendingTasksMutex);
auto iter = mPendingTasks.find(task);
if (iter != mPendingTasks.end()) {
mPendingTasks.erase(iter);
}
}
}
void AsyncTaskManager::WaitAllPendingTasks() {
void AsyncTaskManager::WaitAllPendingTasks() {
std::unordered_map<WaitableTask*, Ref<WaitableTask>> allPendingTasks;
{
@ -65,17 +64,17 @@ namespace dawn::native {
for (auto& [_, task] : allPendingTasks) {
task->waitableEvent->Wait();
}
}
}
bool AsyncTaskManager::HasPendingTasks() {
bool AsyncTaskManager::HasPendingTasks() {
std::lock_guard<std::mutex> lock(mPendingTasksMutex);
return !mPendingTasks.empty();
}
}
void AsyncTaskManager::DoWaitableTask(void* task) {
void AsyncTaskManager::DoWaitableTask(void* task) {
Ref<WaitableTask> waitableTask = AcquireRef(static_cast<WaitableTask*>(task));
waitableTask->asyncTask();
waitableTask->taskManager->HandleTaskCompletion(waitableTask.Get());
}
}
} // namespace dawn::native

View File

@ -23,20 +23,20 @@
#include "dawn/common/RefCounted.h"
namespace dawn::platform {
class WaitableEvent;
class WorkerTaskPool;
class WaitableEvent;
class WorkerTaskPool;
} // namespace dawn::platform
namespace dawn::native {
// TODO(crbug.com/dawn/826): we'll add additional things to AsyncTask in the future, like
// Cancel() and RunNow(). Cancelling helps avoid running the task's body when we are just
// shutting down the device. RunNow() could be used for more advanced scenarios, for example
// always doing ShaderModule initial compilation asynchronously, but being able to steal the
// task if we need it for synchronous pipeline compilation.
using AsyncTask = std::function<void()>;
// TODO(crbug.com/dawn/826): we'll add additional things to AsyncTask in the future, like
// Cancel() and RunNow(). Cancelling helps avoid running the task's body when we are just
// shutting down the device. RunNow() could be used for more advanced scenarios, for example
// always doing ShaderModule initial compilation asynchronously, but being able to steal the
// task if we need it for synchronous pipeline compilation.
using AsyncTask = std::function<void()>;
class AsyncTaskManager {
class AsyncTaskManager {
public:
explicit AsyncTaskManager(dawn::platform::WorkerTaskPool* workerTaskPool);
@ -58,7 +58,7 @@ namespace dawn::native {
std::mutex mPendingTasksMutex;
std::unordered_map<WaitableTask*, Ref<WaitableTask>> mPendingTasks;
dawn::platform::WorkerTaskPool* mWorkerTaskPool;
};
};
} // namespace dawn::native

View File

@ -21,8 +21,7 @@
namespace dawn::native {
AttachmentStateBlueprint::AttachmentStateBlueprint(
const RenderBundleEncoderDescriptor* descriptor)
AttachmentStateBlueprint::AttachmentStateBlueprint(const RenderBundleEncoderDescriptor* descriptor)
: mSampleCount(descriptor->sampleCount) {
ASSERT(descriptor->colorFormatsCount <= kMaxColorAttachments);
for (ColorAttachmentIndex i(uint8_t(0));
@ -34,9 +33,9 @@ namespace dawn::native {
}
}
mDepthStencilFormat = descriptor->depthStencilFormat;
}
}
AttachmentStateBlueprint::AttachmentStateBlueprint(const RenderPipelineDescriptor* descriptor)
AttachmentStateBlueprint::AttachmentStateBlueprint(const RenderPipelineDescriptor* descriptor)
: mSampleCount(descriptor->multisample.count) {
if (descriptor->fragment != nullptr) {
ASSERT(descriptor->fragment->targetCount <= kMaxColorAttachments);
@ -54,14 +53,12 @@ namespace dawn::native {
if (descriptor->depthStencil != nullptr) {
mDepthStencilFormat = descriptor->depthStencil->format;
}
}
}
AttachmentStateBlueprint::AttachmentStateBlueprint(const RenderPassDescriptor* descriptor) {
AttachmentStateBlueprint::AttachmentStateBlueprint(const RenderPassDescriptor* descriptor) {
for (ColorAttachmentIndex i(uint8_t(0));
i < ColorAttachmentIndex(static_cast<uint8_t>(descriptor->colorAttachmentCount));
++i) {
TextureViewBase* attachment =
descriptor->colorAttachments[static_cast<uint8_t>(i)].view;
i < ColorAttachmentIndex(static_cast<uint8_t>(descriptor->colorAttachmentCount)); ++i) {
TextureViewBase* attachment = descriptor->colorAttachments[static_cast<uint8_t>(i)].view;
if (attachment == nullptr) {
continue;
}
@ -83,12 +80,11 @@ namespace dawn::native {
}
}
ASSERT(mSampleCount > 0);
}
}
AttachmentStateBlueprint::AttachmentStateBlueprint(const AttachmentStateBlueprint& rhs) =
default;
AttachmentStateBlueprint::AttachmentStateBlueprint(const AttachmentStateBlueprint& rhs) = default;
size_t AttachmentStateBlueprint::HashFunc::operator()(
size_t AttachmentStateBlueprint::HashFunc::operator()(
const AttachmentStateBlueprint* attachmentState) const {
size_t hash = 0;
@ -105,10 +101,9 @@ namespace dawn::native {
HashCombine(&hash, attachmentState->mSampleCount);
return hash;
}
}
bool AttachmentStateBlueprint::EqualityFunc::operator()(
const AttachmentStateBlueprint* a,
bool AttachmentStateBlueprint::EqualityFunc::operator()(const AttachmentStateBlueprint* a,
const AttachmentStateBlueprint* b) const {
// Check set attachments
if (a->mColorAttachmentsSet != b->mColorAttachmentsSet) {
@ -133,43 +128,41 @@ namespace dawn::native {
}
return true;
}
}
AttachmentState::AttachmentState(DeviceBase* device, const AttachmentStateBlueprint& blueprint)
: AttachmentStateBlueprint(blueprint), ObjectBase(device) {
}
AttachmentState::AttachmentState(DeviceBase* device, const AttachmentStateBlueprint& blueprint)
: AttachmentStateBlueprint(blueprint), ObjectBase(device) {}
AttachmentState::~AttachmentState() {
AttachmentState::~AttachmentState() {
GetDevice()->UncacheAttachmentState(this);
}
}
size_t AttachmentState::ComputeContentHash() {
size_t AttachmentState::ComputeContentHash() {
// TODO(dawn:549): skip this traversal and reuse the blueprint.
return AttachmentStateBlueprint::HashFunc()(this);
}
}
ityp::bitset<ColorAttachmentIndex, kMaxColorAttachments>
AttachmentState::GetColorAttachmentsMask() const {
ityp::bitset<ColorAttachmentIndex, kMaxColorAttachments> AttachmentState::GetColorAttachmentsMask()
const {
return mColorAttachmentsSet;
}
}
wgpu::TextureFormat AttachmentState::GetColorAttachmentFormat(
ColorAttachmentIndex index) const {
wgpu::TextureFormat AttachmentState::GetColorAttachmentFormat(ColorAttachmentIndex index) const {
ASSERT(mColorAttachmentsSet[index]);
return mColorFormats[index];
}
}
bool AttachmentState::HasDepthStencilAttachment() const {
bool AttachmentState::HasDepthStencilAttachment() const {
return mDepthStencilFormat != wgpu::TextureFormat::Undefined;
}
}
wgpu::TextureFormat AttachmentState::GetDepthStencilFormat() const {
wgpu::TextureFormat AttachmentState::GetDepthStencilFormat() const {
ASSERT(HasDepthStencilAttachment());
return mDepthStencilFormat;
}
}
uint32_t AttachmentState::GetSampleCount() const {
uint32_t AttachmentState::GetSampleCount() const {
return mSampleCount;
}
}
} // namespace dawn::native

View File

@ -29,12 +29,12 @@
namespace dawn::native {
class DeviceBase;
class DeviceBase;
// AttachmentStateBlueprint and AttachmentState are separated so the AttachmentState
// can be constructed by copying the blueprint state instead of traversing descriptors.
// Also, AttachmentStateBlueprint does not need a refcount like AttachmentState.
class AttachmentStateBlueprint {
// AttachmentStateBlueprint and AttachmentState are separated so the AttachmentState
// can be constructed by copying the blueprint state instead of traversing descriptors.
// Also, AttachmentStateBlueprint does not need a refcount like AttachmentState.
class AttachmentStateBlueprint {
public:
// Note: Descriptors must be validated before the AttachmentState is constructed.
explicit AttachmentStateBlueprint(const RenderBundleEncoderDescriptor* descriptor);
@ -48,8 +48,7 @@ namespace dawn::native {
size_t operator()(const AttachmentStateBlueprint* attachmentState) const;
};
struct EqualityFunc {
bool operator()(const AttachmentStateBlueprint* a,
const AttachmentStateBlueprint* b) const;
bool operator()(const AttachmentStateBlueprint* a, const AttachmentStateBlueprint* b) const;
};
protected:
@ -58,9 +57,9 @@ namespace dawn::native {
// Default (texture format Undefined) indicates there is no depth stencil attachment.
wgpu::TextureFormat mDepthStencilFormat = wgpu::TextureFormat::Undefined;
uint32_t mSampleCount = 0;
};
};
class AttachmentState final : public AttachmentStateBlueprint,
class AttachmentState final : public AttachmentStateBlueprint,
public ObjectBase,
public CachedObject {
public:
@ -76,7 +75,7 @@ namespace dawn::native {
private:
~AttachmentState() override;
};
};
} // namespace dawn::native

View File

@ -16,21 +16,20 @@
namespace dawn::native {
BackendConnection::BackendConnection(InstanceBase* instance, wgpu::BackendType type)
: mInstance(instance), mType(type) {
}
BackendConnection::BackendConnection(InstanceBase* instance, wgpu::BackendType type)
: mInstance(instance), mType(type) {}
wgpu::BackendType BackendConnection::GetType() const {
wgpu::BackendType BackendConnection::GetType() const {
return mType;
}
}
InstanceBase* BackendConnection::GetInstance() const {
InstanceBase* BackendConnection::GetInstance() const {
return mInstance;
}
}
ResultOrError<std::vector<Ref<AdapterBase>>> BackendConnection::DiscoverAdapters(
ResultOrError<std::vector<Ref<AdapterBase>>> BackendConnection::DiscoverAdapters(
const AdapterDiscoveryOptionsBase* options) {
return DAWN_FORMAT_VALIDATION_ERROR("DiscoverAdapters not implemented for this backend.");
}
}
} // namespace dawn::native

View File

@ -23,9 +23,9 @@
namespace dawn::native {
// An common interface for all backends. Mostly used to create adapters for a particular
// backend.
class BackendConnection {
// An common interface for all backends. Mostly used to create adapters for a particular
// backend.
class BackendConnection {
public:
BackendConnection(InstanceBase* instance, wgpu::BackendType type);
virtual ~BackendConnection() = default;
@ -44,7 +44,7 @@ namespace dawn::native {
private:
InstanceBase* mInstance = nullptr;
wgpu::BackendType mType;
};
};
} // namespace dawn::native

View File

@ -29,11 +29,11 @@
namespace dawn::native {
namespace {
namespace {
// Helper functions to perform binding-type specific validation
// Helper functions to perform binding-type specific validation
MaybeError ValidateBufferBinding(const DeviceBase* device,
MaybeError ValidateBufferBinding(const DeviceBase* device,
const BindGroupEntry& entry,
const BindingInfo& bindingInfo) {
DAWN_INVALID_IF(entry.buffer == nullptr, "Binding entry buffer not set.");
@ -54,21 +54,18 @@ namespace dawn::native {
case wgpu::BufferBindingType::Uniform:
requiredUsage = wgpu::BufferUsage::Uniform;
maxBindingSize = device->GetLimits().v1.maxUniformBufferBindingSize;
requiredBindingAlignment =
device->GetLimits().v1.minUniformBufferOffsetAlignment;
requiredBindingAlignment = device->GetLimits().v1.minUniformBufferOffsetAlignment;
break;
case wgpu::BufferBindingType::Storage:
case wgpu::BufferBindingType::ReadOnlyStorage:
requiredUsage = wgpu::BufferUsage::Storage;
maxBindingSize = device->GetLimits().v1.maxStorageBufferBindingSize;
requiredBindingAlignment =
device->GetLimits().v1.minStorageBufferOffsetAlignment;
requiredBindingAlignment = device->GetLimits().v1.minStorageBufferOffsetAlignment;
break;
case kInternalStorageBufferBinding:
requiredUsage = kInternalStorageBuffer;
maxBindingSize = device->GetLimits().v1.maxStorageBufferBindingSize;
requiredBindingAlignment =
device->GetLimits().v1.minStorageBufferOffsetAlignment;
requiredBindingAlignment = device->GetLimits().v1.minStorageBufferOffsetAlignment;
break;
case wgpu::BufferBindingType::Undefined:
UNREACHABLE();
@ -92,31 +89,30 @@ namespace dawn::native {
// Note that no overflow can happen because we already checked that
// bufferSize >= bindingSize
DAWN_INVALID_IF(
entry.offset > bufferSize - bindingSize,
DAWN_INVALID_IF(entry.offset > bufferSize - bindingSize,
"Binding range (offset: %u, size: %u) doesn't fit in the size (%u) of %s.",
entry.offset, bufferSize, bindingSize, entry.buffer);
DAWN_INVALID_IF(!IsAligned(entry.offset, requiredBindingAlignment),
"Offset (%u) does not satisfy the minimum %s alignment (%u).",
entry.offset, bindingInfo.buffer.type, requiredBindingAlignment);
"Offset (%u) does not satisfy the minimum %s alignment (%u).", entry.offset,
bindingInfo.buffer.type, requiredBindingAlignment);
DAWN_INVALID_IF(!(entry.buffer->GetUsage() & requiredUsage),
"Binding usage (%s) of %s doesn't match expected usage (%s).",
entry.buffer->GetUsageExternalOnly(), entry.buffer, requiredUsage);
DAWN_INVALID_IF(bindingSize < bindingInfo.buffer.minBindingSize,
"Binding size (%u) is smaller than the minimum binding size (%u).",
bindingSize, bindingInfo.buffer.minBindingSize);
"Binding size (%u) is smaller than the minimum binding size (%u).", bindingSize,
bindingInfo.buffer.minBindingSize);
DAWN_INVALID_IF(bindingSize > maxBindingSize,
"Binding size (%u) is larger than the maximum binding size (%u).",
bindingSize, maxBindingSize);
"Binding size (%u) is larger than the maximum binding size (%u).", bindingSize,
maxBindingSize);
return {};
}
}
MaybeError ValidateTextureBinding(DeviceBase* device,
MaybeError ValidateTextureBinding(DeviceBase* device,
const BindGroupEntry& entry,
const BindingInfo& bindingInfo) {
DAWN_INVALID_IF(entry.textureView == nullptr, "Binding entry textureView not set.");
@ -131,24 +127,20 @@ namespace dawn::native {
TextureViewBase* view = entry.textureView;
Aspect aspect = view->GetAspects();
DAWN_INVALID_IF(!HasOneBit(aspect), "Multiple aspects (%s) selected in %s.", aspect,
view);
DAWN_INVALID_IF(!HasOneBit(aspect), "Multiple aspects (%s) selected in %s.", aspect, view);
TextureBase* texture = view->GetTexture();
switch (bindingInfo.bindingType) {
case BindingInfoType::Texture: {
SampleTypeBit supportedTypes =
texture->GetFormat().GetAspectInfo(aspect).supportedSampleTypes;
SampleTypeBit requiredType =
SampleTypeToSampleTypeBit(bindingInfo.texture.sampleType);
SampleTypeBit requiredType = SampleTypeToSampleTypeBit(bindingInfo.texture.sampleType);
DAWN_INVALID_IF(
!(texture->GetUsage() & wgpu::TextureUsage::TextureBinding),
DAWN_INVALID_IF(!(texture->GetUsage() & wgpu::TextureUsage::TextureBinding),
"Usage (%s) of %s doesn't include TextureUsage::TextureBinding.",
texture->GetUsage(), texture);
DAWN_INVALID_IF(
texture->IsMultisampledTexture() != bindingInfo.texture.multisampled,
DAWN_INVALID_IF(texture->IsMultisampledTexture() != bindingInfo.texture.multisampled,
"Sample count (%u) of %s doesn't match expectation (multisampled: %d).",
texture->GetSampleCount(), texture, bindingInfo.texture.multisampled);
@ -158,29 +150,25 @@ namespace dawn::native {
"types (%s).",
supportedTypes, texture, requiredType);
DAWN_INVALID_IF(
entry.textureView->GetDimension() != bindingInfo.texture.viewDimension,
DAWN_INVALID_IF(entry.textureView->GetDimension() != bindingInfo.texture.viewDimension,
"Dimension (%s) of %s doesn't match the expected dimension (%s).",
entry.textureView->GetDimension(), entry.textureView,
bindingInfo.texture.viewDimension);
break;
}
case BindingInfoType::StorageTexture: {
DAWN_INVALID_IF(
!(texture->GetUsage() & wgpu::TextureUsage::StorageBinding),
DAWN_INVALID_IF(!(texture->GetUsage() & wgpu::TextureUsage::StorageBinding),
"Usage (%s) of %s doesn't include TextureUsage::StorageBinding.",
texture->GetUsage(), texture);
ASSERT(!texture->IsMultisampledTexture());
DAWN_INVALID_IF(
texture->GetFormat().format != bindingInfo.storageTexture.format,
DAWN_INVALID_IF(texture->GetFormat().format != bindingInfo.storageTexture.format,
"Format (%s) of %s expected to be (%s).", texture->GetFormat().format,
texture, bindingInfo.storageTexture.format);
DAWN_INVALID_IF(
entry.textureView->GetDimension() !=
bindingInfo.storageTexture.viewDimension,
entry.textureView->GetDimension() != bindingInfo.storageTexture.viewDimension,
"Dimension (%s) of %s doesn't match the expected dimension (%s).",
entry.textureView->GetDimension(), entry.textureView,
bindingInfo.storageTexture.viewDimension);
@ -196,9 +184,9 @@ namespace dawn::native {
}
return {};
}
}
MaybeError ValidateSamplerBinding(const DeviceBase* device,
MaybeError ValidateSamplerBinding(const DeviceBase* device,
const BindGroupEntry& entry,
const BindingInfo& bindingInfo) {
DAWN_INVALID_IF(entry.sampler == nullptr, "Binding entry sampler not set.");
@ -214,22 +202,19 @@ namespace dawn::native {
switch (bindingInfo.sampler.type) {
case wgpu::SamplerBindingType::NonFiltering:
DAWN_INVALID_IF(
entry.sampler->IsFiltering(),
DAWN_INVALID_IF(entry.sampler->IsFiltering(),
"Filtering sampler %s is incompatible with non-filtering sampler "
"binding.",
entry.sampler);
[[fallthrough]];
case wgpu::SamplerBindingType::Filtering:
DAWN_INVALID_IF(
entry.sampler->IsComparison(),
DAWN_INVALID_IF(entry.sampler->IsComparison(),
"Comparison sampler %s is incompatible with non-comparison sampler "
"binding.",
entry.sampler);
break;
case wgpu::SamplerBindingType::Comparison:
DAWN_INVALID_IF(
!entry.sampler->IsComparison(),
DAWN_INVALID_IF(!entry.sampler->IsComparison(),
"Non-comparison sampler %s is imcompatible with comparison sampler "
"binding.",
entry.sampler);
@ -240,9 +225,9 @@ namespace dawn::native {
}
return {};
}
}
MaybeError ValidateExternalTextureBinding(
MaybeError ValidateExternalTextureBinding(
const DeviceBase* device,
const BindGroupEntry& entry,
const ExternalTextureBindingEntry* externalTextureBindingEntry,
@ -254,8 +239,7 @@ namespace dawn::native {
entry.sampler != nullptr || entry.textureView != nullptr || entry.buffer != nullptr,
"Expected only external texture to be set for binding entry.");
DAWN_INVALID_IF(
expansions.find(BindingNumber(entry.binding)) == expansions.end(),
DAWN_INVALID_IF(expansions.find(BindingNumber(entry.binding)) == expansions.end(),
"External texture binding entry %u is not present in the bind group layout.",
entry.binding);
@ -265,12 +249,11 @@ namespace dawn::native {
DAWN_TRY(device->ValidateObject(externalTextureBindingEntry->externalTexture));
return {};
}
}
} // anonymous namespace
} // anonymous namespace
MaybeError ValidateBindGroupDescriptor(DeviceBase* device,
const BindGroupDescriptor* descriptor) {
MaybeError ValidateBindGroupDescriptor(DeviceBase* device, const BindGroupDescriptor* descriptor) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
DAWN_TRY(device->ValidateObject(descriptor->layout));
@ -357,11 +340,11 @@ namespace dawn::native {
ASSERT(bindingsSet.count() == descriptor->layout->GetUnexpandedBindingCount());
return {};
} // anonymous namespace
} // anonymous namespace
// BindGroup
// BindGroup
BindGroupBase::BindGroupBase(DeviceBase* device,
BindGroupBase::BindGroupBase(DeviceBase* device,
const BindGroupDescriptor* descriptor,
void* bindingDataStart)
: ApiObjectBase(device, descriptor->label),
@ -460,86 +443,84 @@ namespace dawn::native {
}
TrackInDevice();
}
}
BindGroupBase::BindGroupBase(DeviceBase* device) : ApiObjectBase(device, kLabelNotImplemented) {
BindGroupBase::BindGroupBase(DeviceBase* device) : ApiObjectBase(device, kLabelNotImplemented) {
TrackInDevice();
}
}
BindGroupBase::~BindGroupBase() = default;
BindGroupBase::~BindGroupBase() = default;
void BindGroupBase::DestroyImpl() {
void BindGroupBase::DestroyImpl() {
if (mLayout != nullptr) {
ASSERT(!IsError());
for (BindingIndex i{0}; i < mLayout->GetBindingCount(); ++i) {
mBindingData.bindings[i].~Ref<ObjectBase>();
}
}
}
}
void BindGroupBase::DeleteThis() {
void BindGroupBase::DeleteThis() {
// Add another ref to the layout so that if this is the last ref, the layout
// is destroyed after the bind group. The bind group is slab-allocated inside
// memory owned by the layout (except for the null backend).
Ref<BindGroupLayoutBase> layout = mLayout;
ApiObjectBase::DeleteThis();
}
}
BindGroupBase::BindGroupBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag), mBindingData() {
}
BindGroupBase::BindGroupBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag), mBindingData() {}
// static
BindGroupBase* BindGroupBase::MakeError(DeviceBase* device) {
// static
BindGroupBase* BindGroupBase::MakeError(DeviceBase* device) {
return new BindGroupBase(device, ObjectBase::kError);
}
}
ObjectType BindGroupBase::GetType() const {
ObjectType BindGroupBase::GetType() const {
return ObjectType::BindGroup;
}
}
BindGroupLayoutBase* BindGroupBase::GetLayout() {
BindGroupLayoutBase* BindGroupBase::GetLayout() {
ASSERT(!IsError());
return mLayout.Get();
}
}
const BindGroupLayoutBase* BindGroupBase::GetLayout() const {
const BindGroupLayoutBase* BindGroupBase::GetLayout() const {
ASSERT(!IsError());
return mLayout.Get();
}
}
const ityp::span<uint32_t, uint64_t>& BindGroupBase::GetUnverifiedBufferSizes() const {
const ityp::span<uint32_t, uint64_t>& BindGroupBase::GetUnverifiedBufferSizes() const {
ASSERT(!IsError());
return mBindingData.unverifiedBufferSizes;
}
}
BufferBinding BindGroupBase::GetBindingAsBufferBinding(BindingIndex bindingIndex) {
BufferBinding BindGroupBase::GetBindingAsBufferBinding(BindingIndex bindingIndex) {
ASSERT(!IsError());
ASSERT(bindingIndex < mLayout->GetBindingCount());
ASSERT(mLayout->GetBindingInfo(bindingIndex).bindingType == BindingInfoType::Buffer);
BufferBase* buffer = static_cast<BufferBase*>(mBindingData.bindings[bindingIndex].Get());
return {buffer, mBindingData.bufferData[bindingIndex].offset,
mBindingData.bufferData[bindingIndex].size};
}
}
SamplerBase* BindGroupBase::GetBindingAsSampler(BindingIndex bindingIndex) const {
SamplerBase* BindGroupBase::GetBindingAsSampler(BindingIndex bindingIndex) const {
ASSERT(!IsError());
ASSERT(bindingIndex < mLayout->GetBindingCount());
ASSERT(mLayout->GetBindingInfo(bindingIndex).bindingType == BindingInfoType::Sampler);
return static_cast<SamplerBase*>(mBindingData.bindings[bindingIndex].Get());
}
}
TextureViewBase* BindGroupBase::GetBindingAsTextureView(BindingIndex bindingIndex) {
TextureViewBase* BindGroupBase::GetBindingAsTextureView(BindingIndex bindingIndex) {
ASSERT(!IsError());
ASSERT(bindingIndex < mLayout->GetBindingCount());
ASSERT(mLayout->GetBindingInfo(bindingIndex).bindingType == BindingInfoType::Texture ||
mLayout->GetBindingInfo(bindingIndex).bindingType ==
BindingInfoType::StorageTexture);
mLayout->GetBindingInfo(bindingIndex).bindingType == BindingInfoType::StorageTexture);
return static_cast<TextureViewBase*>(mBindingData.bindings[bindingIndex].Get());
}
}
const std::vector<Ref<ExternalTextureBase>>& BindGroupBase::GetBoundExternalTextures() const {
const std::vector<Ref<ExternalTextureBase>>& BindGroupBase::GetBoundExternalTextures() const {
return mBoundExternalTextures;
}
}
} // namespace dawn::native

