Add TypedInteger

This CL adds a TypedInteger helper which provides additional type
safety in Dawn. It is a compile-time restriction that prevents integers
of different types from being used interchangably in Debug builds.

It also adds ityp::{array,bitset,span} as helper classes to wrap std::
versions (not span). These accept a template paramter as the Index type
so that typed integers, or enum classes, may be used as a type-safe
index.

For now, bind group layout binding indices use TypedInteger. Future
CLs will convert other indices to be type-safe as well.

Bug: dawn:442
Change-Id: I5b63b1e4f6154322db0227a7788a4e9b8303410e
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/19902
Reviewed-by: Austin Eng <enga@chromium.org>
Commit-Queue: Austin Eng <enga@chromium.org>
This commit is contained in:
Austin Eng 2020-06-17 22:35:19 +00:00 committed by Commit Bot service account
parent 3f4f356611
commit 7a4685f448
41 changed files with 1477 additions and 101 deletions

View File

@ -167,6 +167,10 @@ if (is_win || is_linux || is_mac || is_fuchsia || is_android) {
"SwapChainUtils.h",
"SystemUtils.cpp",
"SystemUtils.h",
"TypedInteger.h",
"ityp_array.h",
"ityp_bitset.h",
"ityp_span.h",
"vulkan_platform.h",
"windows_with_undefs.h",
"xlib_with_undefs.h",

View File

@ -17,6 +17,7 @@
#include "common/Assert.h"
#include "common/Math.h"
#include "common/UnderlyingType.h"
#include <bitset>
#include <limits>
@ -44,8 +45,11 @@ class BitSetIterator final {
bool operator==(const Iterator& other) const;
bool operator!=(const Iterator& other) const;
T operator*() const {
return static_cast<T>(mCurrentBit);
using U = UnderlyingType<T>;
ASSERT(mCurrentBit <= std::numeric_limits<U>::max());
return static_cast<T>(static_cast<U>(mCurrentBit));
}
private:

View File

@ -44,6 +44,11 @@ target_sources(dawn_common PRIVATE
"SwapChainUtils.h"
"SystemUtils.cpp"
"SystemUtils.h"
"TypedInteger.h"
"UnderlyingType.h"
"ityp_array.h"
"ityp_bitset.h"
"ityp_span.h"
"vulkan_platform.h"
"windows_with_undefs.h"
"xlib_with_undefs.h"

217
src/common/TypedInteger.h Normal file
View File

@ -0,0 +1,217 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef COMMON_TYPEDINTEGER_H_
#define COMMON_TYPEDINTEGER_H_
#include "common/Assert.h"
#include <limits>
#include <type_traits>
// TypedInteger is helper class that provides additional type safety in Debug.
// - Integers of different (Tag, BaseIntegerType) may not be used interoperably
// - Allows casts only to the underlying type.
// - Integers of the same (Tag, BaseIntegerType) may be compared or assigned.
// This class helps ensure that the many types of indices in Dawn aren't mixed up and used
// interchangably.
// In Release builds, when DAWN_ENABLE_ASSERTS is not defined, TypedInteger is a passthrough
// typedef of the underlying type.
//
// Example:
// using UintA = TypedInteger<struct TypeA, uint32_t>;
// using UintB = TypedInteger<struct TypeB, uint32_t>;
//
// in Release:
// using UintA = uint32_t;
// using UintB = uint32_t;
//
// in Debug:
// using UintA = detail::TypedIntegerImpl<struct TypeA, uint32_t>;
// using UintB = detail::TypedIntegerImpl<struct TypeB, uint32_t>;
//
// Assignment, construction, comparison, and arithmetic with TypedIntegerImpl are allowed
// only for typed integers of exactly the same type. Further, they must be
// created / cast explicitly; there is no implicit conversion.
//
// UintA a(2);
// uint32_t aValue = static_cast<uint32_t>(a);
//
namespace detail {
template <typename Tag, typename T>
class TypedIntegerImpl;
} // namespace detail
template <typename Tag, typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
#if defined(DAWN_ENABLE_ASSERTS)
using TypedInteger = detail::TypedIntegerImpl<Tag, T>;
#else
using TypedInteger = T;
#endif
namespace detail {
template <typename Tag, typename T>
class TypedIntegerImpl {
static_assert(std::is_integral<T>::value, "TypedInteger must be integral");
T mValue;
public:
constexpr TypedIntegerImpl() : mValue(0) {
}
// Construction from non-narrowing integral types.
template <typename I,
typename = std::enable_if_t<
std::is_integral<I>::value &&
std::numeric_limits<I>::max() <= std::numeric_limits<T>::max() &&
std::numeric_limits<I>::min() >= std::numeric_limits<T>::min()>>
explicit constexpr TypedIntegerImpl(I rhs) : mValue(static_cast<T>(rhs)) {
}
// Allow explicit casts only to the underlying type. If you're casting out of an
// TypedInteger, you should know what what you're doing, and exactly what type you
// expect.
explicit constexpr operator T() const {
return static_cast<T>(this->mValue);
}
// Same-tag TypedInteger comparison operators
#define TYPED_COMPARISON(op) \
constexpr bool operator op(const TypedIntegerImpl& rhs) const { \
return mValue op rhs.mValue; \
}
TYPED_COMPARISON(<)
TYPED_COMPARISON(<=)
TYPED_COMPARISON(>)
TYPED_COMPARISON(>=)
TYPED_COMPARISON(==)
TYPED_COMPARISON(!=)
#undef TYPED_COMPARISON
// Increment / decrement operators for for-loop iteration
constexpr TypedIntegerImpl& operator++() {
ASSERT(this->mValue < std::numeric_limits<T>::max());
++this->mValue;
return *this;
}
constexpr TypedIntegerImpl operator++(int) {
TypedIntegerImpl ret = *this;
ASSERT(this->mValue < std::numeric_limits<T>::max());
++this->mValue;
return ret;
}
constexpr TypedIntegerImpl& operator--() {
assert(this->mValue > std::numeric_limits<T>::min());
--this->mValue;
return *this;
}
constexpr TypedIntegerImpl operator--(int) {
TypedIntegerImpl ret = *this;
ASSERT(this->mValue > std::numeric_limits<T>::min());
--this->mValue;
return ret;
}
template <typename T2 = T>
constexpr std::enable_if_t<std::is_signed<T2>::value, TypedIntegerImpl> operator-() const {
static_assert(std::is_same<T, T2>::value, "");
// The negation of the most negative value cannot be represented.
ASSERT(this->mValue != std::numeric_limits<T>::min());
return TypedIntegerImpl(-this->mValue);
}
template <typename T2 = T>
constexpr std::enable_if_t<std::is_unsigned<T2>::value, TypedIntegerImpl> operator+(
TypedIntegerImpl rhs) const {
static_assert(std::is_same<T, T2>::value, "");
// Overflow would wrap around
ASSERT(this->mValue + rhs.mValue >= this->mValue);
return TypedIntegerImpl(this->mValue + rhs.mValue);
}
template <typename T2 = T>
constexpr std::enable_if_t<std::is_unsigned<T2>::value, TypedIntegerImpl> operator-(
TypedIntegerImpl rhs) const {
static_assert(std::is_same<T, T2>::value, "");
// Overflow would wrap around
ASSERT(this->mValue - rhs.mValue <= this->mValue);
return TypedIntegerImpl(this->mValue - rhs.mValue);
}
template <typename T2 = T>
constexpr std::enable_if_t<std::is_signed<T2>::value, TypedIntegerImpl> operator+(
TypedIntegerImpl rhs) const {
static_assert(std::is_same<T, T2>::value, "");
if (this->mValue > 0) {
// rhs is positive: |rhs| is at most the distance between max and |this|.
// rhs is negative: (positive + negative) won't overflow
ASSERT(rhs.mValue <= std::numeric_limits<T>::max() - this->mValue);
} else {
// rhs is postive: (negative + positive) won't underflow
// rhs is negative: |rhs| isn't less than the (negative) distance between min
// and |this|
ASSERT(rhs.mValue >= std::numeric_limits<T>::min() - this->mValue);
}
return TypedIntegerImpl(this->mValue + rhs.mValue);
}
template <typename T2 = T>
constexpr std::enable_if_t<std::is_signed<T2>::value, TypedIntegerImpl> operator-(
TypedIntegerImpl rhs) const {
static_assert(std::is_same<T, T2>::value, "");
if (this->mValue > 0) {
// rhs is positive: positive minus positive won't overflow
// rhs is negative: |rhs| isn't less than the (negative) distance between |this|
// and max.
ASSERT(rhs.mValue >= this->mValue - std::numeric_limits<T>::max());
} else {
// rhs is positive: |rhs| is at most the distance between min and |this|
// rhs is negative: negative minus negative won't overflow
ASSERT(rhs.mValue <= this->mValue - std::numeric_limits<T>::min());
}
return TypedIntegerImpl(this->mValue - rhs.mValue);
}
};
} // namespace detail
namespace std {
template <typename Tag, typename T>
class numeric_limits<detail::TypedIntegerImpl<Tag, T>> : public numeric_limits<T> {
public:
static detail::TypedIntegerImpl<Tag, T> max() noexcept {
return detail::TypedIntegerImpl<Tag, T>(std::numeric_limits<T>::max());
}
static detail::TypedIntegerImpl<Tag, T> min() noexcept {
return detail::TypedIntegerImpl<Tag, T>(std::numeric_limits<T>::min());
}
};
template <typename Tag, typename T>
class hash<detail::TypedIntegerImpl<Tag, T>> : private hash<T> {
public:
size_t operator()(detail::TypedIntegerImpl<Tag, T> value) const {
return hash<T>::operator()(static_cast<T>(value));
}
};
} // namespace std
#endif // COMMON_TYPEDINTEGER_H_

