dawn E2E: Refactor and add non-struct-member tests in ComputeLayoutMemoryBufferTests

This CL refactor the end-to-end test suit ComputeLayoutMemoryBufferTests
and add tests for non-struct-member scalar, vector, matrix, and array of
vectors and matrices types. This test suit is also intend to test f16
buffer read/write after it is implemented.

Bug: tint:1673
Change-Id: Iea4d3f70897d196ea00e3a3e0189a0372afe0382
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/102800
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
Commit-Queue: Zhaoming Jiang <zhaoming.jiang@intel.com>
This commit is contained in:
Zhaoming Jiang 2022-09-29 04:02:48 +00:00 committed by Dawn LUCI CQ
parent 0c71e44aa0
commit 5e22e46a63
1 changed files with 627 additions and 250 deletions

View File

@ -34,77 +34,6 @@ std::string ReplaceAll(std::string str, const std::string& substr, const std::st
return str;
}
// DataMatcherCallback is the callback function by DataMatcher.
// It is called for each contiguous sequence of bytes that should be checked
// for equality.
// offset and size are in units of bytes.
using DataMatcherCallback = std::function<void(uint32_t offset, uint32_t size)>;
// DataMatcher is a function pointer to a data matching function.
// size is the total number of bytes being considered for matching.
// The callback may be called once or multiple times, and may only consider
// part of the interval [0, size)
using DataMatcher = void (*)(uint32_t size, DataMatcherCallback);
// FullDataMatcher is a DataMatcher that calls callback with the interval
// [0, size)
void FullDataMatcher(uint32_t size, DataMatcherCallback callback) {
callback(0, size);
}
// StridedDataMatcher is a DataMatcher that calls callback with the strided
// intervals of length BYTES_TO_MATCH, skipping BYTES_TO_SKIP.
// For example: StridedDataMatcher<2, 4>(18, callback) will call callback
// with the intervals: [0, 2), [6, 8), [12, 14)
template <int BYTES_TO_MATCH, int BYTES_TO_SKIP>
void StridedDataMatcher(uint32_t size, DataMatcherCallback callback) {
uint32_t offset = 0;
while (offset < size) {
callback(offset, BYTES_TO_MATCH);
offset += BYTES_TO_MATCH + BYTES_TO_SKIP;
}
}
// Align returns the WGSL decoration for an explicit structure field alignment
std::string AlignDeco(uint32_t value) {
return "@align(" + std::to_string(value) + ") ";
}
} // namespace
// Field holds test parameters for ComputeLayoutMemoryBufferTests.Fields
struct Field {
const char* type; // Type of the field
uint32_t align; // Alignment of the type in bytes
uint32_t size; // Natural size of the type in bytes
uint32_t padded_size = 0; // Decorated (extended) size of the type in bytes
DataMatcher matcher = &FullDataMatcher; // The matching method
bool storage_buffer_only = false; // This should only be used for storage buffer tests
// Sets the padded_size to value.
// Returns this Field so calls can be chained.
Field& PaddedSize(uint32_t value) {
padded_size = value;
return *this;
}
// Sets the matcher to a StridedDataMatcher<BYTES_TO_MATCH, BYTES_TO_SKIP>.
// Returns this Field so calls can be chained.
template <int BYTES_TO_MATCH, int BYTES_TO_SKIP>
Field& Strided() {
matcher = &StridedDataMatcher<BYTES_TO_MATCH, BYTES_TO_SKIP>;
return *this;
}
// Marks that this should only be used for storage buffer tests.
// Returns this Field so calls can be chained.
Field& StorageBufferOnly() {
storage_buffer_only = true;
return *this;
}
};
// StorageClass is an enumerator of storage classes used by ComputeLayoutMemoryBufferTests.Fields
enum class StorageClass {
Uniform,
@ -123,12 +52,395 @@ std::ostream& operator<<(std::ostream& o, StorageClass storageClass) {
return o;
}
// Host-sharable scalar types
enum class ScalarType {
f32,
i32,
u32,
f16,
};
std::string ScalarTypeName(ScalarType scalarType) {
switch (scalarType) {
case ScalarType::f32:
return "f32";
case ScalarType::i32:
return "i32";
case ScalarType::u32:
return "u32";
case ScalarType::f16:
return "f16";
}
UNREACHABLE();
return "";
}
size_t ScalarTypeSize(ScalarType scalarType) {
switch (scalarType) {
case ScalarType::f32:
case ScalarType::i32:
case ScalarType::u32:
return 4;
case ScalarType::f16:
return 2;
}
UNREACHABLE();
return 0;
}
// MemoryDataBuilder records and performs operations of following types on a memory buffer `buf`:
// 1. "Align": Align to a alignment `alignment`, which will ensure
// `buf.size() % alignment == 0` by adding padding bytes into the buffer
// if necessary;
// 2. "Data": Add `size` bytes of data bytes into buffer;
// 3. "Padding": Add `size` bytes of padding bytes into buffer;
// 4. "FillingFixed": Fill all `size` given (fixed) bytes into the memory buffer.
// Note that data bytes and padding bytes are generated seperatedly and designed to
// be distinguishable, i.e. data bytes have MSB set to 0 while padding bytes 1.
class MemoryDataBuilder {
public:
// Record a "Align" operation
MemoryDataBuilder& AlignTo(uint32_t alignment) {
mOperations.push_back({OperationType::Align, alignment, {}});
return *this;
}
// Record a "Data" operation
MemoryDataBuilder& AddData(size_t size) {
mOperations.push_back({OperationType::Data, size, {}});
return *this;
}
// Record a "Padding" operation
MemoryDataBuilder& AddPadding(size_t size) {
mOperations.push_back({OperationType::Padding, size, {}});
return *this;
}
// Record a "FillingFixed" operation
MemoryDataBuilder& AddFixedBytes(std::vector<uint8_t>& bytes) {
mOperations.push_back({OperationType::FillingFixed, bytes.size(), bytes});
return *this;
}
// A helper function to record a "FillingFixed" operation with all four bytes of a given U32
MemoryDataBuilder& AddFixedU32(uint32_t u32) {
std::vector<uint8_t> bytes;
bytes.emplace_back((u32 >> 0) & 0xff);
bytes.emplace_back((u32 >> 8) & 0xff);
bytes.emplace_back((u32 >> 16) & 0xff);
bytes.emplace_back((u32 >> 24) & 0xff);
return AddFixedBytes(bytes);
}
// Record all operations that `builder` recorded
MemoryDataBuilder& AddSubBuilder(MemoryDataBuilder builder) {
mOperations.insert(mOperations.end(), builder.mOperations.begin(),
builder.mOperations.end());
return *this;
}
// Apply all recorded operations, one by one, on a given memory buffer.