View File

@ -29,18 +29,17 @@
namespace dawn::native {
class DeviceBase;
class DeviceBase;
MaybeError ValidateBindGroupDescriptor(DeviceBase* device,
const BindGroupDescriptor* descriptor);
MaybeError ValidateBindGroupDescriptor(DeviceBase* device, const BindGroupDescriptor* descriptor);
struct BufferBinding {
struct BufferBinding {
BufferBase* buffer;
uint64_t offset;
uint64_t size;
};
};
class BindGroupBase : public ApiObjectBase {
class BindGroupBase : public ApiObjectBase {
public:
static BindGroupBase* MakeError(DeviceBase* device);
@ -90,7 +89,7 @@ namespace dawn::native {
// TODO(dawn:1293): Store external textures in
// BindGroupLayoutBase::BindingDataPointers::bindings
std::vector<Ref<ExternalTextureBase>> mBoundExternalTextures;
};
};
} // namespace dawn::native

View File

@ -31,21 +31,20 @@
namespace dawn::native {
namespace {
MaybeError ValidateStorageTextureFormat(DeviceBase* device,
namespace {
MaybeError ValidateStorageTextureFormat(DeviceBase* device,
wgpu::TextureFormat storageTextureFormat) {
const Format* format = nullptr;
DAWN_TRY_ASSIGN(format, device->GetInternalFormat(storageTextureFormat));
ASSERT(format != nullptr);
DAWN_INVALID_IF(!format->supportsStorageUsage,
"Texture format (%s) does not support storage textures.",
storageTextureFormat);
"Texture format (%s) does not support storage textures.", storageTextureFormat);
return {};
}
}
MaybeError ValidateStorageTextureViewDimension(wgpu::TextureViewDimension dimension) {
MaybeError ValidateStorageTextureViewDimension(wgpu::TextureViewDimension dimension) {
switch (dimension) {
case wgpu::TextureViewDimension::Cube:
case wgpu::TextureViewDimension::CubeArray:
@ -62,9 +61,9 @@ namespace dawn::native {
break;
}
UNREACHABLE();
}
}
MaybeError ValidateBindGroupLayoutEntry(DeviceBase* device,
MaybeError ValidateBindGroupLayoutEntry(DeviceBase* device,
const BindGroupLayoutEntry& entry,
bool allowInternalBinding) {
DAWN_TRY(ValidateShaderStage(entry.visibility));
@ -111,8 +110,7 @@ namespace dawn::native {
viewDimension = texture.viewDimension;
}
DAWN_INVALID_IF(
texture.multisampled && viewDimension != wgpu::TextureViewDimension::e2D,
DAWN_INVALID_IF(texture.multisampled && viewDimension != wgpu::TextureViewDimension::e2D,
"View dimension (%s) for a multisampled texture bindings was not %s.",
viewDimension, wgpu::TextureViewDimension::e2D);
}
@ -150,16 +148,14 @@ namespace dawn::native {
"BindGroupLayoutEntry had more than one of buffer, sampler, texture, "
"storageTexture, or externalTexture set");
DAWN_INVALID_IF(
!IsSubset(entry.visibility, allowedStages),
DAWN_INVALID_IF(!IsSubset(entry.visibility, allowedStages),
"%s bindings cannot be used with a visibility of %s. Only %s are allowed.",
bindingType, entry.visibility, allowedStages);
return {};
}
}
BindGroupLayoutEntry CreateSampledTextureBindingForExternalTexture(
uint32_t binding,
BindGroupLayoutEntry CreateSampledTextureBindingForExternalTexture(uint32_t binding,
wgpu::ShaderStage visibility) {
BindGroupLayoutEntry entry;
entry.binding = binding;
@ -168,9 +164,9 @@ namespace dawn::native {
entry.texture.multisampled = false;
entry.texture.sampleType = wgpu::TextureSampleType::Float;
return entry;
}
}
BindGroupLayoutEntry CreateUniformBindingForExternalTexture(uint32_t binding,
BindGroupLayoutEntry CreateUniformBindingForExternalTexture(uint32_t binding,
wgpu::ShaderStage visibility) {
BindGroupLayoutEntry entry;
entry.binding = binding;
@ -178,9 +174,9 @@ namespace dawn::native {
entry.buffer.hasDynamicOffset = false;
entry.buffer.type = wgpu::BufferBindingType::Uniform;
return entry;
}
}
std::vector<BindGroupLayoutEntry> ExtractAndExpandBglEntries(
std::vector<BindGroupLayoutEntry> ExtractAndExpandBglEntries(
const BindGroupLayoutDescriptor* descriptor,
BindingCounts* bindingCounts,
ExternalTextureBindingExpansionMap* externalTextureBindingExpansions) {
@ -217,13 +213,11 @@ namespace dawn::native {
dawn_native::ExternalTextureBindingExpansion bindingExpansion;
BindGroupLayoutEntry plane0Entry =
CreateSampledTextureBindingForExternalTexture(entry.binding,
entry.visibility);
CreateSampledTextureBindingForExternalTexture(entry.binding, entry.visibility);
bindingExpansion.plane0 = BindingNumber(plane0Entry.binding);
expandedOutput.push_back(plane0Entry);
BindGroupLayoutEntry plane1Entry =
CreateSampledTextureBindingForExternalTexture(
BindGroupLayoutEntry plane1Entry = CreateSampledTextureBindingForExternalTexture(
nextOpenBindingNumberForNewEntry++, entry.visibility);
bindingExpansion.plane1 = BindingNumber(plane1Entry.binding);
expandedOutput.push_back(plane1Entry);
@ -241,10 +235,10 @@ namespace dawn::native {
}
return expandedOutput;
}
} // anonymous namespace
}
} // anonymous namespace
MaybeError ValidateBindGroupLayoutDescriptor(DeviceBase* device,
MaybeError ValidateBindGroupLayoutDescriptor(DeviceBase* device,
const BindGroupLayoutDescriptor* descriptor,
bool allowInternalBinding) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr");
@ -260,8 +254,8 @@ namespace dawn::native {
"Binding number (%u) exceeds the maximum binding number (%u).",
uint32_t(bindingNumber), uint32_t(kMaxBindingNumberTyped));
DAWN_INVALID_IF(bindingsSet.count(bindingNumber) != 0,
"On entries[%u]: binding index (%u) was specified by a previous entry.",
i, entry.binding);
"On entries[%u]: binding index (%u) was specified by a previous entry.", i,
entry.binding);
DAWN_TRY_CONTEXT(ValidateBindGroupLayoutEntry(device, entry, allowInternalBinding),
"validating entries[%u]", i);
@ -274,11 +268,11 @@ namespace dawn::native {
DAWN_TRY_CONTEXT(ValidateBindingCounts(bindingCounts), "validating binding counts");
return {};
}
}
namespace {
namespace {
bool operator!=(const BindingInfo& a, const BindingInfo& b) {
bool operator!=(const BindingInfo& a, const BindingInfo& b) {
if (a.visibility != b.visibility || a.bindingType != b.bindingType) {
return true;
}
@ -302,20 +296,20 @@ namespace dawn::native {
return false;
}
UNREACHABLE();
}
}
bool IsBufferBinding(const BindGroupLayoutEntry& binding) {
bool IsBufferBinding(const BindGroupLayoutEntry& binding) {
return binding.buffer.type != wgpu::BufferBindingType::Undefined;
}
}
bool BindingHasDynamicOffset(const BindGroupLayoutEntry& binding) {
bool BindingHasDynamicOffset(const BindGroupLayoutEntry& binding) {
if (binding.buffer.type != wgpu::BufferBindingType::Undefined) {
return binding.buffer.hasDynamicOffset;
}
return false;
}
}
BindingInfo CreateBindGroupLayoutInfo(const BindGroupLayoutEntry& binding) {
BindingInfo CreateBindGroupLayoutInfo(const BindGroupLayoutEntry& binding) {
BindingInfo bindingInfo;
bindingInfo.binding = BindingNumber(binding.binding);
bindingInfo.visibility = binding.visibility;
@ -349,9 +343,9 @@ namespace dawn::native {
}
return bindingInfo;
}
}
bool SortBindingsCompare(const BindGroupLayoutEntry& a, const BindGroupLayoutEntry& b) {
bool SortBindingsCompare(const BindGroupLayoutEntry& a, const BindGroupLayoutEntry& b) {
const bool aIsBuffer = IsBufferBinding(a);
const bool bIsBuffer = IsBufferBinding(b);
if (aIsBuffer != bIsBuffer) {
@ -419,8 +413,7 @@ namespace dawn::native {
return aInfo.storageTexture.access < bInfo.storageTexture.access;
}
if (aInfo.storageTexture.viewDimension != bInfo.storageTexture.viewDimension) {
return aInfo.storageTexture.viewDimension <
bInfo.storageTexture.viewDimension;
return aInfo.storageTexture.viewDimension < bInfo.storageTexture.viewDimension;
}
if (aInfo.storageTexture.format != bInfo.storageTexture.format) {
return aInfo.storageTexture.format < bInfo.storageTexture.format;
@ -430,11 +423,11 @@ namespace dawn::native {
break;
}
return a.binding < b.binding;
}
}
// This is a utility function to help ASSERT that the BGL-binding comparator places buffers
// first.
bool CheckBufferBindingsFirst(ityp::span<BindingIndex, const BindingInfo> bindings) {
// This is a utility function to help ASSERT that the BGL-binding comparator places buffers
// first.
bool CheckBufferBindingsFirst(ityp::span<BindingIndex, const BindingInfo> bindings) {
BindingIndex lastBufferIndex{0};
BindingIndex firstNonBufferIndex = std::numeric_limits<BindingIndex>::max();
for (BindingIndex i{0}; i < bindings.size(); ++i) {
@ -448,13 +441,13 @@ namespace dawn::native {
// If there are no buffers, then |lastBufferIndex| is initialized to 0 and
// |firstNonBufferIndex| gets set to 0.
return firstNonBufferIndex >= lastBufferIndex;
}
}
} // namespace
} // namespace
// BindGroupLayoutBase
// BindGroupLayoutBase
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device,
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device,
const BindGroupLayoutDescriptor* descriptor,
PipelineCompatibilityToken pipelineCompatibilityToken,
ApiObjectBase::UntrackedByDeviceTag tag)
@ -482,59 +475,58 @@ namespace dawn::native {
}
ASSERT(CheckBufferBindingsFirst({mBindingInfo.data(), GetBindingCount()}));
ASSERT(mBindingInfo.size() <= kMaxBindingsPerPipelineLayoutTyped);
}
}
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device,
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device,
const BindGroupLayoutDescriptor* descriptor,
PipelineCompatibilityToken pipelineCompatibilityToken)
: BindGroupLayoutBase(device, descriptor, pipelineCompatibilityToken, kUntrackedByDevice) {
TrackInDevice();
}
}
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag) {
}
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag) {}
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device)
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device)
: ApiObjectBase(device, kLabelNotImplemented) {
TrackInDevice();
}
}
BindGroupLayoutBase::~BindGroupLayoutBase() = default;
BindGroupLayoutBase::~BindGroupLayoutBase() = default;
void BindGroupLayoutBase::DestroyImpl() {
void BindGroupLayoutBase::DestroyImpl() {
if (IsCachedReference()) {
// Do not uncache the actual cached object if we are a blueprint.
GetDevice()->UncacheBindGroupLayout(this);
}
}
}
// static
BindGroupLayoutBase* BindGroupLayoutBase::MakeError(DeviceBase* device) {
// static
BindGroupLayoutBase* BindGroupLayoutBase::MakeError(DeviceBase* device) {
return new BindGroupLayoutBase(device, ObjectBase::kError);
}
}
ObjectType BindGroupLayoutBase::GetType() const {
ObjectType BindGroupLayoutBase::GetType() const {
return ObjectType::BindGroupLayout;
}
}
const BindGroupLayoutBase::BindingMap& BindGroupLayoutBase::GetBindingMap() const {
const BindGroupLayoutBase::BindingMap& BindGroupLayoutBase::GetBindingMap() const {
ASSERT(!IsError());
return mBindingMap;
}
}
bool BindGroupLayoutBase::HasBinding(BindingNumber bindingNumber) const {
bool BindGroupLayoutBase::HasBinding(BindingNumber bindingNumber) const {
return mBindingMap.count(bindingNumber) != 0;
}
}
BindingIndex BindGroupLayoutBase::GetBindingIndex(BindingNumber bindingNumber) const {
BindingIndex BindGroupLayoutBase::GetBindingIndex(BindingNumber bindingNumber) const {
ASSERT(!IsError());
const auto& it = mBindingMap.find(bindingNumber);
ASSERT(it != mBindingMap.end());
return it->second;
}
}
size_t BindGroupLayoutBase::ComputeContentHash() {
size_t BindGroupLayoutBase::ComputeContentHash() {
ObjectContentHasher recorder;
recorder.Record(mPipelineCompatibilityToken);
@ -552,50 +544,50 @@ namespace dawn::native {
}
return recorder.GetContentHash();
}
}
bool BindGroupLayoutBase::EqualityFunc::operator()(const BindGroupLayoutBase* a,
bool BindGroupLayoutBase::EqualityFunc::operator()(const BindGroupLayoutBase* a,
const BindGroupLayoutBase* b) const {
return a->IsLayoutEqual(b);
}
}
BindingIndex BindGroupLayoutBase::GetBindingCount() const {
BindingIndex BindGroupLayoutBase::GetBindingCount() const {
return mBindingInfo.size();
}
}
BindingIndex BindGroupLayoutBase::GetBufferCount() const {
BindingIndex BindGroupLayoutBase::GetBufferCount() const {
return BindingIndex(mBindingCounts.bufferCount);
}
}
BindingIndex BindGroupLayoutBase::GetDynamicBufferCount() const {
BindingIndex BindGroupLayoutBase::GetDynamicBufferCount() const {
// This is a binding index because dynamic buffers are packed at the front of the binding
// info.
return static_cast<BindingIndex>(mBindingCounts.dynamicStorageBufferCount +
mBindingCounts.dynamicUniformBufferCount);
}
}
uint32_t BindGroupLayoutBase::GetUnverifiedBufferCount() const {
uint32_t BindGroupLayoutBase::GetUnverifiedBufferCount() const {
return mBindingCounts.unverifiedBufferCount;
}
}
uint32_t BindGroupLayoutBase::GetExternalTextureBindingCount() const {
uint32_t BindGroupLayoutBase::GetExternalTextureBindingCount() const {
return mExternalTextureBindingExpansionMap.size();
}
}
const BindingCounts& BindGroupLayoutBase::GetBindingCountInfo() const {
const BindingCounts& BindGroupLayoutBase::GetBindingCountInfo() const {
return mBindingCounts;
}
}
const ExternalTextureBindingExpansionMap&
BindGroupLayoutBase::GetExternalTextureBindingExpansionMap() const {
const ExternalTextureBindingExpansionMap&
BindGroupLayoutBase::GetExternalTextureBindingExpansionMap() const {
return mExternalTextureBindingExpansionMap;
}
}
uint32_t BindGroupLayoutBase::GetUnexpandedBindingCount() const {
uint32_t BindGroupLayoutBase::GetUnexpandedBindingCount() const {
return mUnexpandedBindingCount;
}
}
bool BindGroupLayoutBase::IsLayoutEqual(const BindGroupLayoutBase* other,
bool BindGroupLayoutBase::IsLayoutEqual(const BindGroupLayoutBase* other,
bool excludePipelineCompatibiltyToken) const {
if (!excludePipelineCompatibiltyToken &&
GetPipelineCompatibilityToken() != other->GetPipelineCompatibilityToken()) {
@ -610,13 +602,13 @@ namespace dawn::native {
}
}
return mBindingMap == other->mBindingMap;
}
}
PipelineCompatibilityToken BindGroupLayoutBase::GetPipelineCompatibilityToken() const {
PipelineCompatibilityToken BindGroupLayoutBase::GetPipelineCompatibilityToken() const {
return mPipelineCompatibilityToken;
}
}
size_t BindGroupLayoutBase::GetBindingDataSize() const {
size_t BindGroupLayoutBase::GetBindingDataSize() const {
// | ------ buffer-specific ----------| ------------ object pointers -------------|
// | --- offsets + sizes -------------| --------------- Ref<ObjectBase> ----------|
// Followed by:
@ -624,14 +616,13 @@ namespace dawn::native {
// |-uint64_t[mUnverifiedBufferCount]-|
size_t objectPointerStart = mBindingCounts.bufferCount * sizeof(BufferBindingData);
ASSERT(IsAligned(objectPointerStart, alignof(Ref<ObjectBase>)));
size_t bufferSizeArrayStart =
Align(objectPointerStart + mBindingCounts.totalCount * sizeof(Ref<ObjectBase>),
sizeof(uint64_t));
size_t bufferSizeArrayStart = Align(
objectPointerStart + mBindingCounts.totalCount * sizeof(Ref<ObjectBase>), sizeof(uint64_t));
ASSERT(IsAligned(bufferSizeArrayStart, alignof(uint64_t)));
return bufferSizeArrayStart + mBindingCounts.unverifiedBufferCount * sizeof(uint64_t);
}
}
BindGroupLayoutBase::BindingDataPointers BindGroupLayoutBase::ComputeBindingDataPointers(
BindGroupLayoutBase::BindingDataPointers BindGroupLayoutBase::ComputeBindingDataPointers(
void* dataStart) const {
BufferBindingData* bufferData = reinterpret_cast<BufferBindingData*>(dataStart);
auto bindings = reinterpret_cast<Ref<ObjectBase>*>(bufferData + mBindingCounts.bufferCount);
@ -645,9 +636,9 @@ namespace dawn::native {
return {{bufferData, GetBufferCount()},
{bindings, GetBindingCount()},
{unverifiedBufferSizes, mBindingCounts.unverifiedBufferCount}};
}
}
bool BindGroupLayoutBase::IsStorageBufferBinding(BindingIndex bindingIndex) const {
bool BindGroupLayoutBase::IsStorageBufferBinding(BindingIndex bindingIndex) const {
ASSERT(bindingIndex < GetBufferCount());
switch (GetBindingInfo(bindingIndex).buffer.type) {
case wgpu::BufferBindingType::Uniform:
@ -660,9 +651,9 @@ namespace dawn::native {
break;
}
UNREACHABLE();
}
}
std::string BindGroupLayoutBase::EntriesToString() const {
std::string BindGroupLayoutBase::EntriesToString() const {
std::string entries = "[";
std::string sep = "";
const BindGroupLayoutBase::BindingMap& bindingMap = GetBindingMap();
@ -673,6 +664,6 @@ namespace dawn::native {
}
entries += "]";
return entries;
}
}
} // namespace dawn::native

View File

@ -34,24 +34,23 @@
#include "dawn/native/dawn_platform.h"
namespace dawn::native {
// TODO(dawn:1082): Minor optimization to use BindingIndex instead of BindingNumber
struct ExternalTextureBindingExpansion {
// TODO(dawn:1082): Minor optimization to use BindingIndex instead of BindingNumber
struct ExternalTextureBindingExpansion {
BindingNumber plane0;
BindingNumber plane1;
BindingNumber params;
};
};
using ExternalTextureBindingExpansionMap =
std::map<BindingNumber, ExternalTextureBindingExpansion>;
using ExternalTextureBindingExpansionMap = std::map<BindingNumber, ExternalTextureBindingExpansion>;
MaybeError ValidateBindGroupLayoutDescriptor(DeviceBase* device,
MaybeError ValidateBindGroupLayoutDescriptor(DeviceBase* device,
const BindGroupLayoutDescriptor* descriptor,
bool allowInternalBinding = false);
// Bindings are specified as a |BindingNumber| in the BindGroupLayoutDescriptor.
// These numbers may be arbitrary and sparse. Internally, Dawn packs these numbers
// into a packed range of |BindingIndex| integers.
class BindGroupLayoutBase : public ApiObjectBase, public CachedObject {
// Bindings are specified as a |BindingNumber| in the BindGroupLayoutDescriptor.
// These numbers may be arbitrary and sparse. Internally, Dawn packs these numbers
// into a packed range of |BindingIndex| integers.
class BindGroupLayoutBase : public ApiObjectBase, public CachedObject {
public:
BindGroupLayoutBase(DeviceBase* device,
const BindGroupLayoutDescriptor* descriptor,
@ -161,11 +160,10 @@ namespace dawn::native {
ExternalTextureBindingExpansionMap mExternalTextureBindingExpansionMap;
// Non-0 if this BindGroupLayout was created as part of a default PipelineLayout.
const PipelineCompatibilityToken mPipelineCompatibilityToken =
PipelineCompatibilityToken(0);
const PipelineCompatibilityToken mPipelineCompatibilityToken = PipelineCompatibilityToken(0);
uint32_t mUnexpandedBindingCount;
};
};
} // namespace dawn::native

View File

@ -25,12 +25,12 @@
namespace dawn::native {
// Keeps track of the dirty bind groups so they can be lazily applied when we know the
// pipeline state or it changes.
// |DynamicOffset| is a template parameter because offsets in Vulkan are uint32_t but uint64_t
// in other backends.
template <bool CanInheritBindGroups, typename DynamicOffset>
class BindGroupTrackerBase {
// Keeps track of the dirty bind groups so they can be lazily applied when we know the
// pipeline state or it changes.
// |DynamicOffset| is a template parameter because offsets in Vulkan are uint32_t but uint64_t
// in other backends.
template <bool CanInheritBindGroups, typename DynamicOffset>
class BindGroupTrackerBase {
public:
void OnSetBindGroup(BindGroupIndex index,
BindGroupBase* bindGroup,
@ -58,9 +58,7 @@ namespace dawn::native {
SetDynamicOffsets(mDynamicOffsets[index].data(), dynamicOffsetCount, dynamicOffsets);
}
void OnSetPipeline(PipelineBase* pipeline) {
mPipelineLayout = pipeline->GetLayout();
}
void OnSetPipeline(PipelineBase* pipeline) { mPipelineLayout = pipeline->GetLayout(); }
protected:
// The Derived class should call this before it applies bind groups.
@ -137,7 +135,7 @@ namespace dawn::native {
memcpy(data, dynamicOffsets, sizeof(uint32_t) * dynamicOffsetCount);
}
}
};
};
} // namespace dawn::native

View File

@ -18,7 +18,7 @@
namespace dawn::native {
void IncrementBindingCounts(BindingCounts* bindingCounts, const BindGroupLayoutEntry& entry) {
void IncrementBindingCounts(BindingCounts* bindingCounts, const BindGroupLayoutEntry& entry) {
bindingCounts->totalCount += 1;
uint32_t PerStageBindingCounts::*perStageBindingCountMember = nullptr;
@ -71,9 +71,9 @@ namespace dawn::native {
for (SingleShaderStage stage : IterateStages(entry.visibility)) {
++(bindingCounts->perStage[stage].*perStageBindingCountMember);
}
}
}
void AccumulateBindingCounts(BindingCounts* bindingCounts, const BindingCounts& rhs) {
void AccumulateBindingCounts(BindingCounts* bindingCounts, const BindingCounts& rhs) {
bindingCounts->totalCount += rhs.totalCount;
bindingCounts->bufferCount += rhs.bufferCount;
bindingCounts->unverifiedBufferCount += rhs.unverifiedBufferCount;
@ -84,18 +84,16 @@ namespace dawn::native {
bindingCounts->perStage[stage].sampledTextureCount +=
rhs.perStage[stage].sampledTextureCount;
bindingCounts->perStage[stage].samplerCount += rhs.perStage[stage].samplerCount;
bindingCounts->perStage[stage].storageBufferCount +=
rhs.perStage[stage].storageBufferCount;
bindingCounts->perStage[stage].storageBufferCount += rhs.perStage[stage].storageBufferCount;
bindingCounts->perStage[stage].storageTextureCount +=
rhs.perStage[stage].storageTextureCount;
bindingCounts->perStage[stage].uniformBufferCount +=
rhs.perStage[stage].uniformBufferCount;
bindingCounts->perStage[stage].uniformBufferCount += rhs.perStage[stage].uniformBufferCount;
bindingCounts->perStage[stage].externalTextureCount +=
rhs.perStage[stage].externalTextureCount;
}
}
}
MaybeError ValidateBindingCounts(const BindingCounts& bindingCounts) {
MaybeError ValidateBindingCounts(const BindingCounts& bindingCounts) {
DAWN_INVALID_IF(
bindingCounts.dynamicUniformBufferCount > kMaxDynamicUniformBuffersPerPipelineLayout,
"The number of dynamic uniform buffers (%u) exceeds the maximum per-pipeline-layout "
@ -110,8 +108,7 @@ namespace dawn::native {
for (SingleShaderStage stage : IterateStages(kAllStages)) {
DAWN_INVALID_IF(
bindingCounts.perStage[stage].sampledTextureCount >
kMaxSampledTexturesPerShaderStage,
bindingCounts.perStage[stage].sampledTextureCount > kMaxSampledTexturesPerShaderStage,
"The number of sampled textures (%u) in the %s stage exceeds the maximum "
"per-stage limit (%u).",
bindingCounts.perStage[stage].sampledTextureCount, stage,
@ -119,8 +116,7 @@ namespace dawn::native {
// The per-stage number of external textures is bound by the maximum sampled textures
// per stage.
DAWN_INVALID_IF(
bindingCounts.perStage[stage].externalTextureCount >
DAWN_INVALID_IF(bindingCounts.perStage[stage].externalTextureCount >
kMaxSampledTexturesPerShaderStage / kSampledTexturesPerExternalTexture,
"The number of external textures (%u) in the %s stage exceeds the maximum "
"per-stage limit (%u).",
@ -152,8 +148,7 @@ namespace dawn::native {
"The combination of samplers (%u) and external textures (%u) in the %s stage "
"exceeds the maximum per-stage limit (%u).",
bindingCounts.perStage[stage].samplerCount,
bindingCounts.perStage[stage].externalTextureCount, stage,
kMaxSamplersPerShaderStage);
bindingCounts.perStage[stage].externalTextureCount, stage, kMaxSamplersPerShaderStage);
DAWN_INVALID_IF(
bindingCounts.perStage[stage].storageBufferCount > kMaxStorageBuffersPerShaderStage,
@ -163,8 +158,7 @@ namespace dawn::native {
kMaxStorageBuffersPerShaderStage);
DAWN_INVALID_IF(
bindingCounts.perStage[stage].storageTextureCount >
kMaxStorageTexturesPerShaderStage,
bindingCounts.perStage[stage].storageTextureCount > kMaxStorageTexturesPerShaderStage,
"The number of storage textures (%u) in the %s stage exceeds the maximum per-stage "
"limit (%u).",
bindingCounts.perStage[stage].storageTextureCount, stage,
@ -190,6 +184,6 @@ namespace dawn::native {
}
return {};
}
}
} // namespace dawn::native