View File

@ -0,0 +1,51 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef COMMON_UNDERLYINGTYPE_H_
#define COMMON_UNDERLYINGTYPE_H_
#include <type_traits>
// UnderlyingType is similar to std::underlying_type_t. It is a passthrough for already
// integer types which simplifies getting the underlying primitive type for an arbitrary
// template parameter. It includes a specialization for detail::TypedIntegerImpl which yields
// the wrapped integer type.
namespace detail {
template <typename T, typename Enable = void>
struct UnderlyingTypeImpl;
template <typename I>
struct UnderlyingTypeImpl<I, typename std::enable_if_t<std::is_integral<I>::value>> {
using type = I;
};
template <typename E>
struct UnderlyingTypeImpl<E, typename std::enable_if_t<std::is_enum<E>::value>> {
using type = std::underlying_type_t<E>;
};
// Forward declare the TypedInteger impl.
template <typename Tag, typename T>
class TypedIntegerImpl;
template <typename Tag, typename I>
struct UnderlyingTypeImpl<TypedIntegerImpl<Tag, I>> {
using type = typename UnderlyingTypeImpl<I>::type;
};
} // namespace detail
template <typename T>
using UnderlyingType = typename detail::UnderlyingTypeImpl<T>::type;
#endif // COMMON_UNDERLYINGTYPE_H_

96
src/common/ityp_array.h Normal file
View File

@ -0,0 +1,96 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef COMMON_ITYP_ARRAY_H_
#define COMMON_ITYP_ARRAY_H_
#include "common/TypedInteger.h"
#include "common/UnderlyingType.h"
#include <array>
#include <type_traits>
namespace ityp {
// ityp::array is a helper class that wraps std::array with the restriction that
// indices must be a particular type |Index|. Dawn uses multiple flat maps of
// index-->data, and this class helps ensure an indices cannot be passed interchangably
// to a flat map of a different type.
template <typename Index, typename Value, size_t Size>
class array : private std::array<Value, Size> {
using I = UnderlyingType<Index>;
using Base = std::array<Value, Size>;
static_assert(Size <= std::numeric_limits<I>::max(), "");
public:
constexpr array() = default;
template <typename... Values>
constexpr array(Values&&... values) : Base{std::forward<Values>(values)...} {
}
Value& operator[](Index i) {
I index = static_cast<I>(i);
ASSERT(index >= 0 && index < Size);
return Base::operator[](index);
}
constexpr const Value& operator[](Index i) const {
I index = static_cast<I>(i);
ASSERT(index >= 0 && index < Size);
return Base::operator[](index);
}
Value& at(Index i) {
I index = static_cast<I>(i);
ASSERT(index >= 0 && index < Size);
return Base::at(index);
}
constexpr const Value& at(Index i) const {
I index = static_cast<I>(i);
ASSERT(index >= 0 && index < Size);
return Base::at(index);
}
Value* begin() noexcept {
return Base::begin();
}
const Value* begin() const noexcept {
return Base::begin();
}
Value* end() noexcept {
return Base::end();
}
const Value* end() const noexcept {
return Base::end();
}
constexpr Index size() const {
return Index(static_cast<I>(Size));
}
using Base::back;
using Base::data;
using Base::empty;
using Base::front;
};
} // namespace ityp
#endif // COMMON_ITYP_ARRAY_H_

124
src/common/ityp_bitset.h Normal file
View File

@ -0,0 +1,124 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef COMMON_ITYP_BITSET_H_
#define COMMON_ITYP_BITSET_H_
#include "common/BitSetIterator.h"
#include "common/TypedInteger.h"
#include "common/UnderlyingType.h"
namespace ityp {
// ityp::bitset is a helper class that wraps std::bitset with the restriction that
// indices must be a particular type |Index|.
template <typename Index, size_t N>
class bitset : private std::bitset<N> {
using I = UnderlyingType<Index>;
using Base = std::bitset<N>;
static_assert(sizeof(I) <= sizeof(size_t), "");
constexpr bitset(const Base& rhs) : Base(rhs) {
}
public:
constexpr bitset() noexcept : Base() {
}
constexpr bitset(unsigned long long value) noexcept : Base(value) {
}
constexpr bool operator[](Index i) const {
return Base::operator[](static_cast<I>(i));
}
typename Base::reference operator[](Index i) {
return Base::operator[](static_cast<I>(i));
}
bool test(Index i) const {
return Base::test(static_cast<I>(i));
}
using Base::all;
using Base::any;
using Base::count;
using Base::none;
using Base::size;
bitset& operator&=(const bitset& other) noexcept {
return static_cast<bitset&>(Base::operator&=(static_cast<const Base&>(other)));
}
bitset& operator|=(const bitset& other) noexcept {
return static_cast<bitset&>(Base::operator|=(static_cast<const Base&>(other)));
}
bitset& operator^=(const bitset& other) noexcept {
return static_cast<bitset&>(Base::operator^=(static_cast<const Base&>(other)));
}
bitset operator~() const noexcept {
return bitset(*this).flip();
}
bitset& set() noexcept {
return static_cast<bitset&>(Base::set());
}
bitset& set(Index i, bool value = true) {
return static_cast<bitset&>(Base::set(static_cast<I>(i), value));
}
bitset& reset() noexcept {
return static_cast<bitset&>(Base::reset());
}
bitset& reset(Index i) {
return static_cast<bitset&>(Base::reset(static_cast<I>(i)));
}
bitset& flip() noexcept {
return static_cast<bitset&>(Base::flip());
}
bitset& flip(Index i) {
return static_cast<bitset&>(Base::flip(static_cast<I>(i)));
}
using Base::to_string;
using Base::to_ullong;
using Base::to_ulong;
friend bitset operator&(const bitset& lhs, const bitset& rhs) noexcept {
return bitset(static_cast<const Base&>(lhs) & static_cast<const Base&>(rhs));
}
friend bitset operator|(const bitset& lhs, const bitset& rhs) noexcept {
return bitset(static_cast<const Base&>(lhs) | static_cast<const Base&>(rhs));
}
friend bitset operator^(const bitset& lhs, const bitset& rhs) noexcept {
return bitset(static_cast<const Base&>(lhs) ^ static_cast<const Base&>(rhs));
}
friend BitSetIterator<N, Index> IterateBitSet(const bitset& bitset) {
return BitSetIterator<N, Index>(static_cast<const Base&>(bitset));
}
};
} // namespace ityp
#endif // COMMON_ITYP_BITSET_H_