// dataXorKey and paddingXorKey controls the generated data and padding bytes seperatedly, make
// it possible to, for example, generate two buffers that have different data bytes but
// identical padding bytes, thus can be used as initializer and expectation bytes of the copy
// destination buffer, expecting data bytes are changed while padding bytes are left unchanged.
void ApplyOperationsToBuffer(std::vector<uint8_t>& buffer,
uint8_t dataXorKey,
uint8_t paddingXorKey) {
uint8_t dataByte = 0x0u;
uint8_t paddingByte = 0x2u;
// Get a data byte with MSB set to 0.
auto NextDataByte = [&]() {
dataByte += 0x11u;
return static_cast<uint8_t>((dataByte ^ dataXorKey) & 0x7fu);
};
// Get a padding byte with MSB set to 1, distinguished from data bytes.
auto NextPaddingByte = [&]() {
paddingByte += 0x13u;
return static_cast<uint8_t>((paddingByte ^ paddingXorKey) | 0x80u);
};
for (auto& operation : mOperations) {
switch (operation.mType) {
case OperationType::FillingFixed: {
ASSERT(operation.mOperand == operation.mFixedFillingData.size());
buffer.insert(buffer.end(), operation.mFixedFillingData.begin(),
operation.mFixedFillingData.end());
break;
}
case OperationType::Align: {
size_t targetSize = Align(buffer.size(), operation.mOperand);
size_t paddingSize = targetSize - buffer.size();
for (size_t i = 0; i < paddingSize; i++) {
buffer.push_back(NextPaddingByte());
}
break;
}
case OperationType::Data: {
for (size_t i = 0; i < operation.mOperand; i++) {
buffer.push_back(NextDataByte());
}
break;
}
case OperationType::Padding: {
for (size_t i = 0; i < operation.mOperand; i++) {
buffer.push_back(NextPaddingByte());
}
break;
}
}
}
}
// Create a empty memory buffer and apply all recorded operations one by one on it.
std::vector<uint8_t> CreateBufferAndApplyOperations(uint8_t dataXorKey = 0u,
uint8_t paddingXorKey = 0u) {
std::vector<uint8_t> buffer;
ApplyOperationsToBuffer(buffer, dataXorKey, paddingXorKey);
return buffer;
}
protected:
enum class OperationType {
Align,
Data,
Padding,
FillingFixed,
};
struct Operation {
OperationType mType;
// mOperand is `alignment` for Align operation, and `size` for Data, Padding, and
// FillingFixed.
size_t mOperand;
// The data that will be filled into buffer if the segment type is FillingFixed. Otherwise
// for Padding and Data segment, the filling bytes are byte-wise generated based on xor
// keys.
std::vector<uint8_t> mFixedFillingData;
};
std::vector<Operation> mOperations;
};
// DataMatcherCallback is the callback function by DataMatcher.
// It is called for each contiguous sequence of bytes that should be checked
// for equality.
// offset and size are in units of bytes.
using DataMatcherCallback = std::function<void(uint32_t offset, uint32_t size)>;
// Field describe a type that has contiguous data bytes, e.g. `i32`, `vec2<f32>`, `mat4x4<f32>` or
// `array<f32, 5>`, or have a fixed data stride, e.g. `mat3x3<f32>` or `array<vec3<f32>, 4>`.
// `@size` and `@align` attributes, when used as a struct member, can also described by this struct.
class Field {
public:
// Constructor with WGSL type name, natural alignment and natural size. Set mStrideDataBytes to
// natural size and mStridePaddingBytes to 0 by default to indicate continious data part.
Field(std::string wgslType, size_t align, size_t size)
: mWGSLType(wgslType),
mAlign(align),
mSize(size),
mStrideDataBytes(size),
mStridePaddingBytes(0) {}
const std::string& GetWGSLType() const { return mWGSLType; }
size_t GetAlign() const { return mAlign; }
// The natural size of this field type, i.e. the size without @size attribute
size_t GetUnpaddedSize() const { return mSize; }
// The padded size determined by @size attribute if existed, otherwise the natural size
size_t GetPaddedSize() const { return mHasSizeAttribute ? mPaddedSize : mSize; }
// Applies a @size attribute, sets the mPaddedSize to value.
// Returns this Field so calls can be chained.
Field& SizeAttribute(size_t value) {
ASSERT(value >= mSize);
mHasSizeAttribute = true;
mPaddedSize = value;
return *this;
}
bool HasSizeAttribute() const { return mHasSizeAttribute; }
// Applies a @align attribute, sets the align to value.
// Returns this Field so calls can be chained.
Field& AlignAttribute(size_t value) {
ASSERT(value >= mAlign);
ASSERT(IsPowerOfTwo(value));
mAlign = value;
mHasAlignAttribute = true;
return *this;
}
bool HasAlignAttribute() const { return mHasAlignAttribute; }
// Mark that the data part of this field is strided, and record given mStrideDataBytes and
// mStridePaddingBytes. Returns this Field so calls can be chained.
Field& Strided(size_t bytesData, size_t bytesPadding) {
// Check that stride pattern cover the whole data part, i.e. the data part contains N x
// whole data bytes and N or (N-1) x whole padding bytes.