View File

@ -29,29 +29,29 @@
namespace dawn::native {
// Not a real WebGPU limit, but the sum of the two limits is useful for internal optimizations.
static constexpr uint32_t kMaxDynamicBuffersPerPipelineLayout =
// Not a real WebGPU limit, but the sum of the two limits is useful for internal optimizations.
static constexpr uint32_t kMaxDynamicBuffersPerPipelineLayout =
kMaxDynamicUniformBuffersPerPipelineLayout + kMaxDynamicStorageBuffersPerPipelineLayout;
static constexpr BindingIndex kMaxDynamicBuffersPerPipelineLayoutTyped =
static constexpr BindingIndex kMaxDynamicBuffersPerPipelineLayoutTyped =
BindingIndex(kMaxDynamicBuffersPerPipelineLayout);
// Not a real WebGPU limit, but used to optimize parts of Dawn which expect valid usage of the
// API. There should never be more bindings than the max per stage, for each stage.
static constexpr uint32_t kMaxBindingsPerPipelineLayout =
// Not a real WebGPU limit, but used to optimize parts of Dawn which expect valid usage of the
// API. There should never be more bindings than the max per stage, for each stage.
static constexpr uint32_t kMaxBindingsPerPipelineLayout =
3 * (kMaxSampledTexturesPerShaderStage + kMaxSamplersPerShaderStage +
kMaxStorageBuffersPerShaderStage + kMaxStorageTexturesPerShaderStage +
kMaxUniformBuffersPerShaderStage);
static constexpr BindingIndex kMaxBindingsPerPipelineLayoutTyped =
static constexpr BindingIndex kMaxBindingsPerPipelineLayoutTyped =
BindingIndex(kMaxBindingsPerPipelineLayout);
// TODO(enga): Figure out a good number for this.
static constexpr uint32_t kMaxOptimalBindingsPerGroup = 32;
// TODO(enga): Figure out a good number for this.
static constexpr uint32_t kMaxOptimalBindingsPerGroup = 32;
enum class BindingInfoType { Buffer, Sampler, Texture, StorageTexture, ExternalTexture };
enum class BindingInfoType { Buffer, Sampler, Texture, StorageTexture, ExternalTexture };
struct BindingInfo {
struct BindingInfo {
BindingNumber binding;
wgpu::ShaderStage visibility;
@ -62,37 +62,37 @@ namespace dawn::native {
SamplerBindingLayout sampler;
TextureBindingLayout texture;
StorageTextureBindingLayout storageTexture;
};
};
struct BindingSlot {
struct BindingSlot {
BindGroupIndex group;
BindingNumber binding;
};
};
struct PerStageBindingCounts {
struct PerStageBindingCounts {
uint32_t sampledTextureCount;
uint32_t samplerCount;
uint32_t storageBufferCount;
uint32_t storageTextureCount;
uint32_t uniformBufferCount;
uint32_t externalTextureCount;
};
};
struct BindingCounts {
struct BindingCounts {
uint32_t totalCount;
uint32_t bufferCount;
uint32_t unverifiedBufferCount; // Buffers with minimum buffer size unspecified
uint32_t dynamicUniformBufferCount;
uint32_t dynamicStorageBufferCount;
PerStage<PerStageBindingCounts> perStage;
};
};
void IncrementBindingCounts(BindingCounts* bindingCounts, const BindGroupLayoutEntry& entry);
void AccumulateBindingCounts(BindingCounts* bindingCounts, const BindingCounts& rhs);
MaybeError ValidateBindingCounts(const BindingCounts& bindingCounts);
void IncrementBindingCounts(BindingCounts* bindingCounts, const BindGroupLayoutEntry& entry);
void AccumulateBindingCounts(BindingCounts* bindingCounts, const BindingCounts& rhs);
MaybeError ValidateBindingCounts(const BindingCounts& bindingCounts);
// For buffer size validation
using RequiredBufferSizes = ityp::array<BindGroupIndex, std::vector<uint64_t>, kMaxBindGroups>;
// For buffer size validation
using RequiredBufferSizes = ityp::array<BindGroupIndex, std::vector<uint64_t>, kMaxBindGroups>;
} // namespace dawn::native

View File

@ -21,52 +21,51 @@
namespace dawn::native {
CachedBlob::CachedBlob(size_t size) {
CachedBlob::CachedBlob(size_t size) {
if (size != 0) {
Reset(size);
}
}
}
bool CachedBlob::Empty() const {
bool CachedBlob::Empty() const {
return mSize == 0;
}
}
const uint8_t* CachedBlob::Data() const {
const uint8_t* CachedBlob::Data() const {
return mData.get();
}
}
uint8_t* CachedBlob::Data() {
uint8_t* CachedBlob::Data() {
return mData.get();
}
}
size_t CachedBlob::Size() const {
size_t CachedBlob::Size() const {
return mSize;
}
}
void CachedBlob::Reset(size_t size) {
void CachedBlob::Reset(size_t size) {
mSize = size;
mData = std::make_unique<uint8_t[]>(size);
}
}
BlobCache::BlobCache(dawn::platform::CachingInterface* cachingInterface)
: mCache(cachingInterface) {
}
BlobCache::BlobCache(dawn::platform::CachingInterface* cachingInterface)
: mCache(cachingInterface) {}
CachedBlob BlobCache::Load(const CacheKey& key) {
CachedBlob BlobCache::Load(const CacheKey& key) {
std::lock_guard<std::mutex> lock(mMutex);
return LoadInternal(key);
}
}
void BlobCache::Store(const CacheKey& key, size_t valueSize, const void* value) {
void BlobCache::Store(const CacheKey& key, size_t valueSize, const void* value) {
std::lock_guard<std::mutex> lock(mMutex);
StoreInternal(key, valueSize, value);
}
}
void BlobCache::Store(const CacheKey& key, const CachedBlob& value) {
void BlobCache::Store(const CacheKey& key, const CachedBlob& value) {
Store(key, value.Size(), value.Data());
}
}
CachedBlob BlobCache::LoadInternal(const CacheKey& key) {
CachedBlob BlobCache::LoadInternal(const CacheKey& key) {
CachedBlob result;
if (mCache == nullptr) {
return result;
@ -79,15 +78,15 @@ namespace dawn::native {
ASSERT(expectedSize == actualSize);
}
return result;
}
}
void BlobCache::StoreInternal(const CacheKey& key, size_t valueSize, const void* value) {
void BlobCache::StoreInternal(const CacheKey& key, size_t valueSize, const void* value) {
ASSERT(value != nullptr);
ASSERT(valueSize > 0);
if (mCache == nullptr) {
return;
}
mCache->StoreData(nullptr, key.data(), key.size(), value, valueSize);
}
}
} // namespace dawn::native

View File

@ -19,16 +19,16 @@
#include <mutex>
namespace dawn::platform {
class CachingInterface;
class CachingInterface;
}
namespace dawn::native {
class BlobCache;
class CacheKey;
class InstanceBase;
class BlobCache;
class CacheKey;
class InstanceBase;
class CachedBlob {
class CachedBlob {
public:
explicit CachedBlob(size_t size = 0);
@ -41,11 +41,11 @@ namespace dawn::native {
private:
std::unique_ptr<uint8_t[]> mData = nullptr;
size_t mSize = 0;
};
};
// This class should always be thread-safe because it may be called asynchronously. Its purpose
// is to wrap the CachingInterface provided via a platform.
class BlobCache {
// This class should always be thread-safe because it may be called asynchronously. Its purpose
// is to wrap the CachingInterface provided via a platform.
class BlobCache {
public:
explicit BlobCache(dawn::platform::CachingInterface* cachingInterface = nullptr);
@ -69,7 +69,7 @@ namespace dawn::native {
// call, but this might be unnecessary. This class just passes nullptr for those calls
// right now. Eventually we can just change the interface to be more generic.
dawn::platform::CachingInterface* mCache;
};
};
} // namespace dawn::native

View File

@ -19,7 +19,7 @@
namespace dawn::native {
BuddyAllocator::BuddyAllocator(uint64_t maxSize) : mMaxBlockSize(maxSize) {
BuddyAllocator::BuddyAllocator(uint64_t maxSize) : mMaxBlockSize(maxSize) {
ASSERT(IsPowerOfTwo(maxSize));
mFreeLists.resize(Log2(mMaxBlockSize) + 1);
@ -27,19 +27,19 @@ namespace dawn::native {
// Insert the level0 free block.
mRoot = new BuddyBlock(maxSize, /*offset*/ 0);
mFreeLists[0] = {mRoot};
}
}
BuddyAllocator::~BuddyAllocator() {
BuddyAllocator::~BuddyAllocator() {
if (mRoot) {
DeleteBlock(mRoot);
}
}
}
uint64_t BuddyAllocator::ComputeTotalNumOfFreeBlocksForTesting() const {
uint64_t BuddyAllocator::ComputeTotalNumOfFreeBlocksForTesting() const {
return ComputeNumOfFreeBlocks(mRoot);
}
}
uint64_t BuddyAllocator::ComputeNumOfFreeBlocks(BuddyBlock* block) const {
uint64_t BuddyAllocator::ComputeNumOfFreeBlocks(BuddyBlock* block) const {
if (block->mState == BlockState::Free) {
return 1;
} else if (block->mState == BlockState::Split) {
@ -47,16 +47,16 @@ namespace dawn::native {
ComputeNumOfFreeBlocks(block->split.pLeft->pBuddy);
}
return 0;
}
}
uint32_t BuddyAllocator::ComputeLevelFromBlockSize(uint64_t blockSize) const {
uint32_t BuddyAllocator::ComputeLevelFromBlockSize(uint64_t blockSize) const {
// Every level in the buddy system can be indexed by order-n where n = log2(blockSize).
// However, mFreeList zero-indexed by level.
// For example, blockSize=4 is Level1 if MAX_BLOCK is 8.
return Log2(mMaxBlockSize) - Log2(blockSize);
}
}
uint64_t BuddyAllocator::GetNextFreeAlignedBlock(size_t allocationBlockLevel,
uint64_t BuddyAllocator::GetNextFreeAlignedBlock(size_t allocationBlockLevel,
uint64_t alignment) const {
ASSERT(IsPowerOfTwo(alignment));
// The current level is the level that corresponds to the allocation size. The free list may
@ -89,13 +89,13 @@ namespace dawn::native {
}
}
return kInvalidOffset; // No free block exists at any level.
}
}
// Inserts existing free block into the free-list.
// Called by allocate upon splitting to insert a child block into a free-list.
// Note: Always insert into the head of the free-list. As when a larger free block at a lower
// level was split, there were no smaller free blocks at a higher level to allocate.
void BuddyAllocator::InsertFreeBlock(BuddyBlock* block, size_t level) {
// Inserts existing free block into the free-list.
// Called by allocate upon splitting to insert a child block into a free-list.
// Note: Always insert into the head of the free-list. As when a larger free block at a lower
// level was split, there were no smaller free blocks at a higher level to allocate.
void BuddyAllocator::InsertFreeBlock(BuddyBlock* block, size_t level) {
ASSERT(block->mState == BlockState::Free);
// Inserted block is now the front (no prev).
@ -111,9 +111,9 @@ namespace dawn::native {
}
mFreeLists[level].head = block;
}
}
void BuddyAllocator::RemoveFreeBlock(BuddyBlock* block, size_t level) {
void BuddyAllocator::RemoveFreeBlock(BuddyBlock* block, size_t level) {
ASSERT(block->mState == BlockState::Free);
if (mFreeLists[level].head == block) {
@ -134,9 +134,9 @@ namespace dawn::native {
pNext->free.pPrev = pPrev;
}
}
}
}
uint64_t BuddyAllocator::Allocate(uint64_t allocationSize, uint64_t alignment) {
uint64_t BuddyAllocator::Allocate(uint64_t allocationSize, uint64_t alignment) {
if (allocationSize == 0 || allocationSize > mMaxBlockSize) {
return kInvalidOffset;
}
@ -197,9 +197,9 @@ namespace dawn::native {
currBlock->mState = BlockState::Allocated;
return currBlock->mOffset;
}
}
void BuddyAllocator::Deallocate(uint64_t offset) {
void BuddyAllocator::Deallocate(uint64_t offset) {
BuddyBlock* curr = mRoot;
// TODO(crbug.com/dawn/827): Optimize de-allocation.
@ -247,10 +247,10 @@ namespace dawn::native {
}
InsertFreeBlock(curr, currBlockLevel);
}
}
// Helper which deletes a block in the tree recursively (post-order).
void BuddyAllocator::DeleteBlock(BuddyBlock* block) {
// Helper which deletes a block in the tree recursively (post-order).
void BuddyAllocator::DeleteBlock(BuddyBlock* block) {
ASSERT(block != nullptr);
if (block->mState == BlockState::Split) {
@ -259,6 +259,6 @@ namespace dawn::native {
DeleteBlock(block->split.pLeft);
}
delete block;
}
}
} // namespace dawn::native

View File

@ -22,18 +22,18 @@
namespace dawn::native {
// Buddy allocator uses the buddy memory allocation technique to satisfy an allocation request.
// Memory is split into halves until just large enough to fit to the request. This
// requires the allocation size to be a power-of-two value. The allocator "allocates" a block by
// returning the starting offset whose size is guaranteed to be greater than or equal to the
// allocation size. To deallocate, the same offset is used to find the corresponding block.
//
// Internally, it manages a free list to track free blocks in a full binary tree.
// Every index in the free list corresponds to a level in the tree. That level also determines
// the size of the block to be used to satisfy the request. The first level (index=0) represents
// the root whose size is also called the max block size.
//
class BuddyAllocator {
// Buddy allocator uses the buddy memory allocation technique to satisfy an allocation request.
// Memory is split into halves until just large enough to fit to the request. This
// requires the allocation size to be a power-of-two value. The allocator "allocates" a block by
// returning the starting offset whose size is guaranteed to be greater than or equal to the
// allocation size. To deallocate, the same offset is used to find the corresponding block.
//
// Internally, it manages a free list to track free blocks in a full binary tree.
// Every index in the free list corresponds to a level in the tree. That level also determines
// the size of the block to be used to satisfy the request. The first level (index=0) represents
// the root whose size is also called the max block size.
//
class BuddyAllocator {
public:
explicit BuddyAllocator(uint64_t maxSize);
~BuddyAllocator();
@ -110,7 +110,7 @@ namespace dawn::native {
// List of linked-lists of free blocks where the index is a level that
// corresponds to a power-of-two sized block.
std::vector<BlockList> mFreeLists;
};
};
} // namespace dawn::native

View File

@ -21,7 +21,7 @@
namespace dawn::native {
BuddyMemoryAllocator::BuddyMemoryAllocator(uint64_t maxSystemSize,
BuddyMemoryAllocator::BuddyMemoryAllocator(uint64_t maxSystemSize,
uint64_t memoryBlockSize,
ResourceHeapAllocator* heapAllocator)
: mMemoryBlockSize(memoryBlockSize),
@ -32,14 +32,14 @@ namespace dawn::native {
ASSERT(maxSystemSize % mMemoryBlockSize == 0);
mTrackedSubAllocations.resize(maxSystemSize / mMemoryBlockSize);
}
}
uint64_t BuddyMemoryAllocator::GetMemoryIndex(uint64_t offset) const {
uint64_t BuddyMemoryAllocator::GetMemoryIndex(uint64_t offset) const {
ASSERT(offset != BuddyAllocator::kInvalidOffset);
return offset / mMemoryBlockSize;
}
}
ResultOrError<ResourceMemoryAllocation> BuddyMemoryAllocator::Allocate(uint64_t allocationSize,
ResultOrError<ResourceMemoryAllocation> BuddyMemoryAllocator::Allocate(uint64_t allocationSize,
uint64_t alignment) {
ResourceMemoryAllocation invalidAllocation = ResourceMemoryAllocation{};
@ -83,11 +83,11 @@ namespace dawn::native {
// Allocation offset is always local to the memory.
const uint64_t memoryOffset = blockOffset % mMemoryBlockSize;
return ResourceMemoryAllocation{
info, memoryOffset, mTrackedSubAllocations[memoryIndex].mMemoryAllocation.get()};
}
return ResourceMemoryAllocation{info, memoryOffset,
mTrackedSubAllocations[memoryIndex].mMemoryAllocation.get()};
}
void BuddyMemoryAllocator::Deallocate(const ResourceMemoryAllocation& allocation) {
void BuddyMemoryAllocator::Deallocate(const ResourceMemoryAllocation& allocation) {
const AllocationInfo info = allocation.GetInfo();
ASSERT(info.mMethod == AllocationMethod::kSubAllocated);
@ -103,13 +103,13 @@ namespace dawn::native {
}
mBuddyBlockAllocator.Deallocate(info.mBlockOffset);
}
}
uint64_t BuddyMemoryAllocator::GetMemoryBlockSize() const {
uint64_t BuddyMemoryAllocator::GetMemoryBlockSize() const {
return mMemoryBlockSize;
}
}
uint64_t BuddyMemoryAllocator::ComputeTotalNumOfHeapsForTesting() const {
uint64_t BuddyMemoryAllocator::ComputeTotalNumOfHeapsForTesting() const {
uint64_t count = 0;
for (const TrackedSubAllocations& allocation : mTrackedSubAllocations) {
if (allocation.refcount > 0) {
@ -117,6 +117,6 @@ namespace dawn::native {
}
}
return count;
}
}
} // namespace dawn::native

View File

@ -24,28 +24,27 @@
namespace dawn::native {
class ResourceHeapAllocator;
class ResourceHeapAllocator;
// BuddyMemoryAllocator uses the buddy allocator to sub-allocate blocks of device
// memory created by MemoryAllocator clients. It creates a very large buddy system
// where backing device memory blocks equal a specified level in the system.
//
// Upon sub-allocating, the offset gets mapped to device memory by computing the corresponding
// memory index and should the memory not exist, it is created. If two sub-allocations share the
// same memory index, the memory refcount is incremented to ensure de-allocating one doesn't
// release the other prematurely.
//
// The MemoryAllocator should return ResourceHeaps that are all compatible with each other.
// It should also outlive all the resources that are in the buddy allocator.
class BuddyMemoryAllocator {
// BuddyMemoryAllocator uses the buddy allocator to sub-allocate blocks of device
// memory created by MemoryAllocator clients. It creates a very large buddy system
// where backing device memory blocks equal a specified level in the system.
//
// Upon sub-allocating, the offset gets mapped to device memory by computing the corresponding
// memory index and should the memory not exist, it is created. If two sub-allocations share the
// same memory index, the memory refcount is incremented to ensure de-allocating one doesn't
// release the other prematurely.
//
// The MemoryAllocator should return ResourceHeaps that are all compatible with each other.
// It should also outlive all the resources that are in the buddy allocator.
class BuddyMemoryAllocator {
public:
BuddyMemoryAllocator(uint64_t maxSystemSize,
uint64_t memoryBlockSize,
ResourceHeapAllocator* heapAllocator);
~BuddyMemoryAllocator() = default;
ResultOrError<ResourceMemoryAllocation> Allocate(uint64_t allocationSize,
uint64_t alignment);
ResultOrError<ResourceMemoryAllocation> Allocate(uint64_t allocationSize, uint64_t alignment);
void Deallocate(const ResourceMemoryAllocation& allocation);
uint64_t GetMemoryBlockSize() const;
@ -67,7 +66,7 @@ namespace dawn::native {
};
std::vector<TrackedSubAllocations> mTrackedSubAllocations;
};
};
} // namespace dawn::native