103
src/common/ityp_span.h Normal file
View File

@ -0,0 +1,103 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef COMMON_ITYP_SPAN_H_
#define COMMON_ITYP_SPAN_H_
#include "common/TypedInteger.h"
#include "common/UnderlyingType.h"
#include <type_traits>
namespace ityp {
// ityp::span is a helper class that wraps an unowned packed array of type |Value|.
// It stores the size and pointer to first element. It has the restriction that
// indices must be a particular type |Index|. This provides a type-safe way to index
// raw pointers.
template <typename Index, typename Value>
class span {
using I = UnderlyingType<Index>;
public:
constexpr span() : mData(nullptr), mSize(0) {
}
constexpr span(Value* data, Index size) : mData(data), mSize(size) {
}
constexpr Value& operator[](Index i) const {
ASSERT(i < mSize);
return mData[static_cast<I>(i)];
}
Value* data() noexcept {
return mData;
}
const Value* data() const noexcept {
return mData;
}
Value* begin() noexcept {
return mData;
}
const Value* begin() const noexcept {
return mData;
}
Value* end() noexcept {
return mData + static_cast<I>(mSize);
}
const Value* end() const noexcept {
return mData + static_cast<I>(mSize);
}
Value& front() {
ASSERT(mData != nullptr);
ASSERT(static_cast<I>(mSize) >= 0);
return *mData;
}
const Value& front() const {
ASSERT(mData != nullptr);
ASSERT(static_cast<I>(mSize) >= 0);
return *mData;
}
Value& back() {
ASSERT(mData != nullptr);
ASSERT(static_cast<I>(mSize) >= 0);
return *(mData + static_cast<I>(mSize) - 1);
}
const Value& back() const {
ASSERT(mData != nullptr);
ASSERT(static_cast<I>(mSize) >= 0);
return *(mData + static_cast<I>(mSize) - 1);
}
Index size() const {
return mSize;
}
private:
Value* mData;
Index mSize;
};
} // namespace ityp
#endif // COMMON_ITYP_SPAN_H_

View File

@ -16,6 +16,7 @@
#include "common/Assert.h"
#include "common/Math.h"
#include "common/ityp_bitset.h"
#include "dawn_native/BindGroupLayout.h"
#include "dawn_native/Buffer.h"
#include "dawn_native/Device.h"
@ -153,13 +154,14 @@ namespace dawn_native {
}
DAWN_TRY(device->ValidateObject(descriptor->layout));
if (descriptor->entryCount != descriptor->layout->GetBindingCount()) {
if (BindingIndex(descriptor->entryCount) != descriptor->layout->GetBindingCount()) {
return DAWN_VALIDATION_ERROR("numBindings mismatch");
}
const BindGroupLayoutBase::BindingMap& bindingMap = descriptor->layout->GetBindingMap();
std::bitset<kMaxBindingsPerGroup> bindingsSet;
ityp::bitset<BindingIndex, kMaxBindingsPerGroup> bindingsSet;
for (uint32_t i = 0; i < descriptor->entryCount; ++i) {
const BindGroupEntry& entry = descriptor->entries[i];
@ -223,7 +225,7 @@ namespace dawn_native {
: ObjectBase(device),
mLayout(descriptor->layout),
mBindingData(mLayout->ComputeBindingDataPointers(bindingDataStart)) {
for (BindingIndex i = 0; i < mLayout->GetBindingCount(); ++i) {
for (BindingIndex i{0}; i < mLayout->GetBindingCount(); ++i) {
// TODO(enga): Shouldn't be needed when bindings are tightly packed.
// This is to fill Ref<ObjectBase> holes with nullptrs.
new (&mBindingData.bindings[i]) Ref<ObjectBase>();
@ -267,7 +269,7 @@ namespace dawn_native {
BindGroupBase::~BindGroupBase() {
if (mLayout) {
ASSERT(!IsError());
for (BindingIndex i = 0; i < mLayout->GetBindingCount(); ++i) {
for (BindingIndex i{0}; i < mLayout->GetBindingCount(); ++i) {
mBindingData.bindings[i].~Ref<ObjectBase>();
}
}

View File

@ -15,6 +15,7 @@
#ifndef DAWNNATIVE_BINDGROUPANDSTORAGEBARRIERTRACKER_H_
#define DAWNNATIVE_BINDGROUPANDSTORAGEBARRIERTRACKER_H_
#include "common/ityp_bitset.h"
#include "dawn_native/BindGroup.h"
#include "dawn_native/BindGroupTracker.h"
#include "dawn_native/Buffer.h"
@ -41,7 +42,7 @@ namespace dawn_native {
const BindGroupLayoutBase* layout = bindGroup->GetLayout();
for (BindingIndex bindingIndex = 0; bindingIndex < layout->GetBindingCount();
for (BindingIndex bindingIndex{0}; bindingIndex < layout->GetBindingCount();
++bindingIndex) {
const BindingInfo& bindingInfo = layout->GetBindingInfo(bindingIndex);
@ -88,10 +89,13 @@ namespace dawn_native {
}
protected:
std::array<std::bitset<kMaxBindingsPerGroup>, kMaxBindGroups> mBindingsNeedingBarrier = {};
std::array<std::array<wgpu::BindingType, kMaxBindingsPerGroup>, kMaxBindGroups>
std::array<ityp::bitset<BindingIndex, kMaxBindingsPerGroup>, kMaxBindGroups>
mBindingsNeedingBarrier = {};
std::array<ityp::array<BindingIndex, wgpu::BindingType, kMaxBindingsPerGroup>,
kMaxBindGroups>
mBindingTypes = {};
std::array<std::array<ObjectBase*, kMaxBindingsPerGroup>, kMaxBindGroups> mBindings = {};
std::array<ityp::array<BindingIndex, ObjectBase*, kMaxBindingsPerGroup>, kMaxBindGroups>
mBindings = {};
};
} // namespace dawn_native

