Add memory synchronization tests - storage to uniform sync

This CL adds end2end tests for memory synchronization tests for buffer.
It adds a few tests that write into storage buffer in compute pass,
then read via uniform binding from the same buffer in render pass.

BUG=dawn:275

Change-Id: Ic98a10aab4cdcddecd60662438d4b8bdd34fafbc
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/13580
Commit-Queue: Yunchao He <yunchao.he@intel.com>
Reviewed-by: Austin Eng <enga@chromium.org>
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
This commit is contained in:
Yunchao He 2019-11-18 04:28:24 +00:00 committed by Commit Bot service account
parent e0eeef4b34
commit 612a63abe1
2 changed files with 222 additions and 0 deletions

View File

@ -912,6 +912,7 @@ source_set("dawn_end2end_tests_sources") {
"src/tests/end2end/DrawTests.cpp",
"src/tests/end2end/DynamicBufferOffsetTests.cpp",
"src/tests/end2end/FenceTests.cpp",
"src/tests/end2end/GpuMemorySynchronizationTests.cpp",
"src/tests/end2end/IndexFormatTests.cpp",
"src/tests/end2end/MultisampledRenderingTests.cpp",
"src/tests/end2end/NonzeroTextureCreationTests.cpp",

View File

@ -0,0 +1,221 @@
// Copyright 2019 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "common/Assert.h"
#include "common/Constants.h"
#include "common/Math.h"
#include "tests/DawnTest.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
class StorageToUniformSyncTests : public DawnTest {
protected:
void CreateBuffer() {
wgpu::BufferDescriptor bufferDesc;
bufferDesc.size = sizeof(float);
bufferDesc.usage = wgpu::BufferUsage::Storage | wgpu::BufferUsage::Uniform;
mBuffer = device.CreateBuffer(&bufferDesc);
}
std::tuple<wgpu::ComputePipeline, wgpu::BindGroup> CreatePipelineAndBindGroupForCompute() {
wgpu::ShaderModule csModule =
utils::CreateShaderModule(device, utils::SingleShaderStage::Compute, R"(
#version 450
layout(std140, set = 0, binding = 0) buffer Data {
float a;
} data;
void main() {
data.a = 1.0;
})");
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {
{0, wgpu::ShaderStage::Compute, wgpu::BindingType::StorageBuffer},
});
wgpu::PipelineLayout pipelineLayout0 = utils::MakeBasicPipelineLayout(device, &bgl);
wgpu::ComputePipelineDescriptor cpDesc;
cpDesc.layout = pipelineLayout0;
cpDesc.computeStage.module = csModule;
cpDesc.computeStage.entryPoint = "main";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&cpDesc);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, bgl, {{0, mBuffer, 0, sizeof(float)}});
return std::make_tuple(pipeline, bindGroup);
}
std::tuple<wgpu::RenderPipeline, wgpu::BindGroup> CreatePipelineAndBindGroupForRender(
wgpu::TextureFormat colorFormat) {
wgpu::ShaderModule vsModule =
utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, R"(
#version 450
void main() {
gl_Position = vec4(0.f, 0.f, 0.f, 1.f);
gl_PointSize = 1.0;
})");
wgpu::ShaderModule fsModule =
utils::CreateShaderModule(device, utils::SingleShaderStage::Fragment, R"(
#version 450
layout (set = 0, binding = 0) uniform Contents{
float color;
};
layout(location = 0) out vec4 fragColor;
void main() {
fragColor = vec4(color, 0.f, 0.f, 1.f);
})");
wgpu::BindGroupLayout bgl = utils::MakeBindGroupLayout(
device, {
{0, wgpu::ShaderStage::Fragment, wgpu::BindingType::UniformBuffer},
});
wgpu::PipelineLayout pipelineLayout = utils::MakeBasicPipelineLayout(device, &bgl);
utils::ComboRenderPipelineDescriptor rpDesc(device);
rpDesc.layout = pipelineLayout;
rpDesc.vertexStage.module = vsModule;
rpDesc.cFragmentStage.module = fsModule;
rpDesc.primitiveTopology = wgpu::PrimitiveTopology::PointList;
rpDesc.cColorStates[0].format = colorFormat;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, bgl, {{0, mBuffer, 0, sizeof(float)}});
return std::make_tuple(pipeline, bindGroup);
}
wgpu::Buffer mBuffer;
};
// Write into a storage buffer in compute pass in a command buffer. Then read that data in a render
// pass. The two passes use the same command buffer.
TEST_P(StorageToUniformSyncTests, ReadAfterWriteWithSameCommandBuffer) {
// Create pipeline, bind group, and buffer for compute pass and render pass.
CreateBuffer();
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