ASSERT((mSize % (bytesData + bytesPadding) == 0) ||
((mSize + bytesPadding) % (bytesData + bytesPadding) == 0));
mStrideDataBytes = bytesData;
mStridePaddingBytes = bytesPadding;
return *this;
}
// Marks that this should only be used for storage buffer tests.
// Returns this Field so calls can be chained.
Field& StorageBufferOnly() {
mStorageBufferOnly = true;
return *this;
}
bool IsStorageBufferOnly() const { return mStorageBufferOnly; }
// Call the DataMatcherCallback `callback` for continious or strided data bytes, based on the
// strided information of this field. The callback may be called once or multiple times. Note
// that padding bytes introduced by @size attribute are not tested.
void CheckData(DataMatcherCallback callback) const {
// Calls `callback` with the strided intervals of length mStrideDataBytes, skipping
// mStridePaddingBytes. For example, for a field of mSize = 18, mStrideDataBytes = 2,
// and mStridePaddingBytes = 4, calls `callback` with the intervals: [0, 2), [6, 8),
// [12, 14). If the data is continious, i.e. mStrideDataBytes = 18 and
// mStridePaddingBytes = 0, `callback` would be called only once with the whole interval
// [0, 18).
size_t offset = 0;
while (offset < mSize) {
callback(offset, mStrideDataBytes);
offset += mStrideDataBytes + mStridePaddingBytes;
}
}
// Get a MemoryDataBuilder that do alignment, place data bytes and padding bytes, according to
// field's alignment, size, padding, and stride information. This MemoryDataBuilder can be used
// by other MemoryDataBuilder as needed.
MemoryDataBuilder GetDataBuilder() const {
MemoryDataBuilder builder;
builder.AlignTo(mAlign);
// Check that stride pattern cover the whole data part, i.e. the data part contains N x
// whole data bytes and N or (N-1) x whole padding bytes. Note that this also handle
// continious data, i.e. mStrideDataBytes == mSize and mStridePaddingBytes == 0, correctly.
ASSERT((mSize % (mStrideDataBytes + mStridePaddingBytes) == 0) ||
((mSize + mStridePaddingBytes) % (mStrideDataBytes + mStridePaddingBytes) == 0));
size_t offset = 0;
while (offset < mSize) {
builder.AddData(mStrideDataBytes);
offset += mStrideDataBytes;
if (offset < mSize) {
builder.AddPadding(mStridePaddingBytes);
offset += mStridePaddingBytes;
}
}
if (mHasSizeAttribute) {
builder.AddPadding(mPaddedSize - mSize);
}
return builder;
}
// Helper function to build a Field describing a scalar type.
static Field Scalar(ScalarType type) {
return Field(ScalarTypeName(type), ScalarTypeSize(type), ScalarTypeSize(type));
}
// Helper function to build a Field describing a vector type.
static Field Vector(uint32_t n, ScalarType type) {
ASSERT(2 <= n && n <= 4);
size_t elementSize = ScalarTypeSize(type);
size_t vectorSize = n * elementSize;
size_t vectorAlignment = (n == 3 ? 4 : n) * elementSize;
return Field{"vec" + std::to_string(n) + "<" + ScalarTypeName(type) + ">", vectorAlignment,
vectorSize};
}
// Helper function to build a Field describing a matrix type.
static Field Matrix(uint32_t col, uint32_t row, ScalarType type) {
ASSERT(2 <= col && col <= 4);
ASSERT(2 <= row && row <= 4);
ASSERT(type == ScalarType::f32 || type == ScalarType::f16);
size_t elementSize = ScalarTypeSize(type);
size_t colVectorSize = row * elementSize;
size_t colVectorAlignment = (row == 3 ? 4 : row) * elementSize;
Field field = Field{"mat" + std::to_string(col) + "x" + std::to_string(row) + "<" +
ScalarTypeName(type) + ">",
colVectorAlignment, col * colVectorAlignment};
if (colVectorSize != colVectorAlignment) {
field.Strided(colVectorSize, colVectorAlignment - colVectorSize);
}
return field;
}
private:
const std::string mWGSLType; // Friendly WGSL name of the type of the field
size_t mAlign; // Alignment of the type in bytes, can be change by @align attribute
const size_t mSize; // Natural size of the type in bytes
bool mHasAlignAttribute = false;
bool mHasSizeAttribute = false;
// Decorated size of the type in bytes indicated by @size attribute, if existed
size_t mPaddedSize = 0;
// Whether this type doesn't meet the layout constraints for uniform buffer and thus should only
// be used for storage buffer tests
bool mStorageBufferOnly = false;
// Describe the striding pattern of data part (i.e. the "natural size" part). Note that
// continious types are described as mStrideDataBytes == mSize and mStridePaddingBytes == 0.
size_t mStrideDataBytes;
size_t mStridePaddingBytes;
};
std::ostream& operator<<(std::ostream& o, Field field) {
o << "@align(" << field.align << ") @size("
<< (field.padded_size > 0 ? field.padded_size : field.size) << ") " << field.type;
o << "@align(" << field.GetAlign() << ") @size(" << field.GetPaddedSize() << ") "
<< field.GetWGSLType();
return o;
}
// Create a compute pipeline with all buffer in bufferList binded in order starting from slot 0, and
// run the given shader.