View File

@ -304,12 +304,12 @@ namespace dawn_native {
// This is a utility function to help ASSERT that the BGL-binding comparator places buffers
// first.
bool CheckBufferBindingsFirst(const BindingInfo* bindings, BindingIndex count) {
ASSERT(count <= kMaxBindingsPerGroup);
bool CheckBufferBindingsFirst(ityp::span<BindingIndex, const BindingInfo> bindings) {
ASSERT(bindings.size() <= BindingIndex(kMaxBindingsPerGroup));
BindingIndex lastBufferIndex = 0;
BindingIndex lastBufferIndex{0};
BindingIndex firstNonBufferIndex = std::numeric_limits<BindingIndex>::max();
for (BindingIndex i = 0; i < count; ++i) {
for (BindingIndex i{0}; i < bindings.size(); ++i) {
if (IsBufferBinding(bindings[i].type)) {
lastBufferIndex = std::max(i, lastBufferIndex);
} else {
@ -334,8 +334,8 @@ namespace dawn_native {
std::sort(sortedBindings.begin(), sortedBindings.end(), SortBindingsCompare);
for (BindingIndex i = 0; i < mBindingCount; ++i) {
const BindGroupLayoutEntry& binding = sortedBindings[i];
for (BindingIndex i{0}; i < mBindingCount; ++i) {
const BindGroupLayoutEntry& binding = sortedBindings[static_cast<uint32_t>(i)];
mBindingInfo[i].type = binding.type;
mBindingInfo[i].visibility = binding.visibility;
mBindingInfo[i].textureComponentType =
@ -385,7 +385,7 @@ namespace dawn_native {
const auto& it = mBindingMap.emplace(BindingNumber(binding.binding), i);
ASSERT(it.second);
}
ASSERT(CheckBufferBindingsFirst(mBindingInfo.data(), mBindingCount));
ASSERT(CheckBufferBindingsFirst({mBindingInfo.data(), mBindingCount}));
}
BindGroupLayoutBase::BindGroupLayoutBase(DeviceBase* device, ObjectBase::ErrorTag tag)
@ -432,7 +432,7 @@ namespace dawn_native {
if (a->GetBindingCount() != b->GetBindingCount()) {
return false;
}
for (BindingIndex i = 0; i < a->GetBindingCount(); ++i) {
for (BindingIndex i{0}; i < a->GetBindingCount(); ++i) {
if (a->mBindingInfo[i] != b->mBindingInfo[i]) {
return false;
}
@ -445,7 +445,9 @@ namespace dawn_native {
}
BindingIndex BindGroupLayoutBase::GetDynamicBufferCount() const {
return mDynamicStorageBufferCount + mDynamicUniformBufferCount;
// This is a binding index because dynamic buffers are packed at the front of the binding
// info.
return static_cast<BindingIndex>(mDynamicStorageBufferCount + mDynamicUniformBufferCount);
}
uint32_t BindGroupLayoutBase::GetDynamicUniformBufferCount() const {
@ -459,20 +461,21 @@ namespace dawn_native {
size_t BindGroupLayoutBase::GetBindingDataSize() const {
// | ------ buffer-specific ----------| ------------ object pointers -------------|
// | --- offsets + sizes -------------| --------------- Ref<ObjectBase> ----------|
size_t objectPointerStart = mBufferCount * sizeof(BufferBindingData);
size_t objectPointerStart = static_cast<uint32_t>(mBufferCount) * sizeof(BufferBindingData);
ASSERT(IsAligned(objectPointerStart, alignof(Ref<ObjectBase>)));
return objectPointerStart + mBindingCount * sizeof(Ref<ObjectBase>);
return objectPointerStart + static_cast<uint32_t>(mBindingCount) * sizeof(Ref<ObjectBase>);
}
BindGroupLayoutBase::BindingDataPointers BindGroupLayoutBase::ComputeBindingDataPointers(
void* dataStart) const {
BufferBindingData* bufferData = reinterpret_cast<BufferBindingData*>(dataStart);
auto bindings = reinterpret_cast<Ref<ObjectBase>*>(bufferData + mBufferCount);
auto bindings =
reinterpret_cast<Ref<ObjectBase>*>(bufferData + static_cast<uint32_t>(mBufferCount));
ASSERT(IsPtrAligned(bufferData, alignof(BufferBindingData)));
ASSERT(IsPtrAligned(bindings, alignof(Ref<ObjectBase>)));
return {bufferData, bindings};
return {{bufferData, mBufferCount}, {bindings, mBindingCount}};
}
} // namespace dawn_native

View File

@ -18,6 +18,8 @@
#include "common/Constants.h"
#include "common/Math.h"
#include "common/SlabAllocator.h"
#include "common/ityp_array.h"
#include "common/ityp_span.h"
#include "dawn_native/BindingInfo.h"
#include "dawn_native/CachedObject.h"
#include "dawn_native/Error.h"
@ -25,7 +27,6 @@
#include "dawn_native/dawn_platform.h"
#include <array>
#include <bitset>
#include <map>
@ -60,7 +61,7 @@ namespace dawn_native {
const BindingInfo& GetBindingInfo(BindingIndex bindingIndex) const {
ASSERT(!IsError());
ASSERT(bindingIndex < kMaxBindingsPerGroup);
ASSERT(bindingIndex < BindingIndex(kMaxBindingsPerGroup));
return mBindingInfo[bindingIndex];
}
const BindingMap& GetBindingMap() const;
@ -86,8 +87,8 @@ namespace dawn_native {
};
struct BindingDataPointers {
BufferBindingData* const bufferData = nullptr;
Ref<ObjectBase>* const bindings = nullptr;
ityp::span<BindingIndex, BufferBindingData> const bufferData = {};
ityp::span<BindingIndex, Ref<ObjectBase>> const bindings = {};
};
// Compute the amount of space / alignment required to store bindings for a bind group of
@ -114,11 +115,11 @@ namespace dawn_native {
BindGroupLayoutBase(DeviceBase* device, ObjectBase::ErrorTag tag);
BindingIndex mBindingCount;
BindingIndex mBufferCount = 0; // |BindingIndex| because buffers are packed at the front.
BindingIndex mBufferCount{0}; // |BindingIndex| because buffers are packed at the front.
uint32_t mDynamicUniformBufferCount = 0;
uint32_t mDynamicStorageBufferCount = 0;
std::array<BindingInfo, kMaxBindingsPerGroup> mBindingInfo;
ityp::array<BindingIndex, BindingInfo, kMaxBindingsPerGroup> mBindingInfo;
// Map from BindGroupLayoutEntry.binding to packed indices.
BindingMap mBindingMap;

View File

@ -15,6 +15,8 @@
#ifndef DAWNNATIVE_BINDINGINFO_H_
#define DAWNNATIVE_BINDINGINFO_H_
#include "common/Constants.h"
#include "common/TypedInteger.h"
#include "dawn_native/Format.h"
#include "dawn_native/dawn_platform.h"
@ -22,14 +24,13 @@
namespace dawn_native {
// TODO(enga): Can we have strongly typed integers so you can't convert between them
// by accident? And also range-assertions (ex. kMaxBindingsPerGroup) in Debug?
// Binding numbers in the shader and BindGroup/BindGroupLayoutDescriptors
using BindingNumber = uint32_t;
using BindingNumber = TypedInteger<struct BindingNumberT, uint32_t>;
// Binding numbers get mapped to a packed range of indices
using BindingIndex = uint32_t;
using BindingIndex = TypedInteger<struct BindingIndexT, uint32_t>;
static constexpr BindingIndex kMaxBindingsPerGroupTyped = BindingIndex(kMaxBindingsPerGroup);
struct BindingInfo {
wgpu::ShaderStage visibility;