wgpu::ComputePipeline compute;
wgpu::BindGroup computeBindGroup;
std::tie(compute, computeBindGroup) = CreatePipelineAndBindGroupForCompute();
wgpu::RenderPipeline render;
wgpu::BindGroup renderBindGroup;
std::tie(render, renderBindGroup) = CreatePipelineAndBindGroupForRender(renderPass.colorFormat);
// Write data into a storage buffer in compute pass.
wgpu::CommandEncoder encoder0 = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass0 = encoder0.BeginComputePass();
pass0.SetPipeline(compute);
pass0.SetBindGroup(0, computeBindGroup);
pass0.Dispatch(1, 1, 1);
pass0.EndPass();
// Read that data in render pass.
wgpu::RenderPassEncoder pass1 = encoder0.BeginRenderPass(&renderPass.renderPassInfo);
pass1.SetPipeline(render);
pass1.SetBindGroup(0, renderBindGroup);
pass1.Draw(1, 1, 0, 0);
pass1.EndPass();
wgpu::CommandBuffer commands = encoder0.Finish();
queue.Submit(1, &commands);
// Verify the rendering result.
EXPECT_PIXEL_RGBA8_EQ(kRed, renderPass.color, 0, 0);
}
// Write into a storage buffer in compute pass in a command buffer. Then read that data in a render
// pass. The two passes use the different command buffers. The command buffers are submitted to the
// queue in one shot.
TEST_P(StorageToUniformSyncTests, ReadAfterWriteWithDifferentCommandBuffers) {
// Create pipeline, bind group, and buffer for compute pass and render pass.
CreateBuffer();
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
wgpu::ComputePipeline compute;
wgpu::BindGroup computeBindGroup;
std::tie(compute, computeBindGroup) = CreatePipelineAndBindGroupForCompute();
wgpu::RenderPipeline render;
wgpu::BindGroup renderBindGroup;
std::tie(render, renderBindGroup) = CreatePipelineAndBindGroupForRender(renderPass.colorFormat);
// Write data into a storage buffer in compute pass.
wgpu::CommandBuffer cb[2];
wgpu::CommandEncoder encoder0 = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass0 = encoder0.BeginComputePass();
pass0.SetPipeline(compute);
pass0.SetBindGroup(0, computeBindGroup);
pass0.Dispatch(1, 1, 1);
pass0.EndPass();
cb[0] = encoder0.Finish();
// Read that data in render pass.
wgpu::CommandEncoder encoder1 = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass1 = encoder1.BeginRenderPass(&renderPass.renderPassInfo);
pass1.SetPipeline(render);
pass1.SetBindGroup(0, renderBindGroup);
pass1.Draw(1, 1, 0, 0);
pass1.EndPass();
cb[1] = encoder1.Finish();
queue.Submit(2, cb);
// Verify the rendering result.
EXPECT_PIXEL_RGBA8_EQ(kRed, renderPass.color, 0, 0);
}
// Write into a storage buffer in compute pass in a command buffer. Then read that data in a render
// pass. The two passes use the different command buffers. The command buffers are submitted to the
// queue separately.
TEST_P(StorageToUniformSyncTests, ReadAfterWriteWithDifferentQueueSubmits) {
// Create pipeline, bind group, and buffer for compute pass and render pass.
CreateBuffer();
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
wgpu::ComputePipeline compute;
wgpu::BindGroup computeBindGroup;
std::tie(compute, computeBindGroup) = CreatePipelineAndBindGroupForCompute();
wgpu::RenderPipeline render;
wgpu::BindGroup renderBindGroup;
std::tie(render, renderBindGroup) = CreatePipelineAndBindGroupForRender(renderPass.colorFormat);
// Write data into a storage buffer in compute pass.
wgpu::CommandBuffer cb[2];
wgpu::CommandEncoder encoder0 = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass0 = encoder0.BeginComputePass();
pass0.SetPipeline(compute);
pass0.SetBindGroup(0, computeBindGroup);
pass0.Dispatch(1, 1, 1);
pass0.EndPass();
cb[0] = encoder0.Finish();
queue.Submit(1, &cb[0]);
// Read that data in render pass.
wgpu::CommandEncoder encoder1 = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass1 = encoder1.BeginRenderPass(&renderPass.renderPassInfo);
pass1.SetPipeline(render);
pass1.SetBindGroup(0, renderBindGroup);
pass1.Draw(1, 1, 0, 0);
pass1.EndPass();
cb[1] = encoder1.Finish();
queue.Submit(1, &cb[1]);
// Verify the rendering result.
EXPECT_PIXEL_RGBA8_EQ(kRed, renderPass.color, 0, 0);
}
DAWN_INSTANTIATE_TEST(StorageToUniformSyncTests,
D3D12Backend,
MetalBackend,
OpenGLBackend,
VulkanBackend);