View File

@ -33,11 +33,9 @@
namespace dawn::native {
namespace {
struct MapRequestTask : QueueBase::TaskInFlight {
MapRequestTask(Ref<BufferBase> buffer, MapRequestID id)
: buffer(std::move(buffer)), id(id) {
}
namespace {
struct MapRequestTask : QueueBase::TaskInFlight {
MapRequestTask(Ref<BufferBase> buffer, MapRequestID id) : buffer(std::move(buffer)), id(id) {}
void Finish(dawn::platform::Platform* platform, ExecutionSerial serial) override {
TRACE_EVENT1(platform, General, "Buffer::TaskInFlight::Finished", "serial",
uint64_t(serial));
@ -51,9 +49,9 @@ namespace dawn::native {
private:
Ref<BufferBase> buffer;
MapRequestID id;
};
};
class ErrorBuffer final : public BufferBase {
class ErrorBuffer final : public BufferBase {
public:
ErrorBuffer(DeviceBase* device, const BufferDescriptor* descriptor)
: BufferBase(device, descriptor, ObjectBase::kError) {
@ -61,8 +59,7 @@ namespace dawn::native {
// Check that the size can be used to allocate an mFakeMappedData. A malloc(0)
// is invalid, and on 32bit systems we should avoid a narrowing conversion that
// would make size = 1 << 32 + 1 allocate one byte.
bool isValidSize =
descriptor->size != 0 &&
bool isValidSize = descriptor->size != 0 &&
descriptor->size < uint64_t(std::numeric_limits<size_t>::max());
if (isValidSize) {
@ -76,32 +73,24 @@ namespace dawn::native {
}
private:
bool IsCPUWritableAtCreation() const override {
UNREACHABLE();
}
bool IsCPUWritableAtCreation() const override { UNREACHABLE(); }
MaybeError MapAtCreationImpl() override {
UNREACHABLE();
}
MaybeError MapAtCreationImpl() override { UNREACHABLE(); }
MaybeError MapAsyncImpl(wgpu::MapMode mode, size_t offset, size_t size) override {
UNREACHABLE();
}
void* GetMappedPointerImpl() override {
return mFakeMappedData.get();
}
void* GetMappedPointerImpl() override { return mFakeMappedData.get(); }
void UnmapImpl() override {
mFakeMappedData.reset();
}
void UnmapImpl() override { mFakeMappedData.reset(); }
std::unique_ptr<uint8_t[]> mFakeMappedData;
};
};
} // anonymous namespace
} // anonymous namespace
MaybeError ValidateBufferDescriptor(DeviceBase*, const BufferDescriptor* descriptor) {
MaybeError ValidateBufferDescriptor(DeviceBase*, const BufferDescriptor* descriptor) {
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr");
DAWN_TRY(ValidateBufferUsage(descriptor->usage));
@ -130,11 +119,11 @@ namespace dawn::native {
descriptor->size);
return {};
}
}
// Buffer
// Buffer
BufferBase::BufferBase(DeviceBase* device, const BufferDescriptor* descriptor)
BufferBase::BufferBase(DeviceBase* device, const BufferDescriptor* descriptor)
: ApiObjectBase(device, descriptor->label),
mSize(descriptor->size),
mUsage(descriptor->usage),
@ -164,9 +153,9 @@ namespace dawn::native {
}
TrackInDevice();
}
}
BufferBase::BufferBase(DeviceBase* device,
BufferBase::BufferBase(DeviceBase* device,
const BufferDescriptor* descriptor,
ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag), mSize(descriptor->size), mState(BufferState::Unmapped) {
@ -175,18 +164,18 @@ namespace dawn::native {
mMapOffset = 0;
mMapSize = mSize;
}
}
}
BufferBase::BufferBase(DeviceBase* device, BufferState state)
BufferBase::BufferBase(DeviceBase* device, BufferState state)
: ApiObjectBase(device, kLabelNotImplemented), mState(state) {
TrackInDevice();
}
}
BufferBase::~BufferBase() {
BufferBase::~BufferBase() {
ASSERT(mState == BufferState::Unmapped || mState == BufferState::Destroyed);
}
}
void BufferBase::DestroyImpl() {
void BufferBase::DestroyImpl() {
if (mState == BufferState::Mapped) {
UnmapInternal(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback);
} else if (mState == BufferState::MappedAtCreation) {
@ -197,39 +186,39 @@ namespace dawn::native {
}
}
mState = BufferState::Destroyed;
}
}
// static
BufferBase* BufferBase::MakeError(DeviceBase* device, const BufferDescriptor* descriptor) {
// static
BufferBase* BufferBase::MakeError(DeviceBase* device, const BufferDescriptor* descriptor) {
return new ErrorBuffer(device, descriptor);
}
}
ObjectType BufferBase::GetType() const {
ObjectType BufferBase::GetType() const {
return ObjectType::Buffer;
}
}
uint64_t BufferBase::GetSize() const {
uint64_t BufferBase::GetSize() const {
ASSERT(!IsError());
return mSize;
}
}
uint64_t BufferBase::GetAllocatedSize() const {
uint64_t BufferBase::GetAllocatedSize() const {
ASSERT(!IsError());
// The backend must initialize this value.
ASSERT(mAllocatedSize != 0);
return mAllocatedSize;
}
}
wgpu::BufferUsage BufferBase::GetUsage() const {
wgpu::BufferUsage BufferBase::GetUsage() const {
ASSERT(!IsError());
return mUsage;
}
}
wgpu::BufferUsage BufferBase::GetUsageExternalOnly() const {
wgpu::BufferUsage BufferBase::GetUsageExternalOnly() const {
return GetUsage() & ~kAllInternalBufferUsages;
}
}
MaybeError BufferBase::MapAtCreation() {
MaybeError BufferBase::MapAtCreation() {
DAWN_TRY(MapAtCreationInternal());
void* ptr;
@ -258,9 +247,9 @@ namespace dawn::native {
}
return {};
}
}
MaybeError BufferBase::MapAtCreationInternal() {
MaybeError BufferBase::MapAtCreationInternal() {
ASSERT(!IsError());
mMapOffset = 0;
mMapSize = mSize;
@ -279,8 +268,7 @@ namespace dawn::native {
// is initialized.
// TODO(crbug.com/dawn/828): Suballocate and reuse memory from a larger staging
// buffer so we don't create many small buffers.
DAWN_TRY_ASSIGN(mStagingBuffer,
GetDevice()->CreateStagingBuffer(GetAllocatedSize()));
DAWN_TRY_ASSIGN(mStagingBuffer, GetDevice()->CreateStagingBuffer(GetAllocatedSize()));
}
}
@ -289,9 +277,9 @@ namespace dawn::native {
// staging buffer, we will have issues when we try to destroy the buffer.
mState = BufferState::MappedAtCreation;
return {};
}
}
MaybeError BufferBase::ValidateCanUseOnQueueNow() const {
MaybeError BufferBase::ValidateCanUseOnQueueNow() const {
ASSERT(!IsError());
switch (mState) {
@ -304,9 +292,9 @@ namespace dawn::native {
return {};
}
UNREACHABLE();
}
}
void BufferBase::CallMapCallback(MapRequestID mapID, WGPUBufferMapAsyncStatus status) {
void BufferBase::CallMapCallback(MapRequestID mapID, WGPUBufferMapAsyncStatus status) {
ASSERT(!IsError());
if (mMapCallback != nullptr && mapID == mLastMapID) {
// Tag the callback as fired before firing it, otherwise it could fire a second time if
@ -320,9 +308,9 @@ namespace dawn::native {
callback(status, mMapUserdata);
}
}
}
}
void BufferBase::APIMapAsync(wgpu::MapMode mode,
void BufferBase::APIMapAsync(wgpu::MapMode mode,
size_t offset,
size_t size,
WGPUBufferMapCallback callback,
@ -357,23 +345,21 @@ namespace dawn::native {
CallMapCallback(mLastMapID, WGPUBufferMapAsyncStatus_DeviceLost);
return;
}
std::unique_ptr<MapRequestTask> request =
std::make_unique<MapRequestTask>(this, mLastMapID);
std::unique_ptr<MapRequestTask> request = std::make_unique<MapRequestTask>(this, mLastMapID);
TRACE_EVENT1(GetDevice()->GetPlatform(), General, "Buffer::APIMapAsync", "serial",
uint64_t(GetDevice()->GetPendingCommandSerial()));
GetDevice()->GetQueue()->TrackTask(std::move(request),
GetDevice()->GetPendingCommandSerial());
}
GetDevice()->GetQueue()->TrackTask(std::move(request), GetDevice()->GetPendingCommandSerial());
}
void* BufferBase::APIGetMappedRange(size_t offset, size_t size) {
void* BufferBase::APIGetMappedRange(size_t offset, size_t size) {
return GetMappedRange(offset, size, true);
}
}
const void* BufferBase::APIGetConstMappedRange(size_t offset, size_t size) {
const void* BufferBase::APIGetConstMappedRange(size_t offset, size_t size) {
return GetMappedRange(offset, size, false);
}
}
void* BufferBase::GetMappedRange(size_t offset, size_t size, bool writable) {
void* BufferBase::GetMappedRange(size_t offset, size_t size, bool writable) {
if (!CanGetMappedRange(writable, offset, size)) {
return nullptr;
}
@ -386,13 +372,13 @@ namespace dawn::native {
}
uint8_t* start = static_cast<uint8_t*>(GetMappedPointerImpl());
return start == nullptr ? nullptr : start + offset;
}
}
void BufferBase::APIDestroy() {
void BufferBase::APIDestroy() {
Destroy();
}
}
MaybeError BufferBase::CopyFromStagingBuffer() {
MaybeError BufferBase::CopyFromStagingBuffer() {
ASSERT(mStagingBuffer);
if (mSize == 0) {
// Staging buffer is not created if zero size.
@ -400,27 +386,27 @@ namespace dawn::native {
return {};
}
DAWN_TRY(GetDevice()->CopyFromStagingToBuffer(mStagingBuffer.get(), 0, this, 0,
GetAllocatedSize()));
DAWN_TRY(
GetDevice()->CopyFromStagingToBuffer(mStagingBuffer.get(), 0, this, 0, GetAllocatedSize()));
DynamicUploader* uploader = GetDevice()->GetDynamicUploader();
uploader->ReleaseStagingBuffer(std::move(mStagingBuffer));
return {};
}
}
void BufferBase::APIUnmap() {
void BufferBase::APIUnmap() {
if (GetDevice()->ConsumedError(ValidateUnmap(), "calling %s.Unmap().", this)) {
return;
}
Unmap();
}
}
void BufferBase::Unmap() {
void BufferBase::Unmap() {
UnmapInternal(WGPUBufferMapAsyncStatus_UnmappedBeforeCallback);
}
}
void BufferBase::UnmapInternal(WGPUBufferMapAsyncStatus callbackStatus) {
void BufferBase::UnmapInternal(WGPUBufferMapAsyncStatus callbackStatus) {
if (mState == BufferState::Mapped) {
// A map request can only be called once, so this will fire only if the request wasn't
// completed before the Unmap.
@ -440,9 +426,9 @@ namespace dawn::native {
}
mState = BufferState::Unmapped;
}
}
MaybeError BufferBase::ValidateMapAsync(wgpu::MapMode mode,
MaybeError BufferBase::ValidateMapAsync(wgpu::MapMode mode,
size_t offset,
size_t size,
WGPUBufferMapAsyncStatus* status) const {
@ -453,8 +439,7 @@ namespace dawn::native {
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_INVALID_IF(uint64_t(offset) > mSize,
"Mapping offset (%u) is larger than the size (%u) of %s.", offset, mSize,
this);
"Mapping offset (%u) is larger than the size (%u) of %s.", offset, mSize, this);
DAWN_INVALID_IF(offset % 8 != 0, "Offset (%u) must be a multiple of 8.", offset);
DAWN_INVALID_IF(size % 4 != 0, "Size (%u) must be a multiple of 4.", size);
@ -491,9 +476,9 @@ namespace dawn::native {
*status = WGPUBufferMapAsyncStatus_Success;
return {};
}
}
bool BufferBase::CanGetMappedRange(bool writable, size_t offset, size_t size) const {
bool BufferBase::CanGetMappedRange(bool writable, size_t offset, size_t size) const {
if (offset % 8 != 0 || offset < mMapOffset || offset > mSize) {
return false;
}
@ -523,8 +508,7 @@ namespace dawn::native {
return true;
case BufferState::Mapped:
ASSERT(bool{mMapMode & wgpu::MapMode::Read} ^
bool{mMapMode & wgpu::MapMode::Write});
ASSERT(bool{mMapMode & wgpu::MapMode::Read} ^ bool{mMapMode & wgpu::MapMode::Write});
return !writable || (mMapMode & wgpu::MapMode::Write);
case BufferState::Unmapped:
@ -532,9 +516,9 @@ namespace dawn::native {
return false;
}
UNREACHABLE();
}
}
MaybeError BufferBase::ValidateUnmap() const {
MaybeError BufferBase::ValidateUnmap() const {
DAWN_TRY(GetDevice()->ValidateIsAlive());
switch (mState) {
@ -549,27 +533,26 @@ namespace dawn::native {
return DAWN_FORMAT_VALIDATION_ERROR("%s is destroyed.", this);
}
UNREACHABLE();
}
}
void BufferBase::OnMapRequestCompleted(MapRequestID mapID, WGPUBufferMapAsyncStatus status) {
void BufferBase::OnMapRequestCompleted(MapRequestID mapID, WGPUBufferMapAsyncStatus status) {
CallMapCallback(mapID, status);
}
}
bool BufferBase::NeedsInitialization() const {
return !mIsDataInitialized &&
GetDevice()->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse);
}
bool BufferBase::NeedsInitialization() const {
return !mIsDataInitialized && GetDevice()->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse);
}
bool BufferBase::IsDataInitialized() const {
bool BufferBase::IsDataInitialized() const {
return mIsDataInitialized;
}
}
void BufferBase::SetIsDataInitialized() {
void BufferBase::SetIsDataInitialized() {
mIsDataInitialized = true;
}
}
bool BufferBase::IsFullBufferRange(uint64_t offset, uint64_t size) const {
bool BufferBase::IsFullBufferRange(uint64_t offset, uint64_t size) const {
return offset == 0 && size == GetSize();
}
}
} // namespace dawn::native

View File

@ -26,21 +26,21 @@
namespace dawn::native {
struct CopyTextureToBufferCmd;
struct CopyTextureToBufferCmd;
enum class MapType : uint32_t;
enum class MapType : uint32_t;
MaybeError ValidateBufferDescriptor(DeviceBase* device, const BufferDescriptor* descriptor);
MaybeError ValidateBufferDescriptor(DeviceBase* device, const BufferDescriptor* descriptor);
static constexpr wgpu::BufferUsage kReadOnlyBufferUsages =
static constexpr wgpu::BufferUsage kReadOnlyBufferUsages =
wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::Index |
wgpu::BufferUsage::Vertex | wgpu::BufferUsage::Uniform | kReadOnlyStorageBuffer |
wgpu::BufferUsage::Indirect;
static constexpr wgpu::BufferUsage kMappableBufferUsages =
static constexpr wgpu::BufferUsage kMappableBufferUsages =
wgpu::BufferUsage::MapRead | wgpu::BufferUsage::MapWrite;
class BufferBase : public ApiObjectBase {
class BufferBase : public ApiObjectBase {
public:
enum class BufferState {
Unmapped,
@ -88,9 +88,7 @@ namespace dawn::native {
void APIDestroy();
protected:
BufferBase(DeviceBase* device,
const BufferDescriptor* descriptor,
ObjectBase::ErrorTag tag);
BufferBase(DeviceBase* device, const BufferDescriptor* descriptor, ObjectBase::ErrorTag tag);
// Constructor used only for mocking and testing.
BufferBase(DeviceBase* device, BufferState state);
@ -133,7 +131,7 @@ namespace dawn::native {
wgpu::MapMode mMapMode = wgpu::MapMode::None;
size_t mMapOffset = 0;
size_t mMapSize = 0;
};
};
} // namespace dawn::native

View File

@ -18,26 +18,26 @@
namespace dawn::native {
std::ostream& operator<<(std::ostream& os, const CacheKey& key) {
std::ostream& operator<<(std::ostream& os, const CacheKey& key) {
os << std::hex;
for (const int b : key) {
os << std::setfill('0') << std::setw(2) << b << " ";
}
os << std::dec;
return os;
}
}
template <>
void CacheKeySerializer<std::string>::Serialize(CacheKey* key, const std::string& t) {
template <>
void CacheKeySerializer<std::string>::Serialize(CacheKey* key, const std::string& t) {
key->Record(static_cast<size_t>(t.length()));
key->insert(key->end(), t.begin(), t.end());
}
}
template <>
void CacheKeySerializer<CacheKey>::Serialize(CacheKey* key, const CacheKey& t) {
template <>
void CacheKeySerializer<CacheKey>::Serialize(CacheKey* key, const CacheKey& t) {
// For nested cache keys, we do not record the length, and just copy the key so that it
// appears we just flatten the keys into a single key.
key->insert(key->end(), t.begin(), t.end());
}
}
} // namespace dawn::native

View File

@ -27,22 +27,22 @@
namespace dawn::native {
// Forward declare classes because of co-dependency.
class CacheKey;
class CachedObject;
// Forward declare classes because of co-dependency.
class CacheKey;
class CachedObject;
// Stream operator for CacheKey for debugging.
std::ostream& operator<<(std::ostream& os, const CacheKey& key);
// Stream operator for CacheKey for debugging.
std::ostream& operator<<(std::ostream& os, const CacheKey& key);
// Overridable serializer struct that should be implemented for cache key serializable
// types/classes.
template <typename T, typename SFINAE = void>
class CacheKeySerializer {
// Overridable serializer struct that should be implemented for cache key serializable
// types/classes.
template <typename T, typename SFINAE = void>
class CacheKeySerializer {
public:
static void Serialize(CacheKey* key, const T& t);
};
};
class CacheKey : public std::vector<uint8_t> {
class CacheKey : public std::vector<uint8_t> {
public:
using std::vector<uint8_t>::vector;
@ -87,30 +87,28 @@ namespace dawn::native {
}
return *this;
}
};
};
// Specialized overload for fundamental types.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_fundamental_v<T>>> {
// Specialized overload for fundamental types.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_fundamental_v<T>>> {
public:
static void Serialize(CacheKey* key, const T t) {
const char* it = reinterpret_cast<const char*>(&t);
key->insert(key->end(), it, (it + sizeof(T)));
}
};
};
// Specialized overload for bitsets that are smaller than 64.
template <size_t N>
class CacheKeySerializer<std::bitset<N>, std::enable_if_t<(N <= 64)>> {
// Specialized overload for bitsets that are smaller than 64.
template <size_t N>
class CacheKeySerializer<std::bitset<N>, std::enable_if_t<(N <= 64)>> {
public:
static void Serialize(CacheKey* key, const std::bitset<N>& t) {
key->Record(t.to_ullong());
}
};
static void Serialize(CacheKey* key, const std::bitset<N>& t) { key->Record(t.to_ullong()); }
};
// Specialized overload for bitsets since using the built-in to_ullong have a size limit.
template <size_t N>
class CacheKeySerializer<std::bitset<N>, std::enable_if_t<(N > 64)>> {
// Specialized overload for bitsets since using the built-in to_ullong have a size limit.
template <size_t N>
class CacheKeySerializer<std::bitset<N>, std::enable_if_t<(N > 64)>> {
public:
static void Serialize(CacheKey* key, const std::bitset<N>& t) {
// Serializes the bitset into series of uint8_t, along with recording the size.
@ -132,32 +130,32 @@ namespace dawn::native {
key->Record(value);
}
}
};
};
// Specialized overload for enums.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_enum_v<T>>> {
// Specialized overload for enums.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_enum_v<T>>> {
public:
static void Serialize(CacheKey* key, const T t) {
CacheKeySerializer<std::underlying_type_t<T>>::Serialize(
key, static_cast<std::underlying_type_t<T>>(t));
}
};
};
// Specialized overload for TypedInteger.
template <typename Tag, typename Integer>
class CacheKeySerializer<::detail::TypedIntegerImpl<Tag, Integer>> {
// Specialized overload for TypedInteger.
template <typename Tag, typename Integer>
class CacheKeySerializer<::detail::TypedIntegerImpl<Tag, Integer>> {
public:
static void Serialize(CacheKey* key, const ::detail::TypedIntegerImpl<Tag, Integer> t) {
CacheKeySerializer<Integer>::Serialize(key, static_cast<Integer>(t));
}
};
};
// Specialized overload for pointers. Since we are serializing for a cache key, we always
// serialize via value, not by pointer. To handle nullptr scenarios, we always serialize whether
// the pointer was nullptr followed by the contents if applicable.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_pointer_v<T>>> {
// Specialized overload for pointers. Since we are serializing for a cache key, we always
// serialize via value, not by pointer. To handle nullptr scenarios, we always serialize whether
// the pointer was nullptr followed by the contents if applicable.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_pointer_v<T>>> {
public:
static void Serialize(CacheKey* key, const T t) {
key->Record(t == nullptr);
@ -165,11 +163,11 @@ namespace dawn::native {
CacheKeySerializer<std::remove_cv_t<std::remove_pointer_t<T>>>::Serialize(key, *t);
}
}
};
};
// Specialized overload for fixed arrays of primitives.
template <typename T, size_t N>
class CacheKeySerializer<T[N], std::enable_if_t<std::is_fundamental_v<T>>> {
// Specialized overload for fixed arrays of primitives.
template <typename T, size_t N>
class CacheKeySerializer<T[N], std::enable_if_t<std::is_fundamental_v<T>>> {
public:
static void Serialize(CacheKey* key, const T (&t)[N]) {
static_assert(N > 0);
@ -177,11 +175,11 @@ namespace dawn::native {
const char* it = reinterpret_cast<const char*>(t);
key->insert(key->end(), it, it + sizeof(t));
}
};
};
// Specialized overload for fixed arrays of non-primitives.
template <typename T, size_t N>
class CacheKeySerializer<T[N], std::enable_if_t<!std::is_fundamental_v<T>>> {
// Specialized overload for fixed arrays of non-primitives.
template <typename T, size_t N>
class CacheKeySerializer<T[N], std::enable_if_t<!std::is_fundamental_v<T>>> {
public:
static void Serialize(CacheKey* key, const T (&t)[N]) {
static_assert(N > 0);
@ -190,16 +188,14 @@ namespace dawn::native {
key->Record(t[i]);
}
}
};
};
// Specialized overload for CachedObjects.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_base_of_v<CachedObject, T>>> {
// Specialized overload for CachedObjects.
template <typename T>
class CacheKeySerializer<T, std::enable_if_t<std::is_base_of_v<CachedObject, T>>> {
public:
static void Serialize(CacheKey* key, const T& t) {
key->Record(t.GetCacheKey());
}
};
static void Serialize(CacheKey* key, const T& t) { key->Record(t.GetCacheKey()); }
};
} // namespace dawn::native

View File

@ -19,35 +19,35 @@
namespace dawn::native {
bool CachedObject::IsCachedReference() const {
bool CachedObject::IsCachedReference() const {
return mIsCachedReference;
}
}
void CachedObject::SetIsCachedReference() {
void CachedObject::SetIsCachedReference() {
mIsCachedReference = true;
}
}
size_t CachedObject::HashFunc::operator()(const CachedObject* obj) const {
size_t CachedObject::HashFunc::operator()(const CachedObject* obj) const {
return obj->GetContentHash();
}
}
size_t CachedObject::GetContentHash() const {
size_t CachedObject::GetContentHash() const {
ASSERT(mIsContentHashInitialized);
return mContentHash;
}
}
void CachedObject::SetContentHash(size_t contentHash) {
void CachedObject::SetContentHash(size_t contentHash) {
ASSERT(!mIsContentHashInitialized);
mContentHash = contentHash;
mIsContentHashInitialized = true;
}
}
const CacheKey& CachedObject::GetCacheKey() const {
const CacheKey& CachedObject::GetCacheKey() const {
return mCacheKey;
}
}
CacheKey* CachedObject::GetCacheKey() {
CacheKey* CachedObject::GetCacheKey() {
return &mCacheKey;
}
}
} // namespace dawn::native

View File

@ -23,11 +23,11 @@
namespace dawn::native {
// Some objects are cached so that instead of creating new duplicate objects,
// we increase the refcount of an existing object.
// When an object is successfully created, the device should call
// SetIsCachedReference() and insert the object into the cache.
class CachedObject {
// Some objects are cached so that instead of creating new duplicate objects,
// we increase the refcount of an existing object.
// When an object is successfully created, the device should call
// SetIsCachedReference() and insert the object into the cache.
class CachedObject {
public:
bool IsCachedReference() const;
@ -58,7 +58,7 @@ namespace dawn::native {
size_t mContentHash = 0;
bool mIsContentHashInitialized = false;
CacheKey mCacheKey;
};
};
} // namespace dawn::native

View File

@ -18,22 +18,22 @@
namespace dawn::native {
bool CallbackTaskManager::IsEmpty() {
bool CallbackTaskManager::IsEmpty() {
std::lock_guard<std::mutex> lock(mCallbackTaskQueueMutex);
return mCallbackTaskQueue.empty();
}
}
std::vector<std::unique_ptr<CallbackTask>> CallbackTaskManager::AcquireCallbackTasks() {
std::vector<std::unique_ptr<CallbackTask>> CallbackTaskManager::AcquireCallbackTasks() {
std::lock_guard<std::mutex> lock(mCallbackTaskQueueMutex);
std::vector<std::unique_ptr<CallbackTask>> allTasks;
allTasks.swap(mCallbackTaskQueue);
return allTasks;
}
}
void CallbackTaskManager::AddCallbackTask(std::unique_ptr<CallbackTask> callbackTask) {
void CallbackTaskManager::AddCallbackTask(std::unique_ptr<CallbackTask> callbackTask) {
std::lock_guard<std::mutex> lock(mCallbackTaskQueueMutex);
mCallbackTaskQueue.push_back(std::move(callbackTask));
}
}
} // namespace dawn::native

View File

@ -21,15 +21,15 @@
namespace dawn::native {
struct CallbackTask {
struct CallbackTask {
public:
virtual ~CallbackTask() = default;
virtual void Finish() = 0;
virtual void HandleShutDown() = 0;
virtual void HandleDeviceLoss() = 0;
};
};
class CallbackTaskManager {
class CallbackTaskManager {
public:
void AddCallbackTask(std::unique_ptr<CallbackTask> callbackTask);
bool IsEmpty();
@ -38,7 +38,7 @@ namespace dawn::native {
private:
std::mutex mCallbackTaskQueueMutex;
std::vector<std::unique_ptr<CallbackTask>> mCallbackTaskQueue;
};
};
} // namespace dawn::native