View File

@ -125,14 +125,15 @@ namespace dawn_native {
ASSERT(count > 0);
// Data which BindGroupLayoutDescriptor will point to for creation
std::array<std::array<BindGroupLayoutEntry, kMaxBindingsPerGroup>, kMaxBindGroups>
std::array<ityp::array<BindingIndex, BindGroupLayoutEntry, kMaxBindingsPerGroup>,
kMaxBindGroups>
entryData = {};
// A map of bindings to the index in |entryData|
std::array<std::map<BindingNumber, BindingIndex>, kMaxBindGroups> usedBindingsMap = {};
// A counter of how many bindings we've populated in |entryData|
std::array<uint32_t, kMaxBindGroups> entryCounts = {};
std::array<BindingIndex, kMaxBindGroups> entryCounts = {};
uint32_t bindGroupLayoutCount = 0;
for (uint32_t moduleIndex = 0; moduleIndex < count; ++moduleIndex) {
@ -149,7 +150,7 @@ namespace dawn_native {
}
BindGroupLayoutEntry bindingSlot;
bindingSlot.binding = bindingNumber;
bindingSlot.binding = static_cast<uint32_t>(bindingNumber);
DAWN_TRY(ValidateBindingTypeWithShaderStageVisibility(
bindingInfo.type, StageBit(module->GetExecutionModel())));
@ -183,7 +184,7 @@ namespace dawn_native {
}
}
uint32_t currentBindingCount = entryCounts[group];
BindingIndex currentBindingCount = entryCounts[group];
entryData[group][currentBindingCount] = bindingSlot;
usedBindingsMap[group][bindingNumber] = currentBindingCount;
@ -199,7 +200,7 @@ namespace dawn_native {
for (uint32_t group = 0; group < bindGroupLayoutCount; ++group) {
BindGroupLayoutDescriptor desc = {};
desc.entries = entryData[group].data();
desc.entryCount = entryCounts[group];
desc.entryCount = static_cast<uint32_t>(entryCounts[group]);
// We should never produce a bad descriptor.
ASSERT(!ValidateBindGroupLayoutDescriptor(device, &desc).IsError());

View File

@ -15,6 +15,7 @@
#include "dawn_native/ProgrammablePassEncoder.h"
#include "common/BitSetIterator.h"
#include "common/ityp_array.h"
#include "dawn_native/BindGroup.h"
#include "dawn_native/Buffer.h"
#include "dawn_native/CommandBuffer.h"
@ -29,8 +30,8 @@ namespace dawn_native {
namespace {
void TrackBindGroupResourceUsage(PassResourceUsageTracker* usageTracker,
BindGroupBase* group) {
for (BindingIndex bindingIndex = 0;
bindingIndex < group->GetLayout()->GetBindingCount(); ++bindingIndex) {
for (BindingIndex bindingIndex{0}; bindingIndex < group->GetLayout()->GetBindingCount();
++bindingIndex) {
wgpu::BindingType type = group->GetLayout()->GetBindingInfo(bindingIndex).type;
switch (type) {
@ -131,8 +132,8 @@ namespace dawn_native {
void ProgrammablePassEncoder::SetBindGroup(uint32_t groupIndex,
BindGroupBase* group,
uint32_t dynamicOffsetCount,
const uint32_t* dynamicOffsets) {
uint32_t dynamicOffsetCountIn,
const uint32_t* dynamicOffsetsIn) {
mEncodingContext->TryEncode(this, [&](CommandAllocator* allocator) -> MaybeError {
if (GetDevice()->IsValidationEnabled()) {
DAWN_TRY(GetDevice()->ValidateObject(group));
@ -141,13 +142,16 @@ namespace dawn_native {
return DAWN_VALIDATION_ERROR("Setting bind group over the max");
}
ityp::span<BindingIndex, const uint32_t> dynamicOffsets(
dynamicOffsetsIn, BindingIndex(dynamicOffsetCountIn));
// Dynamic offsets count must match the number required by the layout perfectly.
const BindGroupLayoutBase* layout = group->GetLayout();
if (layout->GetDynamicBufferCount() != dynamicOffsetCount) {
if (layout->GetDynamicBufferCount() != dynamicOffsets.size()) {
return DAWN_VALIDATION_ERROR("dynamicOffset count mismatch");
}
for (BindingIndex i = 0; i < dynamicOffsetCount; ++i) {
for (BindingIndex i{0}; i < dynamicOffsets.size(); ++i) {
const BindingInfo& bindingInfo = layout->GetBindingInfo(i);
// BGL creation sorts bindings such that the dynamic buffer bindings are first.
@ -185,10 +189,10 @@ namespace dawn_native {
SetBindGroupCmd* cmd = allocator->Allocate<SetBindGroupCmd>(Command::SetBindGroup);
cmd->index = groupIndex;
cmd->group = group;
cmd->dynamicOffsetCount = dynamicOffsetCount;
if (dynamicOffsetCount > 0) {
cmd->dynamicOffsetCount = dynamicOffsetCountIn;
if (dynamicOffsetCountIn > 0) {
uint32_t* offsets = allocator->AllocateData<uint32_t>(cmd->dynamicOffsetCount);
memcpy(offsets, dynamicOffsets, dynamicOffsetCount * sizeof(uint32_t));
memcpy(offsets, dynamicOffsetsIn, dynamicOffsetCountIn * sizeof(uint32_t));
}
TrackBindGroupResourceUsage(&mUsageTracker, group);

View File

@ -289,9 +289,10 @@ namespace dawn_native {
}
}
std::string GetShaderDeclarationString(size_t group, uint32_t binding) {
std::string GetShaderDeclarationString(size_t group, BindingNumber binding) {
std::ostringstream ostream;
ostream << "the shader module declaration at set " << group << " binding " << binding;
ostream << "the shader module declaration at set " << group << " binding "
<< static_cast<uint32_t>(binding);
return ostream.str();
}
} // anonymous namespace

View File

@ -103,7 +103,7 @@ namespace dawn_native { namespace d3d12 {
D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER);
descriptorOffsets[Sampler] = 0;
for (BindingIndex bindingIndex = 0; bindingIndex < GetBindingCount(); ++bindingIndex) {
for (BindingIndex bindingIndex{0}; bindingIndex < GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo = GetBindingInfo(bindingIndex);
if (bindingInfo.hasDynamicOffset) {
@ -170,7 +170,8 @@ namespace dawn_native { namespace d3d12 {
mBindGroupAllocator.Deallocate(bindGroup);
}
const std::array<uint32_t, kMaxBindingsPerGroup>& BindGroupLayout::GetBindingOffsets() const {
const ityp::array<BindingIndex, uint32_t, kMaxBindingsPerGroup>&
BindGroupLayout::GetBindingOffsets() const {
return mBindingOffsets;
}

View File

@ -44,7 +44,7 @@ namespace dawn_native { namespace d3d12 {
Count,
};
const std::array<uint32_t, kMaxBindingsPerGroup>& GetBindingOffsets() const;
const ityp::array<BindingIndex, uint32_t, kMaxBindingsPerGroup>& GetBindingOffsets() const;
uint32_t GetCbvUavSrvDescriptorTableSize() const;
uint32_t GetSamplerDescriptorTableSize() const;
uint32_t GetCbvUavSrvDescriptorCount() const;
@ -54,7 +54,7 @@ namespace dawn_native { namespace d3d12 {
private:
~BindGroupLayout() override = default;
std::array<uint32_t, kMaxBindingsPerGroup> mBindingOffsets;
ityp::array<BindingIndex, uint32_t, kMaxBindingsPerGroup> mBindingOffsets;
std::array<uint32_t, DescriptorType::Count> mDescriptorCounts;
D3D12_DESCRIPTOR_RANGE mRanges[DescriptorType::Count];