void RunComputeShaderWithBuffers(const wgpu::Device& device,
const wgpu::Queue& queue,
const std::string& shader,
std::initializer_list<wgpu::Buffer> bufferList) {
// Set up shader and pipeline
auto module = utils::CreateShaderModule(device, shader.c_str());
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = module;
csDesc.compute.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&csDesc);
// Set up bind group and issue dispatch
std::vector<wgpu::BindGroupEntry> entries;
uint32_t bufferSlot = 0;
for (const wgpu::Buffer& buffer : bufferList) {
wgpu::BindGroupEntry entry;
entry.binding = bufferSlot++;
entry.buffer = buffer;
entry.offset = 0;
entry.size = wgpu::kWholeSize;
entries.push_back(entry);
}
wgpu::BindGroupDescriptor descriptor;
descriptor.layout = pipeline.GetBindGroupLayout(0);
descriptor.entryCount = static_cast<uint32_t>(entries.size());
descriptor.entries = entries.data();
wgpu::BindGroup bindGroup = device.CreateBindGroup(&descriptor);
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
}
DAWN_TEST_PARAM_STRUCT(ComputeLayoutMemoryBufferTestParams, StorageClass, Field);
class ComputeLayoutMemoryBufferTests
@ -136,7 +448,13 @@ class ComputeLayoutMemoryBufferTests
void SetUp() override { DawnTestBase::SetUp(); }
};
TEST_P(ComputeLayoutMemoryBufferTests, Fields) {
// Align returns the WGSL decoration for an explicit structure field alignment
std::string AlignDeco(uint32_t value) {
return "@align(" + std::to_string(value) + ") ";
}
// Test different types used as a struct member
TEST_P(ComputeLayoutMemoryBufferTests, StructMember) {
// Sentinel value markers codes used to check that the start and end of
// structures are correctly aligned. Each of these codes are distinct and
// are not likely to be confused with data.
@ -145,15 +463,6 @@ TEST_P(ComputeLayoutMemoryBufferTests, Fields) {
constexpr uint32_t kInputHeaderCode = 0x91827364u;
constexpr uint32_t kInputFooterCode = 0x19283764u;
// Byte codes used for field padding. The MSB is set for each of these.
// The field data has the MSB 0.
constexpr uint8_t kDataAlignPaddingCode = 0xfeu;
constexpr uint8_t kFieldAlignPaddingCode = 0xfdu;
constexpr uint8_t kFieldSizePaddingCode = 0xdcu;
constexpr uint8_t kDataSizePaddingCode = 0xdbu;
constexpr uint8_t kInputFooterAlignPaddingCode = 0xdau;
constexpr uint8_t kInputTailPaddingCode = 0xd9u;
// Status codes returned by the shader.
constexpr uint32_t kStatusBadInputHeader = 100u;
constexpr uint32_t kStatusBadInputFooter = 101u;
@ -210,7 +519,7 @@ fn main() {
// Structure size: roundUp(AlignOf(S), OffsetOf(S, L) + SizeOf(S, L))
// https://www.w3.org/TR/WGSL/#storage-class-constraints
// RequiredAlignOf(S, uniform): roundUp(16, max(AlignOf(T0), ..., AlignOf(TN)))
uint32_t dataAlign = isUniform ? std::max(16u, field.align) : field.align;
uint32_t dataAlign = isUniform ? std::max(size_t(16u), field.GetAlign()) : field.GetAlign();
// https://www.w3.org/TR/WGSL/#structure-layout-rules
// Note: When underlying the target is a Vulkan device, we assume the device does not support
@ -219,11 +528,10 @@ fn main() {
uint32_t footerAlign = isUniform ? 16 : 4;
shader = ReplaceAll(shader, "{data_align}", isUniform ? AlignDeco(dataAlign) : "");
shader = ReplaceAll(shader, "{field_align}", std::to_string(field.align));
shader = ReplaceAll(shader, "{field_align}", std::to_string(field.GetAlign()));
shader = ReplaceAll(shader, "{footer_align}", isUniform ? AlignDeco(footerAlign) : "");
shader = ReplaceAll(shader, "{field_size}",
std::to_string(field.padded_size > 0 ? field.padded_size : field.size));
shader = ReplaceAll(shader, "{field_type}", field.type);
shader = ReplaceAll(shader, "{field_size}", std::to_string(field.GetPaddedSize()));
shader = ReplaceAll(shader, "{field_type}", field.GetWGSLType());
shader = ReplaceAll(shader, "{input_header_code}", std::to_string(kInputHeaderCode));
shader = ReplaceAll(shader, "{input_footer_code}", std::to_string(kInputFooterCode));
shader = ReplaceAll(shader, "{data_header_code}", std::to_string(kDataHeaderCode));
@ -237,55 +545,40 @@ fn main() {
isUniform ? "uniform" //
: "storage, read_write");
// Set up shader and pipeline
auto module = utils::CreateShaderModule(device, shader.c_str());
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = module;
csDesc.compute.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&csDesc);
// Build the input and expected data.
std::vector<uint8_t> inputData; // The whole SSBO data
std::vector<uint8_t> expectedData; // The expected data to be copied by the shader
MemoryDataBuilder inputDataBuilder; // The whole SSBO data
{
auto PushU32 = [&inputData](uint32_t u32) {
inputData.emplace_back((u32 >> 0) & 0xff);
inputData.emplace_back((u32 >> 8) & 0xff);
inputData.emplace_back((u32 >> 16) & 0xff);
inputData.emplace_back((u32 >> 24) & 0xff);
};
auto AlignTo = [&inputData](uint32_t alignment, uint8_t code) {
uint32_t target = Align(inputData.size(), alignment);
uint32_t bytes = target - inputData.size();
for (uint32_t i = 0; i < bytes; i++) {
inputData.emplace_back(code);
}
};
PushU32(kInputHeaderCode); // Input.header
AlignTo(dataAlign, kDataAlignPaddingCode); // Input.data
inputDataBuilder.AddFixedU32(kInputHeaderCode); // Input.header
inputDataBuilder.AlignTo(dataAlign); // Input.data
{
PushU32(kDataHeaderCode); // Input.data.header
AlignTo(field.align, kFieldAlignPaddingCode); // Input.data.field
for (uint32_t i = 0; i < field.size; i++) {
// The data has the MSB cleared to distinguish it from the
// padding codes.