View File

@ -24,25 +24,25 @@
namespace dawn::native {
// TODO(cwallez@chromium.org): figure out a way to have more type safety for the iterator
// TODO(cwallez@chromium.org): figure out a way to have more type safety for the iterator
CommandIterator::CommandIterator() {
CommandIterator::CommandIterator() {
Reset();
}
}
CommandIterator::~CommandIterator() {
CommandIterator::~CommandIterator() {
ASSERT(IsEmpty());
}
}
CommandIterator::CommandIterator(CommandIterator&& other) {
CommandIterator::CommandIterator(CommandIterator&& other) {
if (!other.IsEmpty()) {
mBlocks = std::move(other.mBlocks);
other.Reset();
}
Reset();
}
}
CommandIterator& CommandIterator::operator=(CommandIterator&& other) {
CommandIterator& CommandIterator::operator=(CommandIterator&& other) {
ASSERT(IsEmpty());
if (!other.IsEmpty()) {
mBlocks = std::move(other.mBlocks);
@ -50,14 +50,13 @@ namespace dawn::native {
}
Reset();
return *this;
}
}
CommandIterator::CommandIterator(CommandAllocator allocator)
: mBlocks(allocator.AcquireBlocks()) {
CommandIterator::CommandIterator(CommandAllocator allocator) : mBlocks(allocator.AcquireBlocks()) {
Reset();
}
}
void CommandIterator::AcquireCommandBlocks(std::vector<CommandAllocator> allocators) {
void CommandIterator::AcquireCommandBlocks(std::vector<CommandAllocator> allocators) {
ASSERT(IsEmpty());
mBlocks.clear();
for (CommandAllocator& allocator : allocators) {
@ -70,9 +69,9 @@ namespace dawn::native {
}
}
Reset();
}
}
bool CommandIterator::NextCommandIdInNewBlock(uint32_t* commandId) {
bool CommandIterator::NextCommandIdInNewBlock(uint32_t* commandId) {
mCurrentBlock++;
if (mCurrentBlock >= mBlocks.size()) {
Reset();
@ -81,9 +80,9 @@ namespace dawn::native {
}
mCurrentPtr = AlignPtr(mBlocks[mCurrentBlock].block, alignof(uint32_t));
return NextCommandId(commandId);
}
}
void CommandIterator::Reset() {
void CommandIterator::Reset() {
mCurrentBlock = 0;
if (mBlocks.empty()) {
@ -96,9 +95,9 @@ namespace dawn::native {
} else {
mCurrentPtr = AlignPtr(mBlocks[0].block, alignof(uint32_t));
}
}
}
void CommandIterator::MakeEmptyAsDataWasDestroyed() {
void CommandIterator::MakeEmptyAsDataWasDestroyed() {
if (IsEmpty()) {
return;
}
@ -109,31 +108,31 @@ namespace dawn::native {
mBlocks.clear();
Reset();
ASSERT(IsEmpty());
}
}
bool CommandIterator::IsEmpty() const {
bool CommandIterator::IsEmpty() const {
return mBlocks[0].block == reinterpret_cast<const uint8_t*>(&mEndOfBlock);
}
}
// Potential TODO(crbug.com/dawn/835):
// - Host the size and pointer to next block in the block itself to avoid having an allocation
// in the vector
// - Assume T's alignof is, say 64bits, static assert it, and make commandAlignment a constant
// in Allocate
// - Be able to optimize allocation to one block, for command buffers expected to live long to
// avoid cache misses
// - Better block allocation, maybe have Dawn API to say command buffer is going to have size
// close to another
// Potential TODO(crbug.com/dawn/835):
// - Host the size and pointer to next block in the block itself to avoid having an allocation
// in the vector
// - Assume T's alignof is, say 64bits, static assert it, and make commandAlignment a constant
// in Allocate
// - Be able to optimize allocation to one block, for command buffers expected to live long to
// avoid cache misses
// - Better block allocation, maybe have Dawn API to say command buffer is going to have size
// close to another
CommandAllocator::CommandAllocator() {
CommandAllocator::CommandAllocator() {
ResetPointers();
}
}
CommandAllocator::~CommandAllocator() {
CommandAllocator::~CommandAllocator() {
Reset();
}
}
CommandAllocator::CommandAllocator(CommandAllocator&& other)
CommandAllocator::CommandAllocator(CommandAllocator&& other)
: mBlocks(std::move(other.mBlocks)), mLastAllocationSize(other.mLastAllocationSize) {
other.mBlocks.clear();
if (!other.IsEmpty()) {
@ -143,9 +142,9 @@ namespace dawn::native {
ResetPointers();
}
other.Reset();
}
}
CommandAllocator& CommandAllocator::operator=(CommandAllocator&& other) {
CommandAllocator& CommandAllocator::operator=(CommandAllocator&& other) {
Reset();
if (!other.IsEmpty()) {
std::swap(mBlocks, other.mBlocks);
@ -155,22 +154,22 @@ namespace dawn::native {
}
other.Reset();
return *this;
}
}
void CommandAllocator::Reset() {
void CommandAllocator::Reset() {
for (BlockDef& block : mBlocks) {
free(block.block);
}
mBlocks.clear();
mLastAllocationSize = kDefaultBaseAllocationSize;
ResetPointers();
}
}
bool CommandAllocator::IsEmpty() const {
bool CommandAllocator::IsEmpty() const {
return mCurrentPtr == reinterpret_cast<const uint8_t*>(&mPlaceholderEnum[0]);
}
}
CommandBlocks&& CommandAllocator::AcquireBlocks() {
CommandBlocks&& CommandAllocator::AcquireBlocks() {
ASSERT(mCurrentPtr != nullptr && mEndPtr != nullptr);
ASSERT(IsPtrAligned(mCurrentPtr, alignof(uint32_t)));
ASSERT(mCurrentPtr + sizeof(uint32_t) <= mEndPtr);
@ -179,9 +178,9 @@ namespace dawn::native {
mCurrentPtr = nullptr;
mEndPtr = nullptr;
return std::move(mBlocks);
}
}
uint8_t* CommandAllocator::AllocateInNewBlock(uint32_t commandId,
uint8_t* CommandAllocator::AllocateInNewBlock(uint32_t commandId,
size_t commandSize,
size_t commandAlignment) {
// When there is not enough space, we signal the kEndOfBlock, so that the iterator knows
@ -202,12 +201,11 @@ namespace dawn::native {
return nullptr;
}
return Allocate(commandId, commandSize, commandAlignment);
}
}
bool CommandAllocator::GetNewBlock(size_t minimumSize) {
bool CommandAllocator::GetNewBlock(size_t minimumSize) {
// Allocate blocks doubling sizes each time, to a maximum of 16k (or at least minimumSize).
mLastAllocationSize =
std::max(minimumSize, std::min(mLastAllocationSize * 2, size_t(16384)));
mLastAllocationSize = std::max(minimumSize, std::min(mLastAllocationSize * 2, size_t(16384)));
uint8_t* block = static_cast<uint8_t*>(malloc(mLastAllocationSize));
if (DAWN_UNLIKELY(block == nullptr)) {
@ -218,11 +216,11 @@ namespace dawn::native {
mCurrentPtr = AlignPtr(block, alignof(uint32_t));
mEndPtr = block + mLastAllocationSize;
return true;
}
}
void CommandAllocator::ResetPointers() {
void CommandAllocator::ResetPointers() {
mCurrentPtr = reinterpret_cast<uint8_t*>(&mPlaceholderEnum[0]);
mEndPtr = reinterpret_cast<uint8_t*>(&mPlaceholderEnum[1]);
}
}
} // namespace dawn::native

View File

@ -26,49 +26,49 @@
namespace dawn::native {
// Allocation for command buffers should be fast. To avoid doing an allocation per command
// or to avoid copying commands when reallocing, we use a linear allocator in a growing set
// of large memory blocks. We also use this to have the format to be (u32 commandId, command),
// so that iteration over the commands is easy.
// Allocation for command buffers should be fast. To avoid doing an allocation per command
// or to avoid copying commands when reallocing, we use a linear allocator in a growing set
// of large memory blocks. We also use this to have the format to be (u32 commandId, command),
// so that iteration over the commands is easy.
// Usage of the allocator and iterator:
// CommandAllocator allocator;
// DrawCommand* cmd = allocator.Allocate<DrawCommand>(CommandType::Draw);
// // Fill command
// // Repeat allocation and filling commands
//
// CommandIterator commands(allocator);
// CommandType type;
// while(commands.NextCommandId(&type)) {
// switch(type) {
// case CommandType::Draw:
// DrawCommand* draw = commands.NextCommand<DrawCommand>();
// // Do the draw
// break;
// // other cases
// }
// }
// Usage of the allocator and iterator:
// CommandAllocator allocator;
// DrawCommand* cmd = allocator.Allocate<DrawCommand>(CommandType::Draw);
// // Fill command
// // Repeat allocation and filling commands
//
// CommandIterator commands(allocator);
// CommandType type;
// while(commands.NextCommandId(&type)) {
// switch(type) {
// case CommandType::Draw:
// DrawCommand* draw = commands.NextCommand<DrawCommand>();
// // Do the draw
// break;
// // other cases
// }
// }
// Note that you need to extract the commands from the CommandAllocator before destroying it
// and must tell the CommandIterator when the allocated commands have been processed for
// deletion.
// Note that you need to extract the commands from the CommandAllocator before destroying it
// and must tell the CommandIterator when the allocated commands have been processed for
// deletion.
// These are the lists of blocks, should not be used directly, only through CommandAllocator
// and CommandIterator
struct BlockDef {
// These are the lists of blocks, should not be used directly, only through CommandAllocator
// and CommandIterator
struct BlockDef {
size_t size;
uint8_t* block;
};
using CommandBlocks = std::vector<BlockDef>;
};
using CommandBlocks = std::vector<BlockDef>;
namespace detail {
constexpr uint32_t kEndOfBlock = std::numeric_limits<uint32_t>::max();
constexpr uint32_t kAdditionalData = std::numeric_limits<uint32_t>::max() - 1;
} // namespace detail
namespace detail {
constexpr uint32_t kEndOfBlock = std::numeric_limits<uint32_t>::max();
constexpr uint32_t kAdditionalData = std::numeric_limits<uint32_t>::max() - 1;
} // namespace detail
class CommandAllocator;
class CommandAllocator;
class CommandIterator : public NonCopyable {
class CommandIterator : public NonCopyable {
public:
CommandIterator();
~CommandIterator();
@ -145,9 +145,9 @@ namespace dawn::native {
size_t mCurrentBlock = 0;
// Used to avoid a special case for empty iterators.
uint32_t mEndOfBlock = detail::kEndOfBlock;
};
};
class CommandAllocator : public NonCopyable {
class CommandAllocator : public NonCopyable {
public:
CommandAllocator();
~CommandAllocator();
@ -166,8 +166,8 @@ namespace dawn::native {
static_assert(sizeof(E) == sizeof(uint32_t));
static_assert(alignof(E) == alignof(uint32_t));
static_assert(alignof(T) <= kMaxSupportedAlignment);
T* result = reinterpret_cast<T*>(
Allocate(static_cast<uint32_t>(commandId), sizeof(T), alignof(T)));
T* result =
reinterpret_cast<T*>(Allocate(static_cast<uint32_t>(commandId), sizeof(T), alignof(T)));
if (!result) {
return nullptr;
}
@ -242,9 +242,7 @@ namespace dawn::native {
return AllocateInNewBlock(commandId, commandSize, commandAlignment);
}
uint8_t* AllocateInNewBlock(uint32_t commandId,
size_t commandSize,
size_t commandAlignment);
uint8_t* AllocateInNewBlock(uint32_t commandId, size_t commandSize, size_t commandAlignment);
DAWN_FORCE_INLINE uint8_t* AllocateData(size_t commandSize, size_t commandAlignment) {
return Allocate(detail::kAdditionalData, commandSize, commandAlignment);
@ -267,7 +265,7 @@ namespace dawn::native {
// be written. Nullptr iff the blocks were moved out.
uint8_t* mCurrentPtr = nullptr;
uint8_t* mEndPtr = nullptr;
};
};
} // namespace dawn::native

View File

@ -25,53 +25,52 @@
namespace dawn::native {
CommandBufferBase::CommandBufferBase(CommandEncoder* encoder,
CommandBufferBase::CommandBufferBase(CommandEncoder* encoder,
const CommandBufferDescriptor* descriptor)
: ApiObjectBase(encoder->GetDevice(), descriptor->label),
mCommands(encoder->AcquireCommands()),
mResourceUsages(encoder->AcquireResourceUsages()) {
TrackInDevice();
}
}
CommandBufferBase::CommandBufferBase(DeviceBase* device)
CommandBufferBase::CommandBufferBase(DeviceBase* device)
: ApiObjectBase(device, kLabelNotImplemented) {
TrackInDevice();
}
}
CommandBufferBase::CommandBufferBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag) {
}
CommandBufferBase::CommandBufferBase(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag) {}
// static
CommandBufferBase* CommandBufferBase::MakeError(DeviceBase* device) {
// static
CommandBufferBase* CommandBufferBase::MakeError(DeviceBase* device) {
return new CommandBufferBase(device, ObjectBase::kError);
}
}
ObjectType CommandBufferBase::GetType() const {
ObjectType CommandBufferBase::GetType() const {
return ObjectType::CommandBuffer;
}
}
MaybeError CommandBufferBase::ValidateCanUseInSubmitNow() const {
MaybeError CommandBufferBase::ValidateCanUseInSubmitNow() const {
ASSERT(!IsError());
DAWN_INVALID_IF(!IsAlive(), "%s cannot be submitted more than once.", this);
return {};
}
}
void CommandBufferBase::DestroyImpl() {
void CommandBufferBase::DestroyImpl() {
FreeCommands(&mCommands);
mResourceUsages = {};
}
}
const CommandBufferResourceUsage& CommandBufferBase::GetResourceUsages() const {
const CommandBufferResourceUsage& CommandBufferBase::GetResourceUsages() const {
return mResourceUsages;
}
}
CommandIterator* CommandBufferBase::GetCommandIteratorForTesting() {
CommandIterator* CommandBufferBase::GetCommandIteratorForTesting() {
return &mCommands;
}
}
bool IsCompleteSubresourceCopiedTo(const TextureBase* texture,
bool IsCompleteSubresourceCopiedTo(const TextureBase* texture,
const Extent3D copySize,
const uint32_t mipLevel) {
Extent3D extent = texture->GetMipLevelPhysicalSize(mipLevel);
@ -87,26 +86,24 @@ namespace dawn::native {
}
UNREACHABLE();
}
}
SubresourceRange GetSubresourcesAffectedByCopy(const TextureCopy& copy,
const Extent3D& copySize) {
SubresourceRange GetSubresourcesAffectedByCopy(const TextureCopy& copy, const Extent3D& copySize) {
switch (copy.texture->GetDimension()) {
case wgpu::TextureDimension::e1D:
ASSERT(copy.origin.z == 0 && copySize.depthOrArrayLayers == 1);
ASSERT(copy.mipLevel == 0);
return {copy.aspect, {0, 1}, {0, 1}};
case wgpu::TextureDimension::e2D:
return {
copy.aspect, {copy.origin.z, copySize.depthOrArrayLayers}, {copy.mipLevel, 1}};
return {copy.aspect, {copy.origin.z, copySize.depthOrArrayLayers}, {copy.mipLevel, 1}};
case wgpu::TextureDimension::e3D:
return {copy.aspect, {0, 1}, {copy.mipLevel, 1}};
}
UNREACHABLE();
}
}
void LazyClearRenderPassAttachments(BeginRenderPassCmd* renderPass) {
void LazyClearRenderPassAttachments(BeginRenderPassCmd* renderPass) {
for (ColorAttachmentIndex i :
IterateBitSet(renderPass->attachmentState->GetColorAttachmentsMask())) {
auto& attachmentInfo = renderPass->colorAttachments[i];
@ -183,9 +180,9 @@ namespace dawn::native {
view->GetTexture()->SetIsSubresourceContentInitialized(
attachmentInfo.stencilStoreOp == wgpu::StoreOp::Store, stencilRange);
}
}
}
bool IsFullBufferOverwrittenInTextureToBufferCopy(const CopyTextureToBufferCmd* copy) {
bool IsFullBufferOverwrittenInTextureToBufferCopy(const CopyTextureToBufferCmd* copy) {
ASSERT(copy != nullptr);
if (copy->destination.offset > 0) {
@ -194,8 +191,7 @@ namespace dawn::native {
}
const TextureBase* texture = copy->source.texture.Get();
const TexelBlockInfo& blockInfo =
texture->GetFormat().GetAspectInfo(copy->source.aspect).block;
const TexelBlockInfo& blockInfo = texture->GetFormat().GetAspectInfo(copy->source.aspect).block;
const uint64_t widthInBlocks = copy->copySize.width / blockInfo.width;
const uint64_t heightInBlocks = copy->copySize.height / blockInfo.height;
const bool multiSlice = copy->copySize.depthOrArrayLayers > 1;
@ -224,26 +220,26 @@ namespace dawn::native {
}
return true;
}
}
std::array<float, 4> ConvertToFloatColor(dawn::native::Color color) {
std::array<float, 4> ConvertToFloatColor(dawn::native::Color color) {
const std::array<float, 4> outputValue = {
static_cast<float>(color.r), static_cast<float>(color.g), static_cast<float>(color.b),
static_cast<float>(color.a)};
return outputValue;
}
std::array<int32_t, 4> ConvertToSignedIntegerColor(dawn::native::Color color) {
}
std::array<int32_t, 4> ConvertToSignedIntegerColor(dawn::native::Color color) {
const std::array<int32_t, 4> outputValue = {
static_cast<int32_t>(color.r), static_cast<int32_t>(color.g),
static_cast<int32_t>(color.b), static_cast<int32_t>(color.a)};
static_cast<int32_t>(color.r), static_cast<int32_t>(color.g), static_cast<int32_t>(color.b),
static_cast<int32_t>(color.a)};
return outputValue;
}
}
std::array<uint32_t, 4> ConvertToUnsignedIntegerColor(dawn::native::Color color) {
std::array<uint32_t, 4> ConvertToUnsignedIntegerColor(dawn::native::Color color) {
const std::array<uint32_t, 4> outputValue = {
static_cast<uint32_t>(color.r), static_cast<uint32_t>(color.g),
static_cast<uint32_t>(color.b), static_cast<uint32_t>(color.a)};
return outputValue;
}
}
} // namespace dawn::native

View File

@ -26,11 +26,11 @@
namespace dawn::native {
struct BeginRenderPassCmd;
struct CopyTextureToBufferCmd;
struct TextureCopy;
struct BeginRenderPassCmd;
struct CopyTextureToBufferCmd;
struct TextureCopy;
class CommandBufferBase : public ApiObjectBase {
class CommandBufferBase : public ApiObjectBase {
public:
CommandBufferBase(CommandEncoder* encoder, const CommandBufferDescriptor* descriptor);
@ -55,21 +55,20 @@ namespace dawn::native {
CommandBufferBase(DeviceBase* device, ObjectBase::ErrorTag tag);
CommandBufferResourceUsage mResourceUsages;
};
};
bool IsCompleteSubresourceCopiedTo(const TextureBase* texture,
bool IsCompleteSubresourceCopiedTo(const TextureBase* texture,
const Extent3D copySize,
const uint32_t mipLevel);
SubresourceRange GetSubresourcesAffectedByCopy(const TextureCopy& copy,
const Extent3D& copySize);
SubresourceRange GetSubresourcesAffectedByCopy(const TextureCopy& copy, const Extent3D& copySize);
void LazyClearRenderPassAttachments(BeginRenderPassCmd* renderPass);
void LazyClearRenderPassAttachments(BeginRenderPassCmd* renderPass);
bool IsFullBufferOverwrittenInTextureToBufferCopy(const CopyTextureToBufferCmd* copy);
bool IsFullBufferOverwrittenInTextureToBufferCopy(const CopyTextureToBufferCmd* copy);
std::array<float, 4> ConvertToFloatColor(dawn::native::Color color);
std::array<int32_t, 4> ConvertToSignedIntegerColor(dawn::native::Color color);
std::array<uint32_t, 4> ConvertToUnsignedIntegerColor(dawn::native::Color color);
std::array<float, 4> ConvertToFloatColor(dawn::native::Color color);
std::array<int32_t, 4> ConvertToSignedIntegerColor(dawn::native::Color color);
std::array<uint32_t, 4> ConvertToUnsignedIntegerColor(dawn::native::Color color);
} // namespace dawn::native

View File

@ -30,8 +30,8 @@
namespace dawn::native {
namespace {
bool BufferSizesAtLeastAsBig(const ityp::span<uint32_t, uint64_t> unverifiedBufferSizes,
namespace {
bool BufferSizesAtLeastAsBig(const ityp::span<uint32_t, uint64_t> unverifiedBufferSizes,
const std::vector<uint64_t>& pipelineMinBufferSizes) {
ASSERT(unverifiedBufferSizes.size() == pipelineMinBufferSizes.size());
@ -42,58 +42,55 @@ namespace dawn::native {
}
return true;
}
} // namespace
}
} // namespace
enum ValidationAspect {
enum ValidationAspect {
VALIDATION_ASPECT_PIPELINE,
VALIDATION_ASPECT_BIND_GROUPS,
VALIDATION_ASPECT_VERTEX_BUFFERS,
VALIDATION_ASPECT_INDEX_BUFFER,
VALIDATION_ASPECT_COUNT
};
static_assert(VALIDATION_ASPECT_COUNT == CommandBufferStateTracker::kNumAspects);
};
static_assert(VALIDATION_ASPECT_COUNT == CommandBufferStateTracker::kNumAspects);
static constexpr CommandBufferStateTracker::ValidationAspects kDispatchAspects =
static constexpr CommandBufferStateTracker::ValidationAspects kDispatchAspects =
1 << VALIDATION_ASPECT_PIPELINE | 1 << VALIDATION_ASPECT_BIND_GROUPS;
static constexpr CommandBufferStateTracker::ValidationAspects kDrawAspects =
static constexpr CommandBufferStateTracker::ValidationAspects kDrawAspects =
1 << VALIDATION_ASPECT_PIPELINE | 1 << VALIDATION_ASPECT_BIND_GROUPS |
1 << VALIDATION_ASPECT_VERTEX_BUFFERS;
static constexpr CommandBufferStateTracker::ValidationAspects kDrawIndexedAspects =
static constexpr CommandBufferStateTracker::ValidationAspects kDrawIndexedAspects =
1 << VALIDATION_ASPECT_PIPELINE | 1 << VALIDATION_ASPECT_BIND_GROUPS |
1 << VALIDATION_ASPECT_VERTEX_BUFFERS | 1 << VALIDATION_ASPECT_INDEX_BUFFER;
static constexpr CommandBufferStateTracker::ValidationAspects kLazyAspects =
static constexpr CommandBufferStateTracker::ValidationAspects kLazyAspects =
1 << VALIDATION_ASPECT_BIND_GROUPS | 1 << VALIDATION_ASPECT_VERTEX_BUFFERS |
1 << VALIDATION_ASPECT_INDEX_BUFFER;
MaybeError CommandBufferStateTracker::ValidateCanDispatch() {
MaybeError CommandBufferStateTracker::ValidateCanDispatch() {
return ValidateOperation(kDispatchAspects);
}
}
MaybeError CommandBufferStateTracker::ValidateCanDraw() {
MaybeError CommandBufferStateTracker::ValidateCanDraw() {
return ValidateOperation(kDrawAspects);
}
}
MaybeError CommandBufferStateTracker::ValidateCanDrawIndexed() {
MaybeError CommandBufferStateTracker::ValidateCanDrawIndexed() {
return ValidateOperation(kDrawIndexedAspects);
}
}
MaybeError CommandBufferStateTracker::ValidateBufferInRangeForVertexBuffer(
uint32_t vertexCount,
MaybeError CommandBufferStateTracker::ValidateBufferInRangeForVertexBuffer(uint32_t vertexCount,
uint32_t firstVertex) {
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
vertexBufferSlotsUsedAsVertexBuffer =
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>& vertexBufferSlotsUsedAsVertexBuffer =
lastRenderPipeline->GetVertexBufferSlotsUsedAsVertexBuffer();
for (auto usedSlotVertex : IterateBitSet(vertexBufferSlotsUsedAsVertexBuffer)) {
const VertexBufferInfo& vertexBuffer =
lastRenderPipeline->GetVertexBuffer(usedSlotVertex);
const VertexBufferInfo& vertexBuffer = lastRenderPipeline->GetVertexBuffer(usedSlotVertex);
uint64_t arrayStride = vertexBuffer.arrayStride;
uint64_t bufferSize = mVertexBufferSizes[usedSlotVertex];
@ -106,8 +103,7 @@ namespace dawn::native {
} else {
uint64_t strideCount = static_cast<uint64_t>(firstVertex) + vertexCount;
if (strideCount != 0u) {
uint64_t requiredSize =
(strideCount - 1u) * arrayStride + vertexBuffer.lastStride;
uint64_t requiredSize = (strideCount - 1u) * arrayStride + vertexBuffer.lastStride;
// firstVertex and vertexCount are in uint32_t,
// arrayStride must not be larger than kMaxVertexBufferArrayStride, which is
// currently 2048, and vertexBuffer.lastStride = max(attribute.offset +
@ -126,15 +122,14 @@ namespace dawn::native {
}
return {};
}
}
MaybeError CommandBufferStateTracker::ValidateBufferInRangeForInstanceBuffer(
MaybeError CommandBufferStateTracker::ValidateBufferInRangeForInstanceBuffer(
uint32_t instanceCount,
uint32_t firstInstance) {
RenderPipelineBase* lastRenderPipeline = GetRenderPipeline();
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
vertexBufferSlotsUsedAsInstanceBuffer =
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>& vertexBufferSlotsUsedAsInstanceBuffer =
lastRenderPipeline->GetVertexBufferSlotsUsedAsInstanceBuffer();
for (auto usedSlotInstance : IterateBitSet(vertexBufferSlotsUsedAsInstanceBuffer)) {
@ -151,8 +146,7 @@ namespace dawn::native {
} else {
uint64_t strideCount = static_cast<uint64_t>(firstInstance) + instanceCount;
if (strideCount != 0u) {
uint64_t requiredSize =
(strideCount - 1u) * arrayStride + vertexBuffer.lastStride;
uint64_t requiredSize = (strideCount - 1u) * arrayStride + vertexBuffer.lastStride;
// firstInstance and instanceCount are in uint32_t,
// arrayStride must not be larger than kMaxVertexBufferArrayStride, which is
// currently 2048, and vertexBuffer.lastStride = max(attribute.offset +
@ -171,9 +165,9 @@ namespace dawn::native {
}
return {};
}
}
MaybeError CommandBufferStateTracker::ValidateIndexBufferInRange(uint32_t indexCount,
MaybeError CommandBufferStateTracker::ValidateIndexBufferInRange(uint32_t indexCount,
uint32_t firstIndex) {
// Validate the range of index buffer
// firstIndex and indexCount are in uint32_t, while IndexFormatSize is 2 (for
@ -186,9 +180,9 @@ namespace dawn::native {
"(%u).",
firstIndex, indexCount, mIndexFormat, mIndexBufferSize);
return {};
}
}
MaybeError CommandBufferStateTracker::ValidateOperation(ValidationAspects requiredAspects) {
MaybeError CommandBufferStateTracker::ValidateOperation(ValidationAspects requiredAspects) {
// Fast return-true path if everything is good
ValidationAspects missingAspects = requiredAspects & ~mAspects;
if (missingAspects.none()) {
@ -204,9 +198,9 @@ namespace dawn::native {
DAWN_TRY(CheckMissingAspects(requiredAspects & ~mAspects));
return {};
}
}
void CommandBufferStateTracker::RecomputeLazyAspects(ValidationAspects aspects) {
void CommandBufferStateTracker::RecomputeLazyAspects(ValidationAspects aspects) {
ASSERT(mAspects[VALIDATION_ASPECT_PIPELINE]);
ASSERT((aspects & ~kLazyAspects).none());
@ -245,9 +239,9 @@ namespace dawn::native {
mAspects.set(VALIDATION_ASPECT_INDEX_BUFFER);
}
}
}
}
MaybeError CommandBufferStateTracker::CheckMissingAspects(ValidationAspects aspects) {
MaybeError CommandBufferStateTracker::CheckMissingAspects(ValidationAspects aspects) {
if (!aspects.any()) {
return {};
}
@ -310,8 +304,7 @@ namespace dawn::native {
DAWN_INVALID_IF(
requiredBGL->GetPipelineCompatibilityToken() == PipelineCompatibilityToken(0) &&
currentBGL->GetPipelineCompatibilityToken() !=
PipelineCompatibilityToken(0),
currentBGL->GetPipelineCompatibilityToken() != PipelineCompatibilityToken(0),
"%s at index %u uses a %s which was created as part of the default layout for "
"a different pipeline than the current one (%s), and as a result is not "
"compatible. Use an explicit bind group layout when creating bind groups and "
@ -342,37 +335,37 @@ namespace dawn::native {
}
UNREACHABLE();
}
}
void CommandBufferStateTracker::SetComputePipeline(ComputePipelineBase* pipeline) {
void CommandBufferStateTracker::SetComputePipeline(ComputePipelineBase* pipeline) {
SetPipelineCommon(pipeline);
}
}
void CommandBufferStateTracker::SetRenderPipeline(RenderPipelineBase* pipeline) {
void CommandBufferStateTracker::SetRenderPipeline(RenderPipelineBase* pipeline) {
SetPipelineCommon(pipeline);
}
}
void CommandBufferStateTracker::SetBindGroup(BindGroupIndex index,
void CommandBufferStateTracker::SetBindGroup(BindGroupIndex index,
BindGroupBase* bindgroup,
uint32_t dynamicOffsetCount,
const uint32_t* dynamicOffsets) {
mBindgroups[index] = bindgroup;
mDynamicOffsets[index].assign(dynamicOffsets, dynamicOffsets + dynamicOffsetCount);
mAspects.reset(VALIDATION_ASPECT_BIND_GROUPS);
}
}
void CommandBufferStateTracker::SetIndexBuffer(wgpu::IndexFormat format, uint64_t size) {
void CommandBufferStateTracker::SetIndexBuffer(wgpu::IndexFormat format, uint64_t size) {
mIndexBufferSet = true;
mIndexFormat = format;
mIndexBufferSize = size;
}
}
void CommandBufferStateTracker::SetVertexBuffer(VertexBufferSlot slot, uint64_t size) {
void CommandBufferStateTracker::SetVertexBuffer(VertexBufferSlot slot, uint64_t size) {
mVertexBufferSlotsUsed.set(slot);
mVertexBufferSizes[slot] = size;
}
}
void CommandBufferStateTracker::SetPipelineCommon(PipelineBase* pipeline) {
void CommandBufferStateTracker::SetPipelineCommon(PipelineBase* pipeline) {
mLastPipeline = pipeline;
mLastPipelineLayout = pipeline != nullptr ? pipeline->GetLayout() : nullptr;
mMinBufferSizes = pipeline != nullptr ? &pipeline->GetMinBufferSizes() : nullptr;
@ -381,41 +374,41 @@ namespace dawn::native {
// Reset lazy aspects so they get recomputed on the next operation.
mAspects &= ~kLazyAspects;
}
}
BindGroupBase* CommandBufferStateTracker::GetBindGroup(BindGroupIndex index) const {
BindGroupBase* CommandBufferStateTracker::GetBindGroup(BindGroupIndex index) const {
return mBindgroups[index];
}
}
const std::vector<uint32_t>& CommandBufferStateTracker::GetDynamicOffsets(
const std::vector<uint32_t>& CommandBufferStateTracker::GetDynamicOffsets(
BindGroupIndex index) const {
return mDynamicOffsets[index];
}
}
bool CommandBufferStateTracker::HasPipeline() const {
bool CommandBufferStateTracker::HasPipeline() const {
return mLastPipeline != nullptr;
}
}
RenderPipelineBase* CommandBufferStateTracker::GetRenderPipeline() const {
RenderPipelineBase* CommandBufferStateTracker::GetRenderPipeline() const {
ASSERT(HasPipeline() && mLastPipeline->GetType() == ObjectType::RenderPipeline);
return static_cast<RenderPipelineBase*>(mLastPipeline);
}
}
ComputePipelineBase* CommandBufferStateTracker::GetComputePipeline() const {
ComputePipelineBase* CommandBufferStateTracker::GetComputePipeline() const {
ASSERT(HasPipeline() && mLastPipeline->GetType() == ObjectType::ComputePipeline);
return static_cast<ComputePipelineBase*>(mLastPipeline);
}
}
PipelineLayoutBase* CommandBufferStateTracker::GetPipelineLayout() const {
PipelineLayoutBase* CommandBufferStateTracker::GetPipelineLayout() const {
return mLastPipelineLayout;
}
}
wgpu::IndexFormat CommandBufferStateTracker::GetIndexFormat() const {
wgpu::IndexFormat CommandBufferStateTracker::GetIndexFormat() const {
return mIndexFormat;
}
}
uint64_t CommandBufferStateTracker::GetIndexBufferSize() const {
uint64_t CommandBufferStateTracker::GetIndexBufferSize() const {
return mIndexBufferSize;
}
}
} // namespace dawn::native