View File

@ -150,7 +150,7 @@ namespace dawn_native { namespace d3d12 {
if (mInCompute) {
for (uint32_t index : IterateBitSet(mBindGroupLayoutsMask)) {
for (uint32_t binding : IterateBitSet(mBindingsNeedingBarrier[index])) {
for (BindingIndex binding : IterateBitSet(mBindingsNeedingBarrier[index])) {
wgpu::BindingType bindingType = mBindingTypes[index][binding];
switch (bindingType) {
case wgpu::BindingType::StorageBuffer:
@ -213,16 +213,18 @@ namespace dawn_native { namespace d3d12 {
const PipelineLayout* pipelineLayout,
uint32_t index,
BindGroup* group,
uint32_t dynamicOffsetCount,
const uint64_t* dynamicOffsets) {
ASSERT(dynamicOffsetCount == group->GetLayout()->GetDynamicBufferCount());
uint32_t dynamicOffsetCountIn,
const uint64_t* dynamicOffsetsIn) {
ityp::span<BindingIndex, const uint64_t> dynamicOffsets(
dynamicOffsetsIn, BindingIndex(dynamicOffsetCountIn));
ASSERT(dynamicOffsets.size() == group->GetLayout()->GetDynamicBufferCount());
// Usually, the application won't set the same offsets many times,
// so always try to apply dynamic offsets even if the offsets stay the same
if (dynamicOffsetCount != 0) {
if (dynamicOffsets.size() != BindingIndex(0)) {
// Update dynamic offsets.
// Dynamic buffer bindings are packed at the beginning of the layout.
for (BindingIndex bindingIndex = 0; bindingIndex < dynamicOffsetCount;
for (BindingIndex bindingIndex{0}; bindingIndex < dynamicOffsets.size();
++bindingIndex) {
const BindingInfo& bindingInfo =
group->GetLayout()->GetBindingInfo(bindingIndex);

View File

@ -123,7 +123,7 @@ namespace dawn_native { namespace d3d12 {
// Init root descriptors in root signatures for dynamic buffer bindings.
// These are packed at the beginning of the layout binding info.
for (BindingIndex dynamicBindingIndex = 0;
for (BindingIndex dynamicBindingIndex{0};
dynamicBindingIndex < bindGroupLayout->GetDynamicBufferCount();
++dynamicBindingIndex) {
const BindingInfo& bindingInfo =
@ -194,7 +194,7 @@ namespace dawn_native { namespace d3d12 {
uint32_t PipelineLayout::GetDynamicRootParameterIndex(uint32_t group,
BindingIndex bindingIndex) const {
ASSERT(group < kMaxBindGroups);
ASSERT(bindingIndex < kMaxBindingsPerGroup);
ASSERT(bindingIndex < kMaxBindingsPerGroupTyped);
ASSERT(GetBindGroupLayout(group)->GetBindingInfo(bindingIndex).hasDynamicOffset);
ASSERT(GetBindGroupLayout(group)->GetBindingInfo(bindingIndex).visibility !=
wgpu::ShaderStage::None);

View File

@ -15,6 +15,7 @@
#ifndef DAWNNATIVE_D3D12_PIPELINELAYOUTD3D12_H_
#define DAWNNATIVE_D3D12_PIPELINELAYOUTD3D12_H_
#include "common/ityp_array.h"
#include "dawn_native/BindingInfo.h"
#include "dawn_native/PipelineLayout.h"
#include "dawn_native/d3d12/d3d12_platform.h"
@ -42,7 +43,7 @@ namespace dawn_native { namespace d3d12 {
MaybeError Initialize();
std::array<uint32_t, kMaxBindGroups> mCbvUavSrvRootParameterInfo;
std::array<uint32_t, kMaxBindGroups> mSamplerRootParameterInfo;
std::array<std::array<uint32_t, kMaxBindingsPerGroup>, kMaxBindGroups>
std::array<ityp::array<BindingIndex, uint32_t, kMaxBindingsPerGroup>, kMaxBindGroups>
mDynamicRootParameterIndices;
ComPtr<ID3D12RootSignature> mRootSignature;
};

View File

@ -180,13 +180,15 @@ namespace dawn_native { namespace d3d12 {
"spvc"));
if (forceStorageBufferAsUAV) {
DAWN_TRY(CheckSpvcSuccess(
mSpvcContext.SetHLSLForceStorageBufferAsUAV(group, bindingNumber),
mSpvcContext.SetHLSLForceStorageBufferAsUAV(
group, static_cast<uint32_t>(bindingNumber)),
"Unable to force read-only storage buffer as UAV w/ spvc"));
}
} else {
compiler->set_decoration(bindingInfo.id, spv::DecorationBinding, bindingOffset);
if (forceStorageBufferAsUAV) {
compiler->set_hlsl_force_storage_buffer_as_uav(group, bindingNumber);
compiler->set_hlsl_force_storage_buffer_as_uav(
group, static_cast<uint32_t>(bindingNumber));
}
}
}

View File

@ -496,7 +496,7 @@ namespace dawn_native { namespace metal {
// TODO(kainino@chromium.org): Maintain buffers and offsets arrays in BindGroup
// so that we only have to do one setVertexBuffers and one setFragmentBuffers
// call here.
for (BindingIndex bindingIndex = 0;
for (BindingIndex bindingIndex{0};
bindingIndex < group->GetLayout()->GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo =
group->GetLayout()->GetBindingInfo(bindingIndex);

View File

@ -15,6 +15,8 @@
#ifndef DAWNNATIVE_METAL_PIPELINELAYOUTMTL_H_
#define DAWNNATIVE_METAL_PIPELINELAYOUTMTL_H_
#include "common/ityp_array.h"
#include "dawn_native/BindingInfo.h"
#include "dawn_native/PipelineLayout.h"
#include "dawn_native/PerStage.h"
@ -41,7 +43,7 @@ namespace dawn_native { namespace metal {
PipelineLayout(Device* device, const PipelineLayoutDescriptor* descriptor);
using BindingIndexInfo =
std::array<std::array<uint32_t, kMaxBindingsPerGroup>, kMaxBindGroups>;
std::array<ityp::array<BindingIndex, uint32_t, kMaxBindingsPerGroup>, kMaxBindGroups>;
const BindingIndexInfo& GetBindingIndexInfo(SingleShaderStage stage) const;
// The number of Metal vertex stage buffers used for the whole pipeline layout.

View File

@ -29,7 +29,7 @@ namespace dawn_native { namespace metal {
uint32_t textureIndex = 0;
for (uint32_t group : IterateBitSet(GetBindGroupLayoutsMask())) {
for (BindingIndex bindingIndex = 0;
for (BindingIndex bindingIndex{0};
bindingIndex < GetBindGroupLayout(group)->GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo =
GetBindGroupLayout(group)->GetBindingInfo(bindingIndex);

View File

@ -149,7 +149,7 @@ namespace dawn_native { namespace metal {
shaderc_spvc_msl_resource_binding mslBinding;
mslBinding.stage = ToSpvcExecutionModel(stage);
mslBinding.desc_set = group;
mslBinding.binding = bindingNumber;
mslBinding.binding = static_cast<uint32_t>(bindingNumber);
mslBinding.msl_buffer = mslBinding.msl_texture = mslBinding.msl_sampler =
shaderIndex;
DAWN_TRY(CheckSpvcSuccess(mSpvcContext.AddMSLResourceBinding(mslBinding),
@ -158,7 +158,7 @@ namespace dawn_native { namespace metal {
spirv_cross::MSLResourceBinding mslBinding;
mslBinding.stage = SpirvExecutionModelForStage(stage);
mslBinding.desc_set = group;
mslBinding.binding = bindingNumber;
mslBinding.binding = static_cast<uint32_t>(bindingNumber);
mslBinding.msl_buffer = mslBinding.msl_texture = mslBinding.msl_sampler =
shaderIndex;