uint8_t code = i & 0x7f;
inputData.emplace_back(code); // Input.data.field
expectedData.emplace_back(code);
}
for (uint32_t i = field.size; i < field.padded_size; i++) {
inputData.emplace_back(kFieldSizePaddingCode); // Input.data.field padding
}
PushU32(kDataFooterCode); // Input.data.footer
AlignTo(field.align, kDataSizePaddingCode); // Input.data padding
inputDataBuilder.AddFixedU32(kDataHeaderCode); // Input.data.header
inputDataBuilder.AddSubBuilder(field.GetDataBuilder()); // Input.data.field
inputDataBuilder.AddFixedU32(kDataFooterCode); // Input.data.footer
inputDataBuilder.AlignTo(field.GetAlign()); // Input.data padding
}
AlignTo(footerAlign, kInputFooterAlignPaddingCode); // Input.footer @align
PushU32(kInputFooterCode); // Input.footer
AlignTo(256, kInputTailPaddingCode); // Input padding
inputDataBuilder.AlignTo(footerAlign); // Input.footer @align
inputDataBuilder.AddFixedU32(kInputFooterCode); // Input.footer
inputDataBuilder.AlignTo(256); // Input padding
}
MemoryDataBuilder expectedDataBuilder; // The expected data to be copied by the shader
expectedDataBuilder.AddSubBuilder(field.GetDataBuilder());
// Expectation and input buffer have identical data bytes but different padding bytes.
// Initializes the dst buffer with data bytes different from input and expectation, and padding
// bytes identical to expectation but different from input.
constexpr uint8_t dataKeyForInputAndExpectation = 0x00u;
constexpr uint8_t dataKeyForDstInit = 0xffu;
constexpr uint8_t paddingKeyForInput = 0x3fu;
constexpr uint8_t paddingKeyForDstInitAndExpectation = 0x77u;
std::vector<uint8_t> inputData = inputDataBuilder.CreateBufferAndApplyOperations(
dataKeyForInputAndExpectation, paddingKeyForInput);
std::vector<uint8_t> expectedData = expectedDataBuilder.CreateBufferAndApplyOperations(
dataKeyForInputAndExpectation, paddingKeyForDstInitAndExpectation);
std::vector<uint8_t> initData = expectedDataBuilder.CreateBufferAndApplyOperations(
dataKeyForDstInit, paddingKeyForDstInitAndExpectation);
// Set up input storage buffer
wgpu::Buffer inputBuf = utils::CreateBufferFromData(
device, inputData.data(), inputData.size(),
@ -293,11 +586,9 @@ fn main() {
(isUniform ? wgpu::BufferUsage::Uniform : wgpu::BufferUsage::Storage));
// Set up output storage buffer
wgpu::BufferDescriptor outputDesc;
outputDesc.size = field.size;
outputDesc.usage =
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer outputBuf = device.CreateBuffer(&outputDesc);
wgpu::Buffer outputBuf = utils::CreateBufferFromData(
device, initData.data(), initData.size(),
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst);
// Set up status storage buffer
wgpu::BufferDescriptor statusDesc;
@ -306,40 +597,84 @@ fn main() {
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer statusBuf = device.CreateBuffer(&statusDesc);
// Set up bind group and issue dispatch
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{
{0, inputBuf},
{1, outputBuf},
{2, statusBuf},
});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
RunComputeShaderWithBuffers(device, queue, shader, {inputBuf, outputBuf, statusBuf});
// Check the status
EXPECT_BUFFER_U32_EQ(kStatusOk, statusBuf, 0) << "status code error" << std::endl
<< "Shader: " << shader;
// Check the data
field.matcher(field.size, [&](uint32_t offset, uint32_t size) {
field.CheckData([&](uint32_t offset, uint32_t size) {
EXPECT_BUFFER_U8_RANGE_EQ(expectedData.data() + offset, outputBuf, offset, size)
<< "offset: " << offset;
});
}
namespace {
// Test different types that used directly as buffer type
TEST_P(ComputeLayoutMemoryBufferTests, NonStructMember) {
auto params = GetParam();
Field& field = params.mField;
// @size and @align attribute only apply to struct members, skip them
if (field.HasSizeAttribute() || field.HasAlignAttribute()) {
return;
}
const bool isUniform = GetParam().mStorageClass == StorageClass::Uniform;
std::string shader = R"(
@group(0) @binding(0) var<{input_qualifiers}> input : {field_type};
@group(0) @binding(1) var<storage, read_write> output : {field_type};
@compute @workgroup_size(1,1,1)
fn main() {
output = input;
})";
shader = ReplaceAll(shader, "{field_type}", field.GetWGSLType());
shader = ReplaceAll(shader, "{input_qualifiers}",
isUniform ? "uniform" //
: "storage, read_write");
// Build the input and expected data.
MemoryDataBuilder dataBuilder;
dataBuilder.AddSubBuilder(field.GetDataBuilder());
// Expectation and input buffer have identical data bytes but different padding bytes.
// Initializes the dst buffer with data bytes different from input and expectation, and padding
// bytes identical to expectation but different from input.