View File

@ -26,7 +26,7 @@
namespace dawn::native {
class CommandBufferStateTracker {
class CommandBufferStateTracker {
public:
// Non-state-modifying validation functions
MaybeError ValidateCanDispatch();
@ -81,7 +81,7 @@ namespace dawn::native {
PipelineBase* mLastPipeline = nullptr;
const RequiredBufferSizes* mMinBufferSizes = nullptr;
};
};
} // namespace dawn::native

View File

@ -41,37 +41,34 @@
namespace dawn::native {
namespace {
namespace {
bool HasDeprecatedColor(const RenderPassColorAttachment& attachment) {
bool HasDeprecatedColor(const RenderPassColorAttachment& attachment) {
return !std::isnan(attachment.clearColor.r) || !std::isnan(attachment.clearColor.g) ||
!std::isnan(attachment.clearColor.b) || !std::isnan(attachment.clearColor.a);
}
}
MaybeError ValidateB2BCopyAlignment(uint64_t dataSize,
uint64_t srcOffset,
uint64_t dstOffset) {
MaybeError ValidateB2BCopyAlignment(uint64_t dataSize, uint64_t srcOffset, uint64_t dstOffset) {
// Copy size must be a multiple of 4 bytes on macOS.
DAWN_INVALID_IF(dataSize % 4 != 0, "Copy size (%u) is not a multiple of 4.", dataSize);
// SourceOffset and destinationOffset must be multiples of 4 bytes on macOS.
DAWN_INVALID_IF(
srcOffset % 4 != 0 || dstOffset % 4 != 0,
DAWN_INVALID_IF(srcOffset % 4 != 0 || dstOffset % 4 != 0,
"Source offset (%u) or destination offset (%u) is not a multiple of 4 bytes,",
srcOffset, dstOffset);
return {};
}
}
MaybeError ValidateTextureSampleCountInBufferCopyCommands(const TextureBase* texture) {
MaybeError ValidateTextureSampleCountInBufferCopyCommands(const TextureBase* texture) {
DAWN_INVALID_IF(texture->GetSampleCount() > 1,
"%s sample count (%u) is not 1 when copying to or from a buffer.",
texture, texture->GetSampleCount());
"%s sample count (%u) is not 1 when copying to or from a buffer.", texture,
texture->GetSampleCount());
return {};
}
}
MaybeError ValidateLinearTextureCopyOffset(const TextureDataLayout& layout,
MaybeError ValidateLinearTextureCopyOffset(const TextureDataLayout& layout,
const TexelBlockInfo& blockInfo,
const bool hasDepthOrStencil) {
if (hasDepthOrStencil) {
@ -85,10 +82,9 @@ namespace dawn::native {
layout.offset, blockInfo.byteSize);
}
return {};
}
}
MaybeError ValidateTextureDepthStencilToBufferCopyRestrictions(
const ImageCopyTexture& src) {
MaybeError ValidateTextureDepthStencilToBufferCopyRestrictions(const ImageCopyTexture& src) {
Aspect aspectUsed;
DAWN_TRY_ASSIGN(aspectUsed, SingleAspectUsedByImageCopyTexture(src));
if (aspectUsed == Aspect::Depth) {
@ -111,9 +107,9 @@ namespace dawn::native {
}
return {};
}
}
MaybeError ValidateAttachmentArrayLayersAndLevelCount(const TextureViewBase* attachment) {
MaybeError ValidateAttachmentArrayLayersAndLevelCount(const TextureViewBase* attachment) {
// Currently we do not support layered rendering.
DAWN_INVALID_IF(attachment->GetLayerCount() > 1,
"The layer count (%u) of %s used as attachment is greater than 1.",
@ -124,9 +120,9 @@ namespace dawn::native {
attachment->GetLevelCount(), attachment);
return {};
}
}
MaybeError ValidateOrSetAttachmentSize(const TextureViewBase* attachment,
MaybeError ValidateOrSetAttachmentSize(const TextureViewBase* attachment,
uint32_t* width,
uint32_t* height) {
const Extent3D& attachmentSize =
@ -138,17 +134,16 @@ namespace dawn::native {
*height = attachmentSize.height;
DAWN_ASSERT(*width != 0 && *height != 0);
} else {
DAWN_INVALID_IF(
*width != attachmentSize.width || *height != attachmentSize.height,
DAWN_INVALID_IF(*width != attachmentSize.width || *height != attachmentSize.height,
"Attachment %s size (width: %u, height: %u) does not match the size of the "
"other attachments (width: %u, height: %u).",
attachment, attachmentSize.width, attachmentSize.height, *width, *height);
}
return {};
}
}
MaybeError ValidateOrSetColorAttachmentSampleCount(const TextureViewBase* colorAttachment,
MaybeError ValidateOrSetColorAttachmentSampleCount(const TextureViewBase* colorAttachment,
uint32_t* sampleCount) {
if (*sampleCount == 0) {
*sampleCount = colorAttachment->GetTexture()->GetSampleCount();
@ -162,9 +157,9 @@ namespace dawn::native {
}
return {};
}
}
MaybeError ValidateResolveTarget(const DeviceBase* device,
MaybeError ValidateResolveTarget(const DeviceBase* device,
const RenderPassColorAttachment& colorAttachment,
UsageValidationMode usageValidationMode) {
if (colorAttachment.resolveTarget == nullptr) {
@ -177,8 +172,7 @@ namespace dawn::native {
DAWN_TRY(ValidateCanUseAs(colorAttachment.resolveTarget->GetTexture(),
wgpu::TextureUsage::RenderAttachment, usageValidationMode));
DAWN_INVALID_IF(
!attachment->GetTexture()->IsMultisampledTexture(),
DAWN_INVALID_IF(!attachment->GetTexture()->IsMultisampledTexture(),
"Cannot set %s as a resolve target when the color attachment %s has a sample "
"count of 1.",
resolveTarget, attachment);
@ -198,10 +192,8 @@ namespace dawn::native {
const Extent3D& colorTextureSize =
attachment->GetTexture()->GetMipLevelVirtualSize(attachment->GetBaseMipLevel());
const Extent3D& resolveTextureSize =
resolveTarget->GetTexture()->GetMipLevelVirtualSize(
resolveTarget->GetBaseMipLevel());
DAWN_INVALID_IF(
colorTextureSize.width != resolveTextureSize.width ||
resolveTarget->GetTexture()->GetMipLevelVirtualSize(resolveTarget->GetBaseMipLevel());
DAWN_INVALID_IF(colorTextureSize.width != resolveTextureSize.width ||
colorTextureSize.height != resolveTextureSize.height,
"The Resolve target %s size (width: %u, height: %u) does not match the color "
"attachment %s size (width: %u, height: %u).",
@ -220,10 +212,9 @@ namespace dawn::native {
resolveTarget, resolveTargetFormat);
return {};
}
}
MaybeError ValidateRenderPassColorAttachment(
DeviceBase* device,
MaybeError ValidateRenderPassColorAttachment(DeviceBase* device,
const RenderPassColorAttachment& colorAttachment,
uint32_t* width,
uint32_t* height,
@ -234,20 +225,18 @@ namespace dawn::native {
return {};
}
DAWN_TRY(device->ValidateObject(attachment));
DAWN_TRY(ValidateCanUseAs(attachment->GetTexture(),
wgpu::TextureUsage::RenderAttachment, usageValidationMode));
DAWN_TRY(ValidateCanUseAs(attachment->GetTexture(), wgpu::TextureUsage::RenderAttachment,
usageValidationMode));
DAWN_INVALID_IF(!(attachment->GetAspects() & Aspect::Color) ||
!attachment->GetFormat().isRenderable,
"The color attachment %s format (%s) is not color renderable.",
attachment, attachment->GetFormat().format);
DAWN_INVALID_IF(
!(attachment->GetAspects() & Aspect::Color) || !attachment->GetFormat().isRenderable,
"The color attachment %s format (%s) is not color renderable.", attachment,
attachment->GetFormat().format);
DAWN_TRY(ValidateLoadOp(colorAttachment.loadOp));
DAWN_TRY(ValidateStoreOp(colorAttachment.storeOp));
DAWN_INVALID_IF(colorAttachment.loadOp == wgpu::LoadOp::Undefined,
"loadOp must be set.");
DAWN_INVALID_IF(colorAttachment.storeOp == wgpu::StoreOp::Undefined,
"storeOp must be set.");
DAWN_INVALID_IF(colorAttachment.loadOp == wgpu::LoadOp::Undefined, "loadOp must be set.");
DAWN_INVALID_IF(colorAttachment.storeOp == wgpu::StoreOp::Undefined, "storeOp must be set.");
// TODO(dawn:1269): Remove after the deprecation period.
bool useClearColor = HasDeprecatedColor(colorAttachment);
@ -272,9 +261,9 @@ namespace dawn::native {
DAWN_TRY(ValidateOrSetAttachmentSize(attachment, width, height));
return {};
}
}
MaybeError ValidateRenderPassDepthStencilAttachment(
MaybeError ValidateRenderPassDepthStencilAttachment(
DeviceBase* device,
const RenderPassDepthStencilAttachment* depthStencilAttachment,
uint32_t* width,
@ -285,27 +274,24 @@ namespace dawn::native {
TextureViewBase* attachment = depthStencilAttachment->view;
DAWN_TRY(device->ValidateObject(attachment));
DAWN_TRY(ValidateCanUseAs(attachment->GetTexture(),
wgpu::TextureUsage::RenderAttachment, usageValidationMode));
DAWN_TRY(ValidateCanUseAs(attachment->GetTexture(), wgpu::TextureUsage::RenderAttachment,
usageValidationMode));
const Format& format = attachment->GetFormat();
DAWN_INVALID_IF(
!format.HasDepthOrStencil(),
DAWN_INVALID_IF(!format.HasDepthOrStencil(),
"The depth stencil attachment %s format (%s) is not a depth stencil format.",
attachment, format.format);
DAWN_INVALID_IF(!format.isRenderable,
"The depth stencil attachment %s format (%s) is not renderable.",
attachment, format.format);
"The depth stencil attachment %s format (%s) is not renderable.", attachment,
format.format);
DAWN_INVALID_IF(attachment->GetAspects() != format.aspects,
"The depth stencil attachment %s must encompass all aspects.",
attachment);
"The depth stencil attachment %s must encompass all aspects.", attachment);
DAWN_INVALID_IF(
attachment->GetAspects() == (Aspect::Depth | Aspect::Stencil) &&
depthStencilAttachment->depthReadOnly !=
depthStencilAttachment->stencilReadOnly,
depthStencilAttachment->depthReadOnly != depthStencilAttachment->stencilReadOnly,
"depthReadOnly (%u) and stencilReadOnly (%u) must be the same when texture aspect "
"is 'all'.",
depthStencilAttachment->depthReadOnly, depthStencilAttachment->stencilReadOnly);
@ -326,8 +312,7 @@ namespace dawn::native {
"no depth aspect or depthReadOnly (%u) is true.",
depthStencilAttachment->depthLoadOp, attachment,
depthStencilAttachment->depthReadOnly);
DAWN_INVALID_IF(
depthStencilAttachment->depthStoreOp != wgpu::StoreOp::Undefined,
DAWN_INVALID_IF(depthStencilAttachment->depthStoreOp != wgpu::StoreOp::Undefined,
"depthStoreOp (%s) must not be set if the attachment (%s) has no depth "
"aspect or depthReadOnly (%u) is true.",
depthStencilAttachment->depthStoreOp, attachment,
@ -372,15 +357,13 @@ namespace dawn::native {
}
} else {
DAWN_TRY(ValidateLoadOp(depthStencilAttachment->stencilLoadOp));
DAWN_INVALID_IF(
depthStencilAttachment->stencilLoadOp == wgpu::LoadOp::Undefined,
DAWN_INVALID_IF(depthStencilAttachment->stencilLoadOp == wgpu::LoadOp::Undefined,
"stencilLoadOp (%s) must be set if the attachment (%s) has a stencil "
"aspect and stencilReadOnly (%u) is false.",
depthStencilAttachment->stencilLoadOp, attachment,
depthStencilAttachment->stencilReadOnly);
DAWN_TRY(ValidateStoreOp(depthStencilAttachment->stencilStoreOp));
DAWN_INVALID_IF(
depthStencilAttachment->stencilStoreOp == wgpu::StoreOp::Undefined,
DAWN_INVALID_IF(depthStencilAttachment->stencilStoreOp == wgpu::StoreOp::Undefined,
"stencilStoreOp (%s) must be set if the attachment (%s) has a stencil "
"aspect and stencilReadOnly (%u) is false.",
depthStencilAttachment->stencilStoreOp, attachment,
@ -389,8 +372,7 @@ namespace dawn::native {
if (!std::isnan(depthStencilAttachment->clearDepth)) {
// TODO(dawn:1269): Remove this branch after the deprecation period.
device->EmitDeprecationWarning(
"clearDepth is deprecated, prefer depthClearValue instead.");
device->EmitDeprecationWarning("clearDepth is deprecated, prefer depthClearValue instead.");
} else {
DAWN_INVALID_IF(depthStencilAttachment->depthLoadOp == wgpu::LoadOp::Clear &&
std::isnan(depthStencilAttachment->depthClearValue),
@ -421,9 +403,9 @@ namespace dawn::native {
DAWN_TRY(ValidateOrSetAttachmentSize(attachment, width, height));
return {};
}
}
MaybeError ValidateRenderPassDescriptor(DeviceBase* device,
MaybeError ValidateRenderPassDescriptor(DeviceBase* device,
const RenderPassDescriptor* descriptor,
uint32_t* width,
uint32_t* height,
@ -436,9 +418,9 @@ namespace dawn::native {
bool isAllColorAttachmentNull = true;
for (uint32_t i = 0; i < descriptor->colorAttachmentCount; ++i) {
DAWN_TRY_CONTEXT(ValidateRenderPassColorAttachment(
device, descriptor->colorAttachments[i], width, height,
sampleCount, usageValidationMode),
DAWN_TRY_CONTEXT(
ValidateRenderPassColorAttachment(device, descriptor->colorAttachments[i], width,
height, sampleCount, usageValidationMode),
"validating colorAttachments[%u].", i);
if (descriptor->colorAttachments[i].view) {
isAllColorAttachmentNull = false;
@ -447,8 +429,8 @@ namespace dawn::native {
if (descriptor->depthStencilAttachment != nullptr) {
DAWN_TRY_CONTEXT(ValidateRenderPassDepthStencilAttachment(
device, descriptor->depthStencilAttachment, width, height,
sampleCount, usageValidationMode),
device, descriptor->depthStencilAttachment, width, height, sampleCount,
usageValidationMode),
"validating depthStencilAttachment.");
} else {
DAWN_INVALID_IF(
@ -459,9 +441,9 @@ namespace dawn::native {
if (descriptor->occlusionQuerySet != nullptr) {
DAWN_TRY(device->ValidateObject(descriptor->occlusionQuerySet));
DAWN_INVALID_IF(
descriptor->occlusionQuerySet->GetQueryType() != wgpu::QueryType::Occlusion,
"The occlusionQuerySet %s type (%s) is not %s.", descriptor->occlusionQuerySet,
DAWN_INVALID_IF(descriptor->occlusionQuerySet->GetQueryType() != wgpu::QueryType::Occlusion,
"The occlusionQuerySet %s type (%s) is not %s.",
descriptor->occlusionQuerySet,
descriptor->occlusionQuerySet->GetQueryType(), wgpu::QueryType::Occlusion);
}
@ -479,10 +461,9 @@ namespace dawn::native {
DAWN_ASSERT(querySet != nullptr);
uint32_t queryIndex = descriptor->timestampWrites[i].queryIndex;
DAWN_TRY_CONTEXT(ValidateTimestampQuery(device, querySet, queryIndex),
"validating querySet and queryIndex of timestampWrites[%u].",
i);
DAWN_TRY_CONTEXT(ValidateRenderPassTimestampLocation(
descriptor->timestampWrites[i].location),
"validating querySet and queryIndex of timestampWrites[%u].", i);
DAWN_TRY_CONTEXT(
ValidateRenderPassTimestampLocation(descriptor->timestampWrites[i].location),
"validating location of timestampWrites[%u].", i);
auto checkIt = usedQueries.find(querySet);
@ -497,14 +478,14 @@ namespace dawn::native {
}
}
DAWN_INVALID_IF(descriptor->colorAttachmentCount == 0 &&
descriptor->depthStencilAttachment == nullptr,
DAWN_INVALID_IF(
descriptor->colorAttachmentCount == 0 && descriptor->depthStencilAttachment == nullptr,
"Render pass has no attachments.");
return {};
}
}
MaybeError ValidateComputePassDescriptor(const DeviceBase* device,
MaybeError ValidateComputePassDescriptor(const DeviceBase* device,
const ComputePassDescriptor* descriptor) {
if (descriptor == nullptr) {
return {};
@ -515,27 +496,26 @@ namespace dawn::native {
for (uint32_t i = 0; i < descriptor->timestampWriteCount; ++i) {
DAWN_ASSERT(descriptor->timestampWrites[i].querySet != nullptr);
DAWN_TRY_CONTEXT(
ValidateTimestampQuery(device, descriptor->timestampWrites[i].querySet,
DAWN_TRY_CONTEXT(ValidateTimestampQuery(device, descriptor->timestampWrites[i].querySet,
descriptor->timestampWrites[i].queryIndex),
"validating querySet and queryIndex of timestampWrites[%u].", i);
DAWN_TRY_CONTEXT(ValidateComputePassTimestampLocation(
descriptor->timestampWrites[i].location),
DAWN_TRY_CONTEXT(
ValidateComputePassTimestampLocation(descriptor->timestampWrites[i].location),
"validating location of timestampWrites[%u].", i);
}
}
return {};
}
}
MaybeError ValidateQuerySetResolve(const QuerySetBase* querySet,
MaybeError ValidateQuerySetResolve(const QuerySetBase* querySet,
uint32_t firstQuery,
uint32_t queryCount,
const BufferBase* destination,
uint64_t destinationOffset) {
DAWN_INVALID_IF(firstQuery >= querySet->GetQueryCount(),
"First query (%u) exceeds the number of queries (%u) in %s.",
firstQuery, querySet->GetQueryCount(), querySet);
"First query (%u) exceeds the number of queries (%u) in %s.", firstQuery,
querySet->GetQueryCount(), querySet);
DAWN_INVALID_IF(
queryCount > querySet->GetQueryCount() - firstQuery,
@ -544,25 +524,25 @@ namespace dawn::native {
firstQuery, queryCount, querySet->GetQueryCount(), querySet);
DAWN_INVALID_IF(destinationOffset % 256 != 0,
"The destination buffer %s offset (%u) is not a multiple of 256.",
destination, destinationOffset);
"The destination buffer %s offset (%u) is not a multiple of 256.", destination,
destinationOffset);
uint64_t bufferSize = destination->GetSize();
// The destination buffer must have enough storage, from destination offset, to contain
// the result of resolved queries
bool fitsInBuffer = destinationOffset <= bufferSize &&
(static_cast<uint64_t>(queryCount) * sizeof(uint64_t) <=
(bufferSize - destinationOffset));
bool fitsInBuffer =
destinationOffset <= bufferSize &&
(static_cast<uint64_t>(queryCount) * sizeof(uint64_t) <= (bufferSize - destinationOffset));
DAWN_INVALID_IF(
!fitsInBuffer,
"The resolved %s data size (%u) would not fit in %s with size %u at the offset %u.",
querySet, static_cast<uint64_t>(queryCount) * sizeof(uint64_t), destination,
bufferSize, destinationOffset);
querySet, static_cast<uint64_t>(queryCount) * sizeof(uint64_t), destination, bufferSize,
destinationOffset);
return {};
}
}
MaybeError EncodeTimestampsToNanosecondsConversion(CommandEncoder* encoder,
MaybeError EncodeTimestampsToNanosecondsConversion(CommandEncoder* encoder,
QuerySetBase* querySet,
uint32_t firstQuery,
uint32_t queryCount,
@ -583,8 +563,7 @@ namespace dawn::native {
Ref<BufferBase> availabilityBuffer;
DAWN_TRY_ASSIGN(availabilityBuffer, device->CreateBuffer(&availabilityDesc));
DAWN_TRY(device->GetQueue()->WriteBuffer(availabilityBuffer.Get(), 0,
availability.data(),
DAWN_TRY(device->GetQueue()->WriteBuffer(availabilityBuffer.Get(), 0, availability.data(),
availability.size() * sizeof(uint32_t)));
// Timestamp params uniform buffer
@ -597,14 +576,13 @@ namespace dawn::native {
Ref<BufferBase> paramsBuffer;
DAWN_TRY_ASSIGN(paramsBuffer, device->CreateBuffer(&parmsDesc));
DAWN_TRY(
device->GetQueue()->WriteBuffer(paramsBuffer.Get(), 0, &params, sizeof(params)));
DAWN_TRY(device->GetQueue()->WriteBuffer(paramsBuffer.Get(), 0, &params, sizeof(params)));
return EncodeConvertTimestampsToNanoseconds(
encoder, destination, availabilityBuffer.Get(), paramsBuffer.Get());
}
return EncodeConvertTimestampsToNanoseconds(encoder, destination, availabilityBuffer.Get(),
paramsBuffer.Get());
}
bool IsReadOnlyDepthStencilAttachment(
bool IsReadOnlyDepthStencilAttachment(
const RenderPassDepthStencilAttachment* depthStencilAttachment) {
DAWN_ASSERT(depthStencilAttachment != nullptr);
Aspect aspects = depthStencilAttachment->view->GetAspects();
@ -617,11 +595,11 @@ namespace dawn::native {
return false;
}
return true;
}
}
} // namespace
} // namespace
MaybeError ValidateCommandEncoderDescriptor(const DeviceBase* device,
MaybeError ValidateCommandEncoderDescriptor(const DeviceBase* device,
const CommandEncoderDescriptor* descriptor) {
DAWN_TRY(ValidateSingleSType(descriptor->nextInChain,
wgpu::SType::DawnEncoderInternalUsageDescriptor));
@ -633,20 +611,20 @@ namespace dawn::native {
!device->APIHasFeature(wgpu::FeatureName::DawnInternalUsages),
"%s is not available.", wgpu::FeatureName::DawnInternalUsages);
return {};
}
}
// static
Ref<CommandEncoder> CommandEncoder::Create(DeviceBase* device,
// static
Ref<CommandEncoder> CommandEncoder::Create(DeviceBase* device,
const CommandEncoderDescriptor* descriptor) {
return AcquireRef(new CommandEncoder(device, descriptor));
}
}
// static
CommandEncoder* CommandEncoder::MakeError(DeviceBase* device) {
// static
CommandEncoder* CommandEncoder::MakeError(DeviceBase* device) {
return new CommandEncoder(device, ObjectBase::kError);
}
}
CommandEncoder::CommandEncoder(DeviceBase* device, const CommandEncoderDescriptor* descriptor)
CommandEncoder::CommandEncoder(DeviceBase* device, const CommandEncoderDescriptor* descriptor)
: ApiObjectBase(device, descriptor->label), mEncodingContext(device, this) {
TrackInDevice();
@ -658,38 +636,38 @@ namespace dawn::native {
} else {
mUsageValidationMode = UsageValidationMode::Default;
}
}
}
CommandEncoder::CommandEncoder(DeviceBase* device, ObjectBase::ErrorTag tag)
CommandEncoder::CommandEncoder(DeviceBase* device, ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag),
mEncodingContext(device, this),
mUsageValidationMode(UsageValidationMode::Default) {
mEncodingContext.HandleError(DAWN_FORMAT_VALIDATION_ERROR("%s is invalid.", this));
}
}
ObjectType CommandEncoder::GetType() const {
ObjectType CommandEncoder::GetType() const {
return ObjectType::CommandEncoder;
}
}
void CommandEncoder::DestroyImpl() {
void CommandEncoder::DestroyImpl() {
mEncodingContext.Destroy();
}
}
CommandBufferResourceUsage CommandEncoder::AcquireResourceUsages() {
CommandBufferResourceUsage CommandEncoder::AcquireResourceUsages() {
return CommandBufferResourceUsage{
mEncodingContext.AcquireRenderPassUsages(), mEncodingContext.AcquireComputePassUsages(),
std::move(mTopLevelBuffers), std::move(mTopLevelTextures), std::move(mUsedQuerySets)};
}
}
CommandIterator CommandEncoder::AcquireCommands() {
CommandIterator CommandEncoder::AcquireCommands() {
return mEncodingContext.AcquireCommands();
}
}
void CommandEncoder::TrackUsedQuerySet(QuerySetBase* querySet) {
void CommandEncoder::TrackUsedQuerySet(QuerySetBase* querySet) {
mUsedQuerySets.insert(querySet);
}
}
void CommandEncoder::TrackQueryAvailability(QuerySetBase* querySet, uint32_t queryIndex) {
void CommandEncoder::TrackQueryAvailability(QuerySetBase* querySet, uint32_t queryIndex) {
DAWN_ASSERT(querySet != nullptr);
if (GetDevice()->IsValidationEnabled()) {
@ -698,17 +676,15 @@ namespace dawn::native {
// Set the query at queryIndex to available for resolving in query set.
querySet->SetQueryAvailability(queryIndex, true);
}
}
// Implementation of the API's command recording methods
// Implementation of the API's command recording methods
ComputePassEncoder* CommandEncoder::APIBeginComputePass(
const ComputePassDescriptor* descriptor) {
ComputePassEncoder* CommandEncoder::APIBeginComputePass(const ComputePassDescriptor* descriptor) {
return BeginComputePass(descriptor).Detach();
}
}
Ref<ComputePassEncoder> CommandEncoder::BeginComputePass(
const ComputePassDescriptor* descriptor) {
Ref<ComputePassEncoder> CommandEncoder::BeginComputePass(const ComputePassDescriptor* descriptor) {
DeviceBase* device = GetDevice();
std::vector<TimestampWrite> timestampWritesAtBeginning;
@ -763,13 +739,13 @@ namespace dawn::native {
}
return ComputePassEncoder::MakeError(device, this, &mEncodingContext);
}
}
RenderPassEncoder* CommandEncoder::APIBeginRenderPass(const RenderPassDescriptor* descriptor) {
RenderPassEncoder* CommandEncoder::APIBeginRenderPass(const RenderPassDescriptor* descriptor) {
return BeginRenderPass(descriptor).Detach();
}
}
Ref<RenderPassEncoder> CommandEncoder::BeginRenderPass(const RenderPassDescriptor* descriptor) {
Ref<RenderPassEncoder> CommandEncoder::BeginRenderPass(const RenderPassDescriptor* descriptor) {
DeviceBase* device = GetDevice();
RenderPassResourceUsageTracker usageTracker;
@ -786,8 +762,8 @@ namespace dawn::native {
[&](CommandAllocator* allocator) -> MaybeError {
uint32_t sampleCount = 0;
DAWN_TRY(ValidateRenderPassDescriptor(device, descriptor, &width, &height,
&sampleCount, mUsageValidationMode));
DAWN_TRY(ValidateRenderPassDescriptor(device, descriptor, &width, &height, &sampleCount,
mUsageValidationMode));
ASSERT(width > 0 && height > 0 && sampleCount > 0);
@ -928,9 +904,9 @@ namespace dawn::native {
}
return RenderPassEncoder::MakeError(device, this, &mEncodingContext);
}
}
void CommandEncoder::APICopyBufferToBuffer(BufferBase* source,
void CommandEncoder::APICopyBufferToBuffer(BufferBase* source,
uint64_t sourceOffset,
BufferBase* destination,
uint64_t destinationOffset,
@ -947,8 +923,7 @@ namespace dawn::native {
DAWN_TRY_CONTEXT(ValidateCopySizeFitsInBuffer(source, sourceOffset, size),
"validating source %s copy size.", source);
DAWN_TRY_CONTEXT(
ValidateCopySizeFitsInBuffer(destination, destinationOffset, size),
DAWN_TRY_CONTEXT(ValidateCopySizeFitsInBuffer(destination, destinationOffset, size),
"validating destination %s copy size.", destination);
DAWN_TRY(ValidateB2BCopyAlignment(size, sourceOffset, destinationOffset));
@ -973,9 +948,9 @@ namespace dawn::native {
},
"encoding %s.CopyBufferToBuffer(%s, %u, %s, %u, %u).", this, source, sourceOffset,
destination, destinationOffset, size);
}
}
void CommandEncoder::APICopyBufferToTexture(const ImageCopyBuffer* source,
void CommandEncoder::APICopyBufferToTexture(const ImageCopyBuffer* source,
const ImageCopyTexture* destination,
const Extent3D* copySize) {
mEncodingContext.TryEncode(
@ -987,8 +962,7 @@ namespace dawn::native {
"validating source %s usage.", source->buffer);
DAWN_TRY(ValidateImageCopyTexture(GetDevice(), *destination, *copySize));
DAWN_TRY_CONTEXT(
ValidateCanUseAs(destination->texture, wgpu::TextureUsage::CopyDst,
DAWN_TRY_CONTEXT(ValidateCanUseAs(destination->texture, wgpu::TextureUsage::CopyDst,
mUsageValidationMode),
"validating destination %s usage.", destination->texture);
DAWN_TRY(ValidateTextureSampleCountInBufferCopyCommands(destination->texture));
@ -1031,11 +1005,11 @@ namespace dawn::native {
return {};
},
"encoding %s.CopyBufferToTexture(%s, %s, %s).", this, source->buffer,
destination->texture, copySize);
}
"encoding %s.CopyBufferToTexture(%s, %s, %s).", this, source->buffer, destination->texture,
copySize);
}
void CommandEncoder::APICopyTextureToBuffer(const ImageCopyTexture* source,
void CommandEncoder::APICopyTextureToBuffer(const ImageCopyTexture* source,
const ImageCopyBuffer* destination,
const Extent3D* copySize) {
mEncodingContext.TryEncode(
@ -1050,8 +1024,7 @@ namespace dawn::native {
DAWN_TRY(ValidateTextureDepthStencilToBufferCopyRestrictions(*source));
DAWN_TRY(ValidateImageCopyBuffer(GetDevice(), *destination));
DAWN_TRY_CONTEXT(
ValidateCanUseAs(destination->buffer, wgpu::BufferUsage::CopyDst),
DAWN_TRY_CONTEXT(ValidateCanUseAs(destination->buffer, wgpu::BufferUsage::CopyDst),
"validating destination %s usage.", destination->buffer);
// We validate texture copy range before validating linear texture data,
@ -1090,24 +1063,24 @@ namespace dawn::native {
return {};
},
"encoding %s.CopyTextureToBuffer(%s, %s, %s).", this, source->texture,
destination->buffer, copySize);
}
"encoding %s.CopyTextureToBuffer(%s, %s, %s).", this, source->texture, destination->buffer,
copySize);
}
void CommandEncoder::APICopyTextureToTexture(const ImageCopyTexture* source,
void CommandEncoder::APICopyTextureToTexture(const ImageCopyTexture* source,
const ImageCopyTexture* destination,
const Extent3D* copySize) {
APICopyTextureToTextureHelper<false>(source, destination, copySize);
}
}
void CommandEncoder::APICopyTextureToTextureInternal(const ImageCopyTexture* source,
void CommandEncoder::APICopyTextureToTextureInternal(const ImageCopyTexture* source,
const ImageCopyTexture* destination,
const Extent3D* copySize) {
APICopyTextureToTextureHelper<true>(source, destination, copySize);
}
}
template <bool Internal>
void CommandEncoder::APICopyTextureToTextureHelper(const ImageCopyTexture* source,
template <bool Internal>
void CommandEncoder::APICopyTextureToTextureHelper(const ImageCopyTexture* source,
const ImageCopyTexture* destination,
const Extent3D* copySize) {
mEncodingContext.TryEncode(
@ -1165,9 +1138,9 @@ namespace dawn::native {
},
"encoding %s.CopyTextureToTexture(%s, %s, %s).", this, source->texture,
destination->texture, copySize);
}
}
void CommandEncoder::APIClearBuffer(BufferBase* buffer, uint64_t offset, uint64_t size) {
void CommandEncoder::APIClearBuffer(BufferBase* buffer, uint64_t offset, uint64_t size) {
mEncodingContext.TryEncode(
this,
[&](CommandAllocator* allocator) -> MaybeError {
@ -1176,8 +1149,8 @@ namespace dawn::native {
uint64_t bufferSize = buffer->GetSize();
DAWN_INVALID_IF(offset > bufferSize,
"Buffer offset (%u) is larger than the size (%u) of %s.",
offset, bufferSize, buffer);
"Buffer offset (%u) is larger than the size (%u) of %s.", offset,
bufferSize, buffer);
uint64_t remainingSize = bufferSize - offset;
if (size == wgpu::kWholeSize) {
@ -1216,15 +1189,15 @@ namespace dawn::native {
return {};
},
"encoding %s.ClearBuffer(%s, %u, %u).", this, buffer, offset, size);
}
}
void CommandEncoder::APIInjectValidationError(const char* message) {
void CommandEncoder::APIInjectValidationError(const char* message) {
if (mEncodingContext.CheckCurrentEncoder(this)) {
mEncodingContext.HandleError(DAWN_VALIDATION_ERROR(message));
}
}
}
void CommandEncoder::APIInsertDebugMarker(const char* groupLabel) {
void CommandEncoder::APIInsertDebugMarker(const char* groupLabel) {
mEncodingContext.TryEncode(
this,
[&](CommandAllocator* allocator) -> MaybeError {
@ -1238,15 +1211,14 @@ namespace dawn::native {
return {};
},
"encoding %s.InsertDebugMarker(\"%s\").", this, groupLabel);
}
}
void CommandEncoder::APIPopDebugGroup() {
void CommandEncoder::APIPopDebugGroup() {
mEncodingContext.TryEncode(
this,
[&](CommandAllocator* allocator) -> MaybeError {
if (GetDevice()->IsValidationEnabled()) {
DAWN_INVALID_IF(
mDebugGroupStackSize == 0,
DAWN_INVALID_IF(mDebugGroupStackSize == 0,
"PopDebugGroup called when no debug groups are currently pushed.");
}
allocator->Allocate<PopDebugGroupCmd>(Command::PopDebugGroup);
@ -1256,9 +1228,9 @@ namespace dawn::native {
return {};
},
"encoding %s.PopDebugGroup().", this);
}
}
void CommandEncoder::APIPushDebugGroup(const char* groupLabel) {
void CommandEncoder::APIPushDebugGroup(const char* groupLabel) {
mEncodingContext.TryEncode(
this,
[&](CommandAllocator* allocator) -> MaybeError {
@ -1275,9 +1247,9 @@ namespace dawn::native {
return {};
},
"encoding %s.PushDebugGroup(\"%s\").", this, groupLabel);
}
}
void CommandEncoder::APIResolveQuerySet(QuerySetBase* querySet,
void CommandEncoder::APIResolveQuerySet(QuerySetBase* querySet,
uint32_t firstQuery,
uint32_t queryCount,
BufferBase* destination,
@ -1315,11 +1287,11 @@ namespace dawn::native {
return {};
},
"encoding %s.ResolveQuerySet(%s, %u, %u, %s, %u).", this, querySet, firstQuery,
queryCount, destination, destinationOffset);
}
"encoding %s.ResolveQuerySet(%s, %u, %u, %s, %u).", this, querySet, firstQuery, queryCount,
destination, destinationOffset);
}
void CommandEncoder::APIWriteBuffer(BufferBase* buffer,
void CommandEncoder::APIWriteBuffer(BufferBase* buffer,
uint64_t bufferOffset,
const uint8_t* data,
uint64_t size) {
@ -1343,9 +1315,9 @@ namespace dawn::native {
return {};
},
"encoding %s.WriteBuffer(%s, %u, ..., %u).", this, buffer, bufferOffset, size);
}
}
void CommandEncoder::APIWriteTimestamp(QuerySetBase* querySet, uint32_t queryIndex) {
void CommandEncoder::APIWriteTimestamp(QuerySetBase* querySet, uint32_t queryIndex) {
mEncodingContext.TryEncode(
this,
[&](CommandAllocator* allocator) -> MaybeError {
@ -1363,18 +1335,18 @@ namespace dawn::native {
return {};
},
"encoding %s.WriteTimestamp(%s, %u).", this, querySet, queryIndex);
}
}
CommandBufferBase* CommandEncoder::APIFinish(const CommandBufferDescriptor* descriptor) {
CommandBufferBase* CommandEncoder::APIFinish(const CommandBufferDescriptor* descriptor) {
Ref<CommandBufferBase> commandBuffer;
if (GetDevice()->ConsumedError(Finish(descriptor), &commandBuffer)) {
return CommandBufferBase::MakeError(GetDevice());
}
ASSERT(!IsError());
return commandBuffer.Detach();
}
}
ResultOrError<Ref<CommandBufferBase>> CommandEncoder::Finish(
ResultOrError<Ref<CommandBufferBase>> CommandEncoder::Finish(
const CommandBufferDescriptor* descriptor) {
DeviceBase* device = GetDevice();
@ -1394,10 +1366,10 @@ namespace dawn::native {
}
return device->CreateCommandBuffer(this, descriptor);
}
}
// Implementation of the command buffer validation that can be precomputed before submit
MaybeError CommandEncoder::ValidateFinish() const {
// Implementation of the command buffer validation that can be precomputed before submit
MaybeError CommandEncoder::ValidateFinish() const {
TRACE_EVENT0(GetDevice()->GetPlatform(), Validation, "CommandEncoder::ValidateFinish");
DAWN_TRY(GetDevice()->ValidateObject(this));
@ -1420,6 +1392,6 @@ namespace dawn::native {
mDebugGroupStackSize);
return {};
}
}
} // namespace dawn::native