View File

@ -241,7 +241,7 @@ namespace dawn_native { namespace opengl {
const auto& indices = ToBackend(mPipelineLayout)->GetBindingIndexInfo()[index];
uint32_t currentDynamicOffsetIndex = 0;
for (BindingIndex bindingIndex = 0;
for (BindingIndex bindingIndex{0};
bindingIndex < group->GetLayout()->GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo =
group->GetLayout()->GetBindingInfo(bindingIndex);

View File

@ -183,20 +183,29 @@ namespace dawn_native { namespace opengl {
gl.Uniform1i(location, textureUnit);
GLuint textureIndex =
indices[combined.textureLocation.group][combined.textureLocation.binding];
mUnitsForTextures[textureIndex].push_back(textureUnit);
bool shouldUseFiltering;
{
const BindGroupLayoutBase* bgl =
layout->GetBindGroupLayout(combined.textureLocation.group);
BindingIndex bindingIndex =
bgl->GetBindingIndex(combined.textureLocation.binding);
const BindGroupLayoutBase* bgl =
layout->GetBindGroupLayout(combined.textureLocation.group);
Format::Type componentType =
bgl->GetBindingInfo(bgl->GetBindingIndex(combined.textureLocation.binding))
.textureComponentType;
bool shouldUseFiltering = componentType == Format::Type::Float;
GLuint textureIndex = indices[combined.textureLocation.group][bindingIndex];
mUnitsForTextures[textureIndex].push_back(textureUnit);
GLuint samplerIndex =
indices[combined.samplerLocation.group][combined.samplerLocation.binding];
mUnitsForSamplers[samplerIndex].push_back({textureUnit, shouldUseFiltering});
Format::Type componentType =
bgl->GetBindingInfo(bindingIndex).textureComponentType;
shouldUseFiltering = componentType == Format::Type::Float;
}
{
const BindGroupLayoutBase* bgl =
layout->GetBindGroupLayout(combined.samplerLocation.group);
BindingIndex bindingIndex =
bgl->GetBindingIndex(combined.samplerLocation.binding);
GLuint samplerIndex = indices[combined.samplerLocation.group][bindingIndex];
mUnitsForSamplers[samplerIndex].push_back({textureUnit, shouldUseFiltering});
}
textureUnit++;
}

View File

@ -31,7 +31,7 @@ namespace dawn_native { namespace opengl {
for (uint32_t group : IterateBitSet(GetBindGroupLayoutsMask())) {
const BindGroupLayoutBase* bgl = GetBindGroupLayout(group);
for (BindingIndex bindingIndex = 0; bindingIndex < bgl->GetBindingCount();
for (BindingIndex bindingIndex{0}; bindingIndex < bgl->GetBindingCount();
++bindingIndex) {
switch (bgl->GetBindingInfo(bindingIndex).type) {
case wgpu::BindingType::UniformBuffer:

View File

@ -17,6 +17,8 @@
#include "dawn_native/PipelineLayout.h"
#include "common/ityp_array.h"
#include "dawn_native/BindingInfo.h"
#include "dawn_native/opengl/opengl_platform.h"
namespace dawn_native { namespace opengl {
@ -28,7 +30,7 @@ namespace dawn_native { namespace opengl {
PipelineLayout(Device* device, const PipelineLayoutDescriptor* descriptor);
using BindingIndexInfo =
std::array<std::array<GLuint, kMaxBindingsPerGroup>, kMaxBindGroups>;
std::array<ityp::array<BindingIndex, GLuint, kMaxBindingsPerGroup>, kMaxBindGroups>;
const BindingIndexInfo& GetBindingIndexInfo() const;
GLuint GetTextureUnitsUsed() const;

View File

@ -24,9 +24,9 @@
namespace dawn_native { namespace opengl {
std::string GetBindingName(uint32_t group, uint32_t binding) {
std::string GetBindingName(uint32_t group, BindingNumber bindingNumber) {
std::ostringstream o;
o << "dawn_binding_" << group << "_" << binding;
o << "dawn_binding_" << group << "_" << static_cast<uint32_t>(bindingNumber);
return o.str();
}
@ -42,8 +42,9 @@ namespace dawn_native { namespace opengl {
std::string CombinedSampler::GetName() const {
std::ostringstream o;
o << "dawn_combined";
o << "_" << samplerLocation.group << "_" << samplerLocation.binding;
o << "_with_" << textureLocation.group << "_" << textureLocation.binding;
o << "_" << samplerLocation.group << "_" << static_cast<uint32_t>(samplerLocation.binding);
o << "_with_" << textureLocation.group << "_"
<< static_cast<uint32_t>(textureLocation.binding);
return o.str();
}
@ -143,12 +144,19 @@ namespace dawn_native { namespace opengl {
mSpvcContext.GetDecoration(sampler.sampler_id,
shaderc_spvc_decoration_descriptorset,
&info.samplerLocation.group);
uint32_t samplerBinding;
mSpvcContext.GetDecoration(sampler.sampler_id, shaderc_spvc_decoration_binding,
&info.samplerLocation.binding);
&samplerBinding);
info.samplerLocation.binding = BindingNumber(samplerBinding);
mSpvcContext.GetDecoration(sampler.image_id, shaderc_spvc_decoration_descriptorset,
&info.textureLocation.group);
uint32_t textureBinding;
mSpvcContext.GetDecoration(sampler.image_id, shaderc_spvc_decoration_binding,
&info.textureLocation.binding);
&textureBinding);
info.textureLocation.binding = BindingNumber(textureBinding);
mSpvcContext.SetName(sampler.combined_id, info.GetName());
}
} else {
@ -158,12 +166,12 @@ namespace dawn_native { namespace opengl {
auto& info = mCombinedInfo.back();
info.samplerLocation.group =
compiler->get_decoration(combined.sampler_id, spv::DecorationDescriptorSet);
info.samplerLocation.binding =
compiler->get_decoration(combined.sampler_id, spv::DecorationBinding);
info.samplerLocation.binding = BindingNumber(
compiler->get_decoration(combined.sampler_id, spv::DecorationBinding));
info.textureLocation.group =
compiler->get_decoration(combined.image_id, spv::DecorationDescriptorSet);
info.textureLocation.binding =
compiler->get_decoration(combined.image_id, spv::DecorationBinding);
info.textureLocation.binding = BindingNumber(
compiler->get_decoration(combined.image_id, spv::DecorationBinding));
compiler->set_name(combined.combined_id, info.GetName());
}
}

View File

@ -23,11 +23,11 @@ namespace dawn_native { namespace opengl {
class Device;
std::string GetBindingName(uint32_t group, uint32_t binding);
std::string GetBindingName(uint32_t group, BindingNumber bindingNumber);
struct BindingLocation {
uint32_t group;
uint32_t binding;
BindingNumber binding;
};
bool operator<(const BindingLocation& a, const BindingLocation& b);

View File

@ -93,7 +93,7 @@ namespace dawn_native { namespace vulkan {
const BindingInfo& bindingInfo = GetBindingInfo(bindingIndex);
VkDescriptorSetLayoutBinding* vkBinding = &bindings[numBindings];
vkBinding->binding = bindingNumber;
vkBinding->binding = static_cast<uint32_t>(bindingNumber);
vkBinding->descriptorType =
VulkanDescriptorType(bindingInfo.type, bindingInfo.hasDynamicOffset);
vkBinding->descriptorCount = 1;
@ -118,7 +118,7 @@ namespace dawn_native { namespace vulkan {
// Compute the size of descriptor pools used for this layout.
std::map<VkDescriptorType, uint32_t> descriptorCountPerType;
for (BindingIndex bindingIndex = 0; bindingIndex < GetBindingCount(); ++bindingIndex) {
for (BindingIndex bindingIndex{0}; bindingIndex < GetBindingCount(); ++bindingIndex) {
const BindingInfo& bindingInfo = GetBindingInfo(bindingIndex);
VkDescriptorType vulkanType =
VulkanDescriptorType(bindingInfo.type, bindingInfo.hasDynamicOffset);

View File

@ -52,7 +52,7 @@ namespace dawn_native { namespace vulkan {
write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write.pNext = nullptr;
write.dstSet = GetHandle();
write.dstBinding = bindingNumber;
write.dstBinding = static_cast<uint32_t>(bindingNumber);
write.dstArrayElement = 0;
write.descriptorCount = 1;
write.descriptorType =

View File

@ -144,7 +144,8 @@ namespace dawn_native { namespace vulkan {
mDynamicOffsetCounts, mDynamicOffsets);
for (uint32_t index : IterateBitSet(mBindGroupLayoutsMask)) {
for (uint32_t bindingIndex : IterateBitSet(mBindingsNeedingBarrier[index])) {
for (BindingIndex bindingIndex :
IterateBitSet(mBindingsNeedingBarrier[index])) {
switch (mBindingTypes[index][bindingIndex]) {
case wgpu::BindingType::StorageBuffer:
static_cast<Buffer*>(mBindings[index][bindingIndex])

View File

@ -159,6 +159,9 @@ test("dawn_unittests") {
"unittests/ErrorTests.cpp",
"unittests/ExtensionTests.cpp",
"unittests/GetProcAddressTests.cpp",
"unittests/ITypArrayTests.cpp",
"unittests/ITypBitsetTests.cpp",
"unittests/ITypSpanTests.cpp",
"unittests/LinkedListTests.cpp",
"unittests/MathTests.cpp",
"unittests/ObjectBaseTests.cpp",
@ -172,6 +175,7 @@ test("dawn_unittests") {
"unittests/SlabAllocatorTests.cpp",
"unittests/SystemUtilsTests.cpp",
"unittests/ToBackendTests.cpp",
"unittests/TypedIntegerTests.cpp",
"unittests/validation/BindGroupValidationTests.cpp",
"unittests/validation/BufferValidationTests.cpp",
"unittests/validation/CommandBufferValidationTests.cpp",

View File

@ -15,6 +15,7 @@
#include <gtest/gtest.h>
#include "common/BitSetIterator.h"
#include "common/ityp_bitset.h"
// This is ANGLE's BitSetIterator_unittests.cpp file.
@ -48,7 +49,7 @@ TEST_F(BitSetIteratorTest, Iterator) {
// Test an empty iterator.
TEST_F(BitSetIteratorTest, EmptySet) {
// We don't use the FAIL gtest macro here since it returns immediately,
// causing an unreachable code warning in MSVS
// causing an unreachable code warning in MSVC
bool sawBit = false;
for (unsigned long bit : IterateBitSet(mStateBits)) {
DAWN_UNUSED(bit);
@ -82,3 +83,137 @@ TEST_F(BitSetIteratorTest, NonLValueBitset) {
EXPECT_EQ((mStateBits & otherBits).count(), seenBits.size());
}
class EnumBitSetIteratorTest : public testing::Test {
protected:
enum class TestEnum { A, B, C, D, E, F, G, H, I, J, EnumCount };
static constexpr size_t kEnumCount = static_cast<size_t>(TestEnum::EnumCount);
ityp::bitset<TestEnum, kEnumCount> mStateBits;
};
// Simple iterator test.
TEST_F(EnumBitSetIteratorTest, Iterator) {
std::set<TestEnum> originalValues;
originalValues.insert(TestEnum::B);
originalValues.insert(TestEnum::F);
originalValues.insert(TestEnum::C);
originalValues.insert(TestEnum::I);
for (TestEnum value : originalValues) {
mStateBits.set(value);
}
std::set<TestEnum> readValues;
for (TestEnum bit : IterateBitSet(mStateBits)) {
EXPECT_EQ(1u, originalValues.count(bit));
EXPECT_EQ(0u, readValues.count(bit));
readValues.insert(bit);
}
EXPECT_EQ(originalValues.size(), readValues.size());
}
// Test an empty iterator.
TEST_F(EnumBitSetIteratorTest, EmptySet) {
// We don't use the FAIL gtest macro here since it returns immediately,
// causing an unreachable code warning in MSVC
bool sawBit = false;
for (TestEnum bit : IterateBitSet(mStateBits)) {
DAWN_UNUSED(bit);
sawBit = true;
}
EXPECT_FALSE(sawBit);
}
// Test iterating a result of combining two bitsets.
TEST_F(EnumBitSetIteratorTest, NonLValueBitset) {
ityp::bitset<TestEnum, kEnumCount> otherBits;
mStateBits.set(TestEnum::B);
mStateBits.set(TestEnum::C);
mStateBits.set(TestEnum::D);
mStateBits.set(TestEnum::E);
otherBits.set(TestEnum::A);
otherBits.set(TestEnum::B);
otherBits.set(TestEnum::D);
otherBits.set(TestEnum::F);
std::set<TestEnum> seenBits;
for (TestEnum bit : IterateBitSet(mStateBits & otherBits)) {
EXPECT_EQ(0u, seenBits.count(bit));
seenBits.insert(bit);
EXPECT_TRUE(mStateBits[bit]);
EXPECT_TRUE(otherBits[bit]);
}
EXPECT_EQ((mStateBits & otherBits).count(), seenBits.size());
}
class ITypBitsetIteratorTest : public testing::Test {
protected:
using IntegerT = TypedInteger<struct Foo, uint32_t>;
ityp::bitset<IntegerT, 40> mStateBits;
};
// Simple iterator test.
TEST_F(ITypBitsetIteratorTest, Iterator) {
std::set<IntegerT> originalValues;
originalValues.insert(IntegerT(2));
originalValues.insert(IntegerT(6));
originalValues.insert(IntegerT(8));
originalValues.insert(IntegerT(35));
for (IntegerT value : originalValues) {
mStateBits.set(value);
}
std::set<IntegerT> readValues;
for (IntegerT bit : IterateBitSet(mStateBits)) {
EXPECT_EQ(1u, originalValues.count(bit));
EXPECT_EQ(0u, readValues.count(bit));
readValues.insert(bit);
}
EXPECT_EQ(originalValues.size(), readValues.size());
}
// Test an empty iterator.
TEST_F(ITypBitsetIteratorTest, EmptySet) {
// We don't use the FAIL gtest macro here since it returns immediately,
// causing an unreachable code warning in MSVC
bool sawBit = false;
for (IntegerT bit : IterateBitSet(mStateBits)) {
DAWN_UNUSED(bit);
sawBit = true;
}
EXPECT_FALSE(sawBit);
}
// Test iterating a result of combining two bitsets.
TEST_F(ITypBitsetIteratorTest, NonLValueBitset) {
ityp::bitset<IntegerT, 40> otherBits;
mStateBits.set(IntegerT(1));
mStateBits.set(IntegerT(2));
mStateBits.set(IntegerT(3));
mStateBits.set(IntegerT(4));
otherBits.set(IntegerT(0));
otherBits.set(IntegerT(1));
otherBits.set(IntegerT(3));
otherBits.set(IntegerT(5));
std::set<IntegerT> seenBits