constexpr uint8_t dataKeyForInputAndExpectation = 0x00u;
constexpr uint8_t dataKeyForDstInit = 0xffu;
constexpr uint8_t paddingKeyForInput = 0x3fu;
constexpr uint8_t paddingKeyForDstInitAndExpectation = 0x77u;
std::vector<uint8_t> inputData = dataBuilder.CreateBufferAndApplyOperations(
dataKeyForInputAndExpectation, paddingKeyForInput);
std::vector<uint8_t> expectedData = dataBuilder.CreateBufferAndApplyOperations(
dataKeyForInputAndExpectation, paddingKeyForDstInitAndExpectation);
std::vector<uint8_t> initData = dataBuilder.CreateBufferAndApplyOperations(
dataKeyForDstInit, paddingKeyForDstInitAndExpectation);
// Set up input storage buffer
wgpu::Buffer inputBuf = utils::CreateBufferFromData(
device, inputData.data(), inputData.size(),
wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst |
(isUniform ? wgpu::BufferUsage::Uniform : wgpu::BufferUsage::Storage));
EXPECT_BUFFER_U8_RANGE_EQ(inputData.data(), inputBuf, 0, inputData.size());
// Set up output storage buffer
wgpu::Buffer outputBuf = utils::CreateBufferFromData(
device, initData.data(), initData.size(),
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst);
EXPECT_BUFFER_U8_RANGE_EQ(initData.data(), outputBuf, 0, initData.size());
RunComputeShaderWithBuffers(device, queue, shader, {inputBuf, outputBuf});
// Check the data
field.CheckData([&](uint32_t offset, uint32_t size) {
EXPECT_BUFFER_U8_RANGE_EQ(expectedData.data() + offset, outputBuf, offset, size)
<< "offset: " << offset;
});
}
auto GenerateParams() {
auto params = MakeParamGenerator<ComputeLayoutMemoryBufferTestParams>(
@ -354,127 +689,169 @@ auto GenerateParams() {
{
// See https://www.w3.org/TR/WGSL/#alignment-and-size
// Scalar types with no custom alignment or size
Field{"i32", /* align */ 4, /* size */ 4},
Field{"u32", /* align */ 4, /* size */ 4},
Field{"f32", /* align */ 4, /* size */ 4},
Field::Scalar(ScalarType::f32),
Field::Scalar(ScalarType::i32),
Field::Scalar(ScalarType::u32),
// Scalar types with custom alignment
Field{"i32", /* align */ 16, /* size */ 4},
Field{"u32", /* align */ 16, /* size */ 4},
Field{"f32", /* align */ 16, /* size */ 4},
Field::Scalar(ScalarType::f32).AlignAttribute(16),
Field::Scalar(ScalarType::i32).AlignAttribute(16),
Field::Scalar(ScalarType::u32).AlignAttribute(16),
// Scalar types with custom size
Field{"i32", /* align */ 4, /* size */ 4}.PaddedSize(24),
Field{"u32", /* align */ 4, /* size */ 4}.PaddedSize(24),
Field{"f32", /* align */ 4, /* size */ 4}.PaddedSize(24),
Field::Scalar(ScalarType::f32).SizeAttribute(24),
Field::Scalar(ScalarType::i32).SizeAttribute(24),
Field::Scalar(ScalarType::u32).SizeAttribute(24),
// Vector types with no custom alignment or size
Field{"vec2<i32>", /* align */ 8, /* size */ 8},
Field{"vec2<u32>", /* align */ 8, /* size */ 8},
Field{"vec2<f32>", /* align */ 8, /* size */ 8},
Field{"vec3<i32>", /* align */ 16, /* size */ 12},
Field{"vec3<u32>", /* align */ 16, /* size */ 12},
Field{"vec3<f32>", /* align */ 16, /* size */ 12},
Field{"vec4<i32>", /* align */ 16, /* size */ 16},
Field{"vec4<u32>", /* align */ 16, /* size */ 16},
Field{"vec4<f32>", /* align */ 16, /* size */ 16},
Field::Vector(2, ScalarType::f32),
Field::Vector(3, ScalarType::f32),
Field::Vector(4, ScalarType::f32),
Field::Vector(2, ScalarType::i32),
Field::Vector(3, ScalarType::i32),
Field::Vector(4, ScalarType::i32),
Field::Vector(2, ScalarType::u32),
Field::Vector(3, ScalarType::u32),
Field::Vector(4, ScalarType::u32),
// Vector types with custom alignment
Field{"vec2<i32>", /* align */ 32, /* size */ 8},
Field{"vec2<u32>", /* align */ 32, /* size */ 8},
Field{"vec2<f32>", /* align */ 32, /* size */ 8},
Field{"vec3<i32>", /* align */ 32, /* size */ 12},
Field{"vec3<u32>", /* align */ 32, /* size */ 12},
Field{"vec3<f32>", /* align */ 32, /* size */ 12},
Field{"vec4<i32>", /* align */ 32, /* size */ 16},
Field{"vec4<u32>", /* align */ 32, /* size */ 16},
Field{"vec4<f32>", /* align */ 32, /* size */ 16},
Field::Vector(2, ScalarType::f32).AlignAttribute(32),
Field::Vector(3, ScalarType::f32).AlignAttribute(32),
Field::Vector(4, ScalarType::f32).AlignAttribute(32),
Field::Vector(2, ScalarType::i32).AlignAttribute(32),
Field::Vector(3, ScalarType::i32).AlignAttribute(32),
Field::Vector(4, ScalarType::i32).AlignAttribute(32),
Field::Vector(2, ScalarType::u32).AlignAttribute(32),
Field::Vector(3, ScalarType::u32).AlignAttribute(32),