View File

@ -27,12 +27,12 @@
namespace dawn::native {
enum class UsageValidationMode;
enum class UsageValidationMode;
MaybeError ValidateCommandEncoderDescriptor(const DeviceBase* device,
MaybeError ValidateCommandEncoderDescriptor(const DeviceBase* device,
const CommandEncoderDescriptor* descriptor);
class CommandEncoder final : public ApiObjectBase {
class CommandEncoder final : public ApiObjectBase {
public:
static Ref<CommandEncoder> Create(DeviceBase* device,
const CommandEncoderDescriptor* descriptor);
@ -116,7 +116,7 @@ namespace dawn::native {
uint64_t mDebugGroupStackSize = 0;
UsageValidationMode mUsageValidationMode;
};
};
} // namespace dawn::native

View File

@ -32,8 +32,8 @@
namespace dawn::native {
// Performs validation of the "synchronization scope" rules of WebGPU.
MaybeError ValidateSyncScopeResourceUsage(const SyncScopeResourceUsage& scope) {
// Performs validation of the "synchronization scope" rules of WebGPU.
MaybeError ValidateSyncScopeResourceUsage(const SyncScopeResourceUsage& scope) {
// Buffers can only be used as single-write or multiple read.
for (size_t i = 0; i < scope.bufferUsages.size(); ++i) {
const wgpu::BufferUsage usage = scope.bufferUsages[i];
@ -64,9 +64,9 @@ namespace dawn::native {
DAWN_TRY(std::move(error));
}
return {};
}
}
MaybeError ValidateTimestampQuery(const DeviceBase* device,
MaybeError ValidateTimestampQuery(const DeviceBase* device,
const QuerySetBase* querySet,
uint32_t queryIndex) {
DAWN_TRY(device->ValidateObject(querySet));
@ -79,9 +79,9 @@ namespace dawn::native {
querySet->GetQueryCount(), querySet);
return {};
}
}
MaybeError ValidateWriteBuffer(const DeviceBase* device,
MaybeError ValidateWriteBuffer(const DeviceBase* device,
const BufferBase* buffer,
uint64_t bufferOffset,
uint64_t size) {
@ -100,16 +100,16 @@ namespace dawn::native {
DAWN_TRY(ValidateCanUseAs(buffer, wgpu::BufferUsage::CopyDst));
return {};
}
}
bool IsRangeOverlapped(uint32_t startA, uint32_t startB, uint32_t length) {
bool IsRangeOverlapped(uint32_t startA, uint32_t startB, uint32_t length) {
uint32_t maxStart = std::max(startA, startB);
uint32_t minStart = std::min(startA, startB);
return static_cast<uint64_t>(minStart) + static_cast<uint64_t>(length) >
static_cast<uint64_t>(maxStart);
}
}
ResultOrError<uint64_t> ComputeRequiredBytesInCopy(const TexelBlockInfo& blockInfo,
ResultOrError<uint64_t> ComputeRequiredBytesInCopy(const TexelBlockInfo& blockInfo,
const Extent3D& copySize,
uint32_t bytesPerRow,
uint32_t rowsPerImage) {
@ -154,23 +154,23 @@ namespace dawn::native {
requiredBytesInCopy += bytesInLastImage;
}
return requiredBytesInCopy;
}
}
MaybeError ValidateCopySizeFitsInBuffer(const Ref<BufferBase>& buffer,
MaybeError ValidateCopySizeFitsInBuffer(const Ref<BufferBase>& buffer,
uint64_t offset,
uint64_t size) {
uint64_t bufferSize = buffer->GetSize();
bool fitsInBuffer = offset <= bufferSize && (size <= (bufferSize - offset));
DAWN_INVALID_IF(!fitsInBuffer,
"Copy range (offset: %u, size: %u) does not fit in %s size (%u).", offset,
size, buffer.Get(), bufferSize);
"Copy range (offset: %u, size: %u) does not fit in %s size (%u).", offset, size,
buffer.Get(), bufferSize);
return {};
}
}
// Replace wgpu::kCopyStrideUndefined with real values, so backends don't have to think about
// it.
void ApplyDefaultTextureDataLayoutOptions(TextureDataLayout* layout,
// Replace wgpu::kCopyStrideUndefined with real values, so backends don't have to think about
// it.
void ApplyDefaultTextureDataLayoutOptions(TextureDataLayout* layout,
const TexelBlockInfo& blockInfo,
const Extent3D& copyExtent) {
ASSERT(layout != nullptr);
@ -189,9 +189,9 @@ namespace dawn::native {
ASSERT(copyExtent.depthOrArrayLayers <= 1);
layout->rowsPerImage = heightInBlocks;
}
}
}
MaybeError ValidateLinearTextureData(const TextureDataLayout& layout,
MaybeError ValidateLinearTextureData(const TextureDataLayout& layout,
uint64_t byteSize,
const TexelBlockInfo& blockInfo,
const Extent3D& copyExtent) {
@ -201,8 +201,7 @@ namespace dawn::native {
// TODO(dawn:563): Right now kCopyStrideUndefined will be formatted as a large value in the
// validation message. Investigate ways to make it print as a more readable symbol.
DAWN_INVALID_IF(
copyExtent.depthOrArrayLayers > 1 &&
(layout.bytesPerRow == wgpu::kCopyStrideUndefined ||
copyExtent.depthOrArrayLayers > 1 && (layout.bytesPerRow == wgpu::kCopyStrideUndefined ||
layout.rowsPerImage == wgpu::kCopyStrideUndefined),
"Copy depth (%u) is > 1, but bytesPerRow (%u) or rowsPerImage (%u) are not specified.",
copyExtent.depthOrArrayLayers, layout.bytesPerRow, layout.rowsPerImage);
@ -214,8 +213,7 @@ namespace dawn::native {
// Validation for other members in layout:
ASSERT(copyExtent.width % blockInfo.width == 0);
uint32_t widthInBlocks = copyExtent.width / blockInfo.width;
ASSERT(Safe32x32(widthInBlocks, blockInfo.byteSize) <=
std::numeric_limits<uint32_t>::max());
ASSERT(Safe32x32(widthInBlocks, blockInfo.byteSize) <= std::numeric_limits<uint32_t>::max());
uint32_t bytesInLastRow = widthInBlocks * blockInfo.byteSize;
// These != wgpu::kCopyStrideUndefined checks are technically redundant with the > checks,
@ -225,18 +223,18 @@ namespace dawn::native {
"The byte size of each row (%u) is > bytesPerRow (%u).", bytesInLastRow,
layout.bytesPerRow);
DAWN_INVALID_IF(layout.rowsPerImage != wgpu::kCopyStrideUndefined &&
heightInBlocks > layout.rowsPerImage,
"The height of each image in blocks (%u) is > rowsPerImage (%u).",
heightInBlocks, layout.rowsPerImage);
DAWN_INVALID_IF(
layout.rowsPerImage != wgpu::kCopyStrideUndefined && heightInBlocks > layout.rowsPerImage,
"The height of each image in blocks (%u) is > rowsPerImage (%u).", heightInBlocks,
layout.rowsPerImage);
// We compute required bytes in copy after validating texel block alignments
// because the divisibility conditions are necessary for the algorithm to be valid,
// also the bytesPerRow bound is necessary to avoid overflows.
uint64_t requiredBytesInCopy;
DAWN_TRY_ASSIGN(requiredBytesInCopy,
ComputeRequiredBytesInCopy(blockInfo, copyExtent, layout.bytesPerRow,
layout.rowsPerImage));
DAWN_TRY_ASSIGN(
requiredBytesInCopy,
ComputeRequiredBytesInCopy(blockInfo, copyExtent, layout.bytesPerRow, layout.rowsPerImage));
bool fitsInData =
layout.offset <= byteSize && (requiredBytesInCopy <= (byteSize - layout.offset));
@ -247,9 +245,9 @@ namespace dawn::native {
requiredBytesInCopy, byteSize, layout.offset);
return {};
}
}
MaybeError ValidateImageCopyBuffer(DeviceBase const* device,
MaybeError ValidateImageCopyBuffer(DeviceBase const* device,
const ImageCopyBuffer& imageCopyBuffer) {
DAWN_TRY(device->ValidateObject(imageCopyBuffer.buffer));
if (imageCopyBuffer.layout.bytesPerRow != wgpu::kCopyStrideUndefined) {
@ -259,9 +257,9 @@ namespace dawn::native {
}
return {};
}
}
MaybeError ValidateImageCopyTexture(DeviceBase const* device,
MaybeError ValidateImageCopyTexture(DeviceBase const* device,
const ImageCopyTexture& textureCopy,
const Extent3D& copySize) {
const TextureBase* texture = textureCopy.texture;
@ -272,8 +270,7 @@ namespace dawn::native {
textureCopy.mipLevel, texture->GetNumMipLevels(), texture);
DAWN_TRY(ValidateTextureAspect(textureCopy.aspect));
DAWN_INVALID_IF(
SelectFormatAspects(texture->GetFormat(), textureCopy.aspect) == Aspect::None,
DAWN_INVALID_IF(SelectFormatAspects(texture->GetFormat(), textureCopy.aspect) == Aspect::None,
"%s format (%s) does not have the selected aspect (%s).", texture,
texture->GetFormat().format, textureCopy.aspect);
@ -287,14 +284,14 @@ namespace dawn::native {
"Copy origin (%s) and size (%s) does not cover the entire subresource (origin: "
"[x: 0, y: 0], size: %s) of %s. The entire subresource must be copied when the "
"format (%s) is a depth/stencil format or the sample count (%u) is > 1.",
&textureCopy.origin, &copySize, &subresourceSize, texture,
texture->GetFormat().format, texture->GetSampleCount());
&textureCopy.origin, &copySize, &subresourceSize, texture, texture->GetFormat().format,
texture->GetSampleCount());
}
return {};
}
}
MaybeError ValidateTextureCopyRange(DeviceBase const* device,
MaybeError ValidateTextureCopyRange(DeviceBase const* device,
const ImageCopyTexture& textureCopy,
const Extent3D& copySize) {
const TextureBase* texture = textureCopy.texture;
@ -311,8 +308,7 @@ namespace dawn::native {
DAWN_INVALID_IF(
static_cast<uint64_t>(textureCopy.origin.x) + static_cast<uint64_t>(copySize.width) >
static_cast<uint64_t>(mipSize.width) ||
static_cast<uint64_t>(textureCopy.origin.y) +
static_cast<uint64_t>(copySize.height) >
static_cast<uint64_t>(textureCopy.origin.y) + static_cast<uint64_t>(copySize.height) >
static_cast<uint64_t>(mipSize.height) ||
static_cast<uint64_t>(textureCopy.origin.z) +
static_cast<uint64_t>(copySize.depthOrArrayLayers) >
@ -340,19 +336,18 @@ namespace dawn::native {
"copySize.width (%u) is not a multiple of compressed texture format block width "
"(%u).",
copySize.width, blockInfo.width);
DAWN_INVALID_IF(
copySize.height % blockInfo.height != 0,
DAWN_INVALID_IF(copySize.height % blockInfo.height != 0,
"copySize.height (%u) is not a multiple of compressed texture format block "
"height (%u).",
copySize.height, blockInfo.height);
}
return {};
}
}
// Always returns a single aspect (color, stencil, depth, or ith plane for multi-planar
// formats).
ResultOrError<Aspect> SingleAspectUsedByImageCopyTexture(const ImageCopyTexture& view) {
// Always returns a single aspect (color, stencil, depth, or ith plane for multi-planar
// formats).
ResultOrError<Aspect> SingleAspectUsedByImageCopyTexture(const ImageCopyTexture& view) {
const Format& format = view.texture->GetFormat();
switch (view.aspect) {
case wgpu::TextureAspect::All: {
@ -376,9 +371,9 @@ namespace dawn::native {
break;
}
UNREACHABLE();
}
}
MaybeError ValidateLinearToDepthStencilCopyRestrictions(const ImageCopyTexture& dst) {
MaybeError ValidateLinearToDepthStencilCopyRestrictions(const ImageCopyTexture& dst) {
Aspect aspectUsed;
DAWN_TRY_ASSIGN(aspectUsed, SingleAspectUsedByImageCopyTexture(dst));
@ -388,15 +383,15 @@ namespace dawn::native {
return {};
default:
DAWN_INVALID_IF(aspectUsed == Aspect::Depth,
"Cannot copy into the depth aspect of %s with format %s.",
dst.texture, format.format);
"Cannot copy into the depth aspect of %s with format %s.", dst.texture,
format.format);
break;
}
return {};
}
}
MaybeError ValidateTextureToTextureCopyCommonRestrictions(const ImageCopyTexture& src,
MaybeError ValidateTextureToTextureCopyCommonRestrictions(const ImageCopyTexture& src,
const ImageCopyTexture& dst,
const Extent3D& copySize) {
const uint32_t srcSamples = src.texture->GetSampleCount();
@ -427,14 +422,13 @@ namespace dawn::native {
return DAWN_FORMAT_VALIDATION_ERROR("Copy is from %s to itself.", src.texture);
case wgpu::TextureDimension::e2D:
DAWN_INVALID_IF(src.mipLevel == dst.mipLevel &&
IsRangeOverlapped(src.origin.z, dst.origin.z,
copySize.depthOrArrayLayers),
DAWN_INVALID_IF(
src.mipLevel == dst.mipLevel &&
IsRangeOverlapped(src.origin.z, dst.origin.z, copySize.depthOrArrayLayers),
"Copy source and destination are overlapping layer ranges "
"([%u, %u) and [%u, %u)) of %s mip level %u",
src.origin.z, src.origin.z + copySize.depthOrArrayLayers,
dst.origin.z, dst.origin.z + copySize.depthOrArrayLayers,
src.texture, src.mipLevel);
src.origin.z, src.origin.z + copySize.depthOrArrayLayers, dst.origin.z,
dst.origin.z + copySize.depthOrArrayLayers, src.texture, src.mipLevel);
break;
case wgpu::TextureDimension::e3D:
@ -446,23 +440,22 @@ namespace dawn::native {
}
return {};
}
}
MaybeError ValidateTextureToTextureCopyRestrictions(const ImageCopyTexture& src,
MaybeError ValidateTextureToTextureCopyRestrictions(const ImageCopyTexture& src,
const ImageCopyTexture& dst,
const Extent3D& copySize) {
// Metal requires texture-to-texture copies happens between texture formats that equal to
// each other or only have diff on srgb-ness.
DAWN_INVALID_IF(
!src.texture->GetFormat().CopyCompatibleWith(dst.texture->GetFormat()),
DAWN_INVALID_IF(!src.texture->GetFormat().CopyCompatibleWith(dst.texture->GetFormat()),
"Source %s format (%s) and destination %s format (%s) are not copy compatible.",
src.texture, src.texture->GetFormat().format, dst.texture,
dst.texture->GetFormat().format);
return ValidateTextureToTextureCopyCommonRestrictions(src, dst, copySize);
}
}
MaybeError ValidateCanUseAs(const TextureBase* texture,
MaybeError ValidateCanUseAs(const TextureBase* texture,
wgpu::TextureUsage usage,
UsageValidationMode mode) {
ASSERT(wgpu::HasZeroOrOneBits(usage));
@ -479,14 +472,13 @@ namespace dawn::native {
}
return {};
}
}
MaybeError ValidateCanUseAs(const BufferBase* buffer, wgpu::BufferUsage usage) {
MaybeError ValidateCanUseAs(const BufferBase* buffer, wgpu::BufferUsage usage) {
ASSERT(wgpu::HasZeroOrOneBits(usage));
DAWN_INVALID_IF(!(buffer->GetUsageExternalOnly() & usage),
"%s usage (%s) doesn't include %s.", buffer, buffer->GetUsageExternalOnly(),
usage);
DAWN_INVALID_IF(!(buffer->GetUsageExternalOnly() & usage), "%s usage (%s) doesn't include %s.",
buffer, buffer->GetUsageExternalOnly(), usage);
return {};
}
}
} // namespace dawn::native