Field::Vector(4, ScalarType::u32).AlignAttribute(32),
// Vector types with custom size
Field{"vec2<i32>", /* align */ 8, /* size */ 8}.PaddedSize(24),
Field{"vec2<u32>", /* align */ 8, /* size */ 8}.PaddedSize(24),
Field{"vec2<f32>", /* align */ 8, /* size */ 8}.PaddedSize(24),
Field{"vec3<i32>", /* align */ 16, /* size */ 12}.PaddedSize(24),
Field{"vec3<u32>", /* align */ 16, /* size */ 12}.PaddedSize(24),
Field{"vec3<f32>", /* align */ 16, /* size */ 12}.PaddedSize(24),
Field{"vec4<i32>", /* align */ 16, /* size */ 16}.PaddedSize(24),
Field{"vec4<u32>", /* align */ 16, /* size */ 16}.PaddedSize(24),
Field{"vec4<f32>", /* align */ 16, /* size */ 16}.PaddedSize(24),
Field::Vector(2, ScalarType::f32).SizeAttribute(24),
Field::Vector(3, ScalarType::f32).SizeAttribute(24),
Field::Vector(4, ScalarType::f32).SizeAttribute(24),
Field::Vector(2, ScalarType::i32).SizeAttribute(24),
Field::Vector(3, ScalarType::i32).SizeAttribute(24),
Field::Vector(4, ScalarType::i32).SizeAttribute(24),
Field::Vector(2, ScalarType::u32).SizeAttribute(24),
Field::Vector(3, ScalarType::u32).SizeAttribute(24),
Field::Vector(4, ScalarType::u32).SizeAttribute(24),
// Matrix types with no custom alignment or size
Field{"mat2x2<f32>", /* align */ 8, /* size */ 16},
Field{"mat3x2<f32>", /* align */ 8, /* size */ 24},
Field{"mat4x2<f32>", /* align */ 8, /* size */ 32},
Field{"mat2x3<f32>", /* align */ 16, /* size */ 32}.Strided<12, 4>(),
Field{"mat3x3<f32>", /* align */ 16, /* size */ 48}.Strided<12, 4>(),
Field{"mat4x3<f32>", /* align */ 16, /* size */ 64}.Strided<12, 4>(),
Field{"mat2x4<f32>", /* align */ 16, /* size */ 32},
Field{"mat3x4<f32>", /* align */ 16, /* size */ 48},
Field{"mat4x4<f32>", /* align */ 16, /* size */ 64},
Field::Matrix(2, 2, ScalarType::f32),
Field::Matrix(3, 2, ScalarType::f32),
Field::Matrix(4, 2, ScalarType::f32),
Field::Matrix(2, 3, ScalarType::f32),
Field::Matrix(3, 3, ScalarType::f32),
Field::Matrix(4, 3, ScalarType::f32),
Field::Matrix(2, 4, ScalarType::f32),
Field::Matrix(3, 4, ScalarType::f32),
Field::Matrix(4, 4, ScalarType::f32),
// Matrix types with custom alignment
Field{"mat2x2<f32>", /* align */ 32, /* size */ 16},
Field{"mat3x2<f32>", /* align */ 32, /* size */ 24},
Field{"mat4x2<f32>", /* align */ 32, /* size */ 32},
Field{"mat2x3<f32>", /* align */ 32, /* size */ 32}.Strided<12, 4>(),
Field{"mat3x3<f32>", /* align */ 32, /* size */ 48}.Strided<12, 4>(),
Field{"mat4x3<f32>", /* align */ 32, /* size */ 64}.Strided<12, 4>(),
Field{"mat2x4<f32>", /* align */ 32, /* size */ 32},
Field{"mat3x4<f32>", /* align */ 32, /* size */ 48},
Field{"mat4x4<f32>", /* align */ 32, /* size */ 64},
Field::Matrix(2, 2, ScalarType::f32).AlignAttribute(32),
Field::Matrix(3, 2, ScalarType::f32).AlignAttribute(32),
Field::Matrix(4, 2, ScalarType::f32).AlignAttribute(32),
Field::Matrix(2, 3, ScalarType::f32).AlignAttribute(32),
Field::Matrix(3, 3, ScalarType::f32).AlignAttribute(32),
Field::Matrix(4, 3, ScalarType::f32).AlignAttribute(32),
Field::Matrix(2, 4, ScalarType::f32).AlignAttribute(32),
Field::Matrix(3, 4, ScalarType::f32).AlignAttribute(32),
Field::Matrix(4, 4, ScalarType::f32).AlignAttribute(32),
// Matrix types with custom size
Field{"mat2x2<f32>", /* align */ 8, /* size */ 16}.PaddedSize(128),
Field{"mat3x2<f32>", /* align */ 8, /* size */ 24}.PaddedSize(128),
Field{"mat4x2<f32>", /* align */ 8, /* size */ 32}.PaddedSize(128),
Field{"mat2x3<f32>", /* align */ 16, /* size */ 32}.PaddedSize(128).Strided<12, 4>(),
Field{"mat3x3<f32>", /* align */ 16, /* size */ 48}.PaddedSize(128).Strided<12, 4>(),
Field{"mat4x3<f32>", /* align */ 16, /* size */ 64}.PaddedSize(128).Strided<12, 4>(),
Field{"mat2x4<f32>", /* align */ 16, /* size */ 32}.PaddedSize(128),
Field{"mat3x4<f32>", /* align */ 16, /* size */ 48}.PaddedSize(128),
Field{"mat4x4<f32>", /* align */ 16, /* size */ 64}.PaddedSize(128),
Field::Matrix(2, 2, ScalarType::f32).SizeAttribute(128),
Field::Matrix(3, 2, ScalarType::f32).SizeAttribute(128),
Field::Matrix(4, 2, ScalarType::f32).SizeAttribute(128),
Field::Matrix(2, 3, ScalarType::f32).SizeAttribute(128),
Field::Matrix(3, 3, ScalarType::f32).SizeAttribute(128),
Field::Matrix(4, 3, ScalarType::f32).SizeAttribute(128),
Field::Matrix(2, 4, ScalarType::f32).SizeAttribute(128),
Field::Matrix(3, 4, ScalarType::f32).SizeAttribute(128),
Field::Matrix(4, 4, ScalarType::f32).SizeAttribute(128),
// Array types with no custom alignment or size.
// Note: The use of StorageBufferOnly() is due to UBOs requiring 16 byte alignment
// of array elements. See https://www.w3.org/TR/WGSL/#storage-class-constraints
Field{"array<u32, 1>", /* align */ 4, /* size */ 4}.StorageBufferOnly(),
Field{"array<u32, 2>", /* align */ 4, /* size */ 8}.StorageBufferOnly(),
Field{"array<u32, 3>", /* align */ 4, /* size */ 12}.StorageBufferOnly(),
Field{"array<u32, 4>", /* align */ 4, /* size */ 16}.StorageBufferOnly(),
Field{"array<vec4<u32>, 1>", /* align */ 16, /* size */ 16},
Field{"array<vec4<u32>, 2>", /* align */ 16, /* size */ 32},
Field{"array<vec4<u32>, 3>", /* align */ 16, /* size */ 48},
Field{"array<vec4<u32>, 4>", /* align */ 16, /* size */ 64},
Field{"array<vec3<u32>, 4>", /* align */ 16, /* size */ 64}.Strided<12, 4>(),
Field("array<u32, 1>", /* align */ 4, /* size */ 4).StorageBufferOnly(),
Field("array<u32, 2>", /* align */ 4, /* size */ 8).StorageBufferOnly(),
Field("array<u32, 3>", /* align */ 4, /* size */ 12).StorageBufferOnly(),
Field("array<u32, 4>", /* align */ 4, /* size */ 16).StorageBufferOnly(),
Field("array<vec2<u32>, 1>", /* align */ 8, /* size */ 8).StorageBufferOnly(),
Field("array<vec2<u32>, 2>", /* align */ 8, /* size */ 16).StorageBufferOnly(),
Field("array<vec2<u32>, 3>", /* align */ 8, /* size */ 24).StorageBufferOnly(),
Field("array<vec2<u32>, 4>", /* align */ 8, /* size */ 32).StorageBufferOnly(),
Field("array<vec3<u32>, 1>", /* align */ 16, /* size */ 16).Strided(12, 4),
Field("array<vec3<u32>, 2>", /* align */ 16, /* size */ 32).Strided(12, 4),
Field("array<vec3<u32>, 3>", /* align */ 16, /* size */ 48).Strided(12, 4),
Field("array<vec3<u32>, 4>", /* align */ 16, /* size */ 64).Strided(12, 4),
Field("array<vec4<u32>, 1>", /* align */ 16, /* size */ 16),
Field("array<vec4<u32>, 2>", /* align */ 16, /* size */ 32),
Field("array<vec4<u32>, 3>", /* align */ 16, /* size */ 48),
Field("array<vec4<u32>, 4>", /* align */ 16, /* size */ 64),
// Array types with custom alignment
Field{"array<u32, 1>", /* align */ 32, /* size */ 4}.StorageBufferOnly(),
Field{"array<u32, 2>", /* align */ 32, /* size */ 8}.StorageBufferOnly(),
Field{"array<u32, 3>", /* align */ 32, /* size */ 12}.StorageBufferOnly(),
Field{"array<u32, 4>", /* align */ 32, /* size */ 16}.StorageBufferOnly(),
Field{"array<vec4<u32>, 1>", /* align */ 32, /* size */ 16},
Field{"array<vec4<u32>, 2>", /* align */ 32, /* size */ 32},
Field{"array<vec4<u32>, 3>", /* align */ 32, /* size */ 48},
Field{"array<vec4<u32>, 4>", /* align */ 32, /* size */ 64},
Field{"array<vec3<u32>, 4>", /* align */ 32, /* size */ 64}.Strided<12, 4>(),
Field("array<u32, 1>", /* align */ 4, /* size */ 4)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<u32, 2>", /* align */ 4, /* size */ 8)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<u32, 3>", /* align */ 4, /* size */ 12)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<u32, 4>", /* align */ 4, /* size */ 16)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<vec2<u32>, 1>", /* align */ 8, /* size */ 8)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<vec2<u32>, 2>", /* align */ 8, /* size */ 16)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<vec2<u32>, 3>", /* align */ 8, /* size */ 24)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<vec2<u32>, 4>", /* align */ 8, /* size */ 32)
.AlignAttribute(32)
.StorageBufferOnly(),
Field("array<vec3<u32>, 1>", /* align */ 16, /* size */ 16)
.AlignAttribute(32)
.Strided(12, 4),
Field("array<vec3<u32>, 2>", /* align */ 16, /* size */ 32)
.AlignAttribute(32)
.Strided(12, 4),
Field("array<vec3<u32>, 3>", /* align */ 16, /* size */ 48)
.AlignAttribute(32)
.Strided(12, 4),
Field("array<vec3<u32>, 4>", /* align */ 16, /* size */ 64)
.AlignAttribute(32)
.Strided(12, 4),
Field("array<vec4<u32>, 1>", /* align */ 16, /* size */ 16).AlignAttribute(32),
Field("array<vec4<u32>, 2>", /* align */ 16, /* size */ 32).AlignAttribute(32),
Field("array<vec4<u32>, 3>", /* align */ 16, /* size */ 48).AlignAttribute(32),
Field("array<vec4<u32>, 4>", /* align */ 16, /* size */ 64).AlignAttribute(32),
// Array types with custom size
Field{"array<u32, 1>", /* align */ 4, /* size */ 4}.PaddedSize(128).StorageBufferOnly(),
Field{"array<u32, 2>", /* align */ 4, /* size */ 8}.PaddedSize(128).StorageBufferOnly(),
Field{"array<u32, 3>", /* align */ 4, /* size */ 12}
.PaddedSize(128)
Field("array<u32, 1>", /* align */ 4, /* size */ 4)
.SizeAttribute(128)
.StorageBufferOnly(),
Field{"array<u32, 4>", /* align */ 4, /* size */ 16}
.PaddedSize(128)
Field("array<u32, 2>", /* align */ 4, /* size */ 8)
.SizeAttribute(128)
.StorageBufferOnly(),
Field{"array<vec3<u32>, 4>", /* align */ 16, /* size */ 64}
.PaddedSize(128)
.Strided<12, 4>(),
Field("array<u32, 3>", /* align */ 4, /* size */ 12)
.SizeAttribute(128)
.StorageBufferOnly(),
Field("array<u32, 4>", /* align */ 4, /* size */ 16)
.SizeAttribute(128)
.StorageBufferOnly(),
Field("array<vec3<u32>, 4>", /* align */ 16, /* size */ 64)
.SizeAttribute(128)
.Strided(12, 4),
});
std::vector<ComputeLayoutMemoryBufferTestParams> filtered;
for (auto param : params) {
if (param.mStorageClass != StorageClass::Storage && param.mField.storage_buffer_only) {
if (param.mStorageClass != StorageClass::Storage && param.mField.IsStorageBufferOnly()) {
continue;
}
filtered.emplace_back(param);