View File

@ -23,74 +23,74 @@
namespace dawn::native {
class QuerySetBase;
struct SyncScopeResourceUsage;
struct TexelBlockInfo;
class QuerySetBase;
struct SyncScopeResourceUsage;
struct TexelBlockInfo;
MaybeError ValidateSyncScopeResourceUsage(const SyncScopeResourceUsage& usage);
MaybeError ValidateSyncScopeResourceUsage(const SyncScopeResourceUsage& usage);
MaybeError ValidateTimestampQuery(const DeviceBase* device,
MaybeError ValidateTimestampQuery(const DeviceBase* device,
const QuerySetBase* querySet,
uint32_t queryIndex);
MaybeError ValidateWriteBuffer(const DeviceBase* device,
MaybeError ValidateWriteBuffer(const DeviceBase* device,
const BufferBase* buffer,
uint64_t bufferOffset,
uint64_t size);
template <typename A, typename B>
DAWN_FORCE_INLINE uint64_t Safe32x32(A a, B b) {
template <typename A, typename B>
DAWN_FORCE_INLINE uint64_t Safe32x32(A a, B b) {
static_assert(std::is_same<A, uint32_t>::value, "'a' must be uint32_t");
static_assert(std::is_same<B, uint32_t>::value, "'b' must be uint32_t");
return uint64_t(a) * uint64_t(b);
}
}
ResultOrError<uint64_t> ComputeRequiredBytesInCopy(const TexelBlockInfo& blockInfo,
ResultOrError<uint64_t> ComputeRequiredBytesInCopy(const TexelBlockInfo& blockInfo,
const Extent3D& copySize,
uint32_t bytesPerRow,
uint32_t rowsPerImage);
void ApplyDefaultTextureDataLayoutOptions(TextureDataLayout* layout,
void ApplyDefaultTextureDataLayoutOptions(TextureDataLayout* layout,
const TexelBlockInfo& blockInfo,
const Extent3D& copyExtent);
MaybeError ValidateLinearTextureData(const TextureDataLayout& layout,
MaybeError ValidateLinearTextureData(const TextureDataLayout& layout,
uint64_t byteSize,
const TexelBlockInfo& blockInfo,
const Extent3D& copyExtent);
MaybeError ValidateTextureCopyRange(DeviceBase const* device,
MaybeError ValidateTextureCopyRange(DeviceBase const* device,
const ImageCopyTexture& imageCopyTexture,
const Extent3D& copySize);
ResultOrError<Aspect> SingleAspectUsedByImageCopyTexture(const ImageCopyTexture& view);
MaybeError ValidateLinearToDepthStencilCopyRestrictions(const ImageCopyTexture& dst);
ResultOrError<Aspect> SingleAspectUsedByImageCopyTexture(const ImageCopyTexture& view);
MaybeError ValidateLinearToDepthStencilCopyRestrictions(const ImageCopyTexture& dst);
MaybeError ValidateImageCopyBuffer(DeviceBase const* device,
MaybeError ValidateImageCopyBuffer(DeviceBase const* device,
const ImageCopyBuffer& imageCopyBuffer);
MaybeError ValidateImageCopyTexture(DeviceBase const* device,
MaybeError ValidateImageCopyTexture(DeviceBase const* device,
const ImageCopyTexture& imageCopyTexture,
const Extent3D& copySize);
MaybeError ValidateCopySizeFitsInBuffer(const Ref<BufferBase>& buffer,
MaybeError ValidateCopySizeFitsInBuffer(const Ref<BufferBase>& buffer,
uint64_t offset,
uint64_t size);
bool IsRangeOverlapped(uint32_t startA, uint32_t startB, uint32_t length);
bool IsRangeOverlapped(uint32_t startA, uint32_t startB, uint32_t length);
MaybeError ValidateTextureToTextureCopyCommonRestrictions(const ImageCopyTexture& src,
MaybeError ValidateTextureToTextureCopyCommonRestrictions(const ImageCopyTexture& src,
const ImageCopyTexture& dst,
const Extent3D& copySize);
MaybeError ValidateTextureToTextureCopyRestrictions(const ImageCopyTexture& src,
MaybeError ValidateTextureToTextureCopyRestrictions(const ImageCopyTexture& src,
const ImageCopyTexture& dst,
const Extent3D& copySize);
enum class UsageValidationMode {
enum class UsageValidationMode {
Default,
Internal,
};
};
MaybeError ValidateCanUseAs(const TextureBase* texture,
MaybeError ValidateCanUseAs(const TextureBase* texture,
wgpu::TextureUsage usage,
UsageValidationMode mode);
MaybeError ValidateCanUseAs(const BufferBase* buffer, wgpu::BufferUsage usage);
MaybeError ValidateCanUseAs(const BufferBase* buffer, wgpu::BufferUsage usage);
} // namespace dawn::native

View File

@ -25,7 +25,7 @@
namespace dawn::native {
void FreeCommands(CommandIterator* commands) {
void FreeCommands(CommandIterator* commands) {
commands->Reset();
Command type;
@ -62,8 +62,7 @@ namespace dawn::native {
break;
}
case Command::CopyTextureToTexture: {
CopyTextureToTextureCmd* copy =
commands->NextCommand<CopyTextureToTextureCmd>();
CopyTextureToTextureCmd* copy = commands->NextCommand<CopyTextureToTextureCmd>();
copy->~CopyTextureToTextureCmd();
break;
}
@ -211,9 +210,9 @@ namespace dawn::native {
}
commands->MakeEmptyAsDataWasDestroyed();
}
}
void SkipCommand(CommandIterator* commands, Command type) {
void SkipCommand(CommandIterator* commands, Command type) {
switch (type) {
case Command::BeginComputePass:
commands->NextCommand<BeginComputePassCmd>();
@ -360,6 +359,6 @@ namespace dawn::native {
break;
}
}
}
}
} // namespace dawn::native

View File

@ -29,11 +29,11 @@
namespace dawn::native {
// Definition of the commands that are present in the CommandIterator given by the
// CommandBufferBuilder. There are not defined in CommandBuffer.h to break some header
// dependencies: Ref<Object> needs Object to be defined.
// Definition of the commands that are present in the CommandIterator given by the
// CommandBufferBuilder. There are not defined in CommandBuffer.h to break some header
// dependencies: Ref<Object> needs Object to be defined.
enum class Command {
enum class Command {
BeginComputePass,
BeginOcclusionQuery,
BeginRenderPass,
@ -67,31 +67,31 @@ namespace dawn::native {
SetVertexBuffer,
WriteBuffer,
WriteTimestamp,
};
};
struct TimestampWrite {
struct TimestampWrite {
Ref<QuerySetBase> querySet;
uint32_t queryIndex;
};
};
struct BeginComputePassCmd {
struct BeginComputePassCmd {
std::vector<TimestampWrite> timestampWrites;
};
};
struct BeginOcclusionQueryCmd {
struct BeginOcclusionQueryCmd {
Ref<QuerySetBase> querySet;
uint32_t queryIndex;
};
};
struct RenderPassColorAttachmentInfo {
struct RenderPassColorAttachmentInfo {
Ref<TextureViewBase> view;
Ref<TextureViewBase> resolveTarget;
wgpu::LoadOp loadOp;
wgpu::StoreOp storeOp;
dawn::native::Color clearColor;
};
};
struct RenderPassDepthStencilAttachmentInfo {
struct RenderPassDepthStencilAttachmentInfo {
Ref<TextureViewBase> view;
wgpu::LoadOp depthLoadOp;
wgpu::StoreOp depthStoreOp;
@ -101,9 +101,9 @@ namespace dawn::native {
uint32_t clearStencil;
bool depthReadOnly;
bool stencilReadOnly;
};
};
struct BeginRenderPassCmd {
struct BeginRenderPassCmd {
Ref<AttachmentState> attachmentState;
ityp::array<ColorAttachmentIndex, RenderPassColorAttachmentInfo, kMaxColorAttachments>
colorAttachments;
@ -115,185 +115,185 @@ namespace dawn::native {
Ref<QuerySetBase> occlusionQuerySet;
std::vector<TimestampWrite> timestampWrites;
};
};
struct BufferCopy {
struct BufferCopy {
Ref<BufferBase> buffer;
uint64_t offset;
uint32_t bytesPerRow;
uint32_t rowsPerImage;
};
};
struct TextureCopy {
struct TextureCopy {
Ref<TextureBase> texture;
uint32_t mipLevel;
Origin3D origin; // Texels / array layer
Aspect aspect;
};
};
struct CopyBufferToBufferCmd {
struct CopyBufferToBufferCmd {
Ref<BufferBase> source;
uint64_t sourceOffset;
Ref<BufferBase> destination;
uint64_t destinationOffset;
uint64_t size;
};
};
struct CopyBufferToTextureCmd {
struct CopyBufferToTextureCmd {
BufferCopy source;
TextureCopy destination;
Extent3D copySize; // Texels
};
};
struct CopyTextureToBufferCmd {
struct CopyTextureToBufferCmd {
TextureCopy source;
BufferCopy destination;
Extent3D copySize; // Texels
};
};
struct CopyTextureToTextureCmd {
struct CopyTextureToTextureCmd {
TextureCopy source;
TextureCopy destination;
Extent3D copySize; // Texels
};
};
struct DispatchCmd {
struct DispatchCmd {
uint32_t x;
uint32_t y;
uint32_t z;
};
};
struct DispatchIndirectCmd {
struct DispatchIndirectCmd {
Ref<BufferBase> indirectBuffer;
uint64_t indirectOffset;
};
};
struct DrawCmd {
struct DrawCmd {
uint32_t vertexCount;
uint32_t instanceCount;
uint32_t firstVertex;
uint32_t firstInstance;
};
};
struct DrawIndexedCmd {
struct DrawIndexedCmd {
uint32_t indexCount;
uint32_t instanceCount;
uint32_t firstIndex;
int32_t baseVertex;
uint32_t firstInstance;
};
};
struct DrawIndirectCmd {
struct DrawIndirectCmd {
Ref<BufferBase> indirectBuffer;
uint64_t indirectOffset;
};
};
struct DrawIndexedIndirectCmd : DrawIndirectCmd {};
struct DrawIndexedIndirectCmd : DrawIndirectCmd {};
struct EndComputePassCmd {
struct EndComputePassCmd {
std::vector<TimestampWrite> timestampWrites;
};
};
struct EndOcclusionQueryCmd {
struct EndOcclusionQueryCmd {
Ref<QuerySetBase> querySet;
uint32_t queryIndex;
};
};
struct EndRenderPassCmd {
struct EndRenderPassCmd {
std::vector<TimestampWrite> timestampWrites;
};
};
struct ExecuteBundlesCmd {
struct ExecuteBundlesCmd {
uint32_t count;
};
};
struct ClearBufferCmd {
struct ClearBufferCmd {
Ref<BufferBase> buffer;
uint64_t offset;
uint64_t size;
};
};
struct InsertDebugMarkerCmd {
struct InsertDebugMarkerCmd {
uint32_t length;
};
};
struct PopDebugGroupCmd {};
struct PopDebugGroupCmd {};
struct PushDebugGroupCmd {
struct PushDebugGroupCmd {
uint32_t length;
};
};
struct ResolveQuerySetCmd {
struct ResolveQuerySetCmd {
Ref<QuerySetBase> querySet;
uint32_t firstQuery;
uint32_t queryCount;
Ref<BufferBase> destination;
uint64_t destinationOffset;
};
};
struct SetComputePipelineCmd {
struct SetComputePipelineCmd {
Ref<ComputePipelineBase> pipeline;
};
};
struct SetRenderPipelineCmd {
struct SetRenderPipelineCmd {
Ref<RenderPipelineBase> pipeline;
};
};
struct SetStencilReferenceCmd {
struct SetStencilReferenceCmd {
uint32_t reference;
};
};
struct SetViewportCmd {
struct SetViewportCmd {
float x, y, width, height, minDepth, maxDepth;
};
};
struct SetScissorRectCmd {
struct SetScissorRectCmd {
uint32_t x, y, width, height;
};
};
struct SetBlendConstantCmd {
struct SetBlendConstantCmd {
Color color;
};
};
struct SetBindGroupCmd {
struct SetBindGroupCmd {
BindGroupIndex index;
Ref<BindGroupBase> group;
uint32_t dynamicOffsetCount;
};
};
struct SetIndexBufferCmd {
struct SetIndexBufferCmd {
Ref<BufferBase> buffer;
wgpu::IndexFormat format;
uint64_t offset;
uint64_t size;
};
};
struct SetVertexBufferCmd {
struct SetVertexBufferCmd {
VertexBufferSlot slot;
Ref<BufferBase> buffer;
uint64_t offset;
uint64_t size;
};
};
struct WriteBufferCmd {
struct WriteBufferCmd {
Ref<BufferBase> buffer;
uint64_t offset;
uint64_t size;
};
};
struct WriteTimestampCmd {
struct WriteTimestampCmd {
Ref<QuerySetBase> querySet;
uint32_t queryIndex;
};
};
// This needs to be called before the CommandIterator is freed so that the Ref<> present in
// the commands have a chance to run their destructor and remove internal references.
class CommandIterator;
void FreeCommands(CommandIterator* commands);
// This needs to be called before the CommandIterator is freed so that the Ref<> present in
// the commands have a chance to run their destructor and remove internal references.
class CommandIterator;
void FreeCommands(CommandIterator* commands);
// Helper function to allow skipping over a command when it is unimplemented, while still
// consuming the correct amount of data from the command iterator.
void SkipCommand(CommandIterator* commands, Command type);
// Helper function to allow skipping over a command when it is unimplemented, while still
// consuming the correct amount of data from the command iterator.
void SkipCommand(CommandIterator* commands, Command type);
} // namespace dawn::native

View File

@ -21,9 +21,9 @@
namespace dawn::native {
namespace {
namespace {
WGPUCompilationMessageType tintSeverityToMessageType(tint::diag::Severity severity) {
WGPUCompilationMessageType tintSeverityToMessageType(tint::diag::Severity severity) {
switch (severity) {
case tint::diag::Severity::Note:
return WGPUCompilationMessageType_Info;
@ -32,17 +32,17 @@ namespace dawn::native {
default:
return WGPUCompilationMessageType_Error;
}
}
}
} // anonymous namespace
} // anonymous namespace
OwnedCompilationMessages::OwnedCompilationMessages() {
OwnedCompilationMessages::OwnedCompilationMessages() {
mCompilationInfo.nextInChain = 0;
mCompilationInfo.messageCount = 0;
mCompilationInfo.messages = nullptr;
}
}
void OwnedCompilationMessages::AddMessageForTesting(std::string message,
void OwnedCompilationMessages::AddMessageForTesting(std::string message,
wgpu::CompilationMessageType type,
uint64_t lineNum,
uint64_t linePos,
@ -52,11 +52,11 @@ namespace dawn::native {
ASSERT(mCompilationInfo.messages == nullptr);
mMessageStrings.push_back(message);
mMessages.push_back({nullptr, nullptr, static_cast<WGPUCompilationMessageType>(type),
lineNum, linePos, offset, length});
}
mMessages.push_back({nullptr, nullptr, static_cast<WGPUCompilationMessageType>(type), lineNum,
linePos, offset, length});
}
void OwnedCompilationMessages::AddMessage(const tint::diag::Diagnostic& diagnostic) {
void OwnedCompilationMessages::AddMessage(const tint::diag::Diagnostic& diagnostic) {
// Cannot add messages after GetCompilationInfo has been called.
ASSERT(mCompilationInfo.messages == nullptr);
@ -114,11 +114,11 @@ namespace dawn::native {
mMessageStrings.push_back(diagnostic.message);
}
mMessages.push_back({nullptr, nullptr, tintSeverityToMessageType(diagnostic.severity),
lineNum, linePos, offset, length});
}
mMessages.push_back({nullptr, nullptr, tintSeverityToMessageType(diagnostic.severity), lineNum,
linePos, offset, length});
}
void OwnedCompilationMessages::AddMessages(const tint::diag::List& diagnostics) {
void OwnedCompilationMessages::AddMessages(const tint::diag::List& diagnostics) {
// Cannot add messages after GetCompilationInfo has been called.
ASSERT(mCompilationInfo.messages == nullptr);
@ -127,17 +127,17 @@ namespace dawn::native {
}
AddFormattedTintMessages(diagnostics);
}
}
void OwnedCompilationMessages::ClearMessages() {
void OwnedCompilationMessages::ClearMessages() {
// Cannot clear messages after GetCompilationInfo has been called.
ASSERT(mCompilationInfo.messages == nullptr);
mMessageStrings.clear();
mMessages.clear();
}
}
const WGPUCompilationInfo* OwnedCompilationMessages::GetCompilationInfo() {
const WGPUCompilationInfo* OwnedCompilationMessages::GetCompilationInfo() {
mCompilationInfo.messageCount = mMessages.size();
mCompilationInfo.messages = mMessages.data();
@ -150,13 +150,13 @@ namespace dawn::native {
}
return &mCompilationInfo;
}
}
const std::vector<std::string>& OwnedCompilationMessages::GetFormattedTintMessages() {
const std::vector<std::string>& OwnedCompilationMessages::GetFormattedTintMessages() {
return mFormattedTintMessages;
}
}
void OwnedCompilationMessages::AddFormattedTintMessages(const tint::diag::List& diagnostics) {
void OwnedCompilationMessages::AddFormattedTintMessages(const tint::diag::List& diagnostics) {
tint::diag::List messageList;
size_t warningCount = 0;
size_t errorCount = 0;
@ -196,6 +196,6 @@ namespace dawn::native {
t << "generated while compiling the shader:" << std::endl
<< tint::diag::Formatter{style}.format(messageList);
mFormattedTintMessages.push_back(t.str());
}
}
} // namespace dawn::native

View File

@ -23,13 +23,13 @@
#include "dawn/common/NonCopyable.h"
namespace tint::diag {
class Diagnostic;
class List;
class Diagnostic;
class List;
} // namespace tint::diag
namespace dawn::native {
class OwnedCompilationMessages : public NonCopyable {
class OwnedCompilationMessages : public NonCopyable {
public:
OwnedCompilationMessages();
~OwnedCompilationMessages() = default;
@ -55,7 +55,7 @@ namespace dawn::native {
std::vector<std::string> mMessageStrings;
std::vector<WGPUCompilationMessage> mMessages;
std::vector<std::string> mFormattedTintMessages;
};
};
} // namespace dawn::native

Some files were not shown because too many files have changed in this diff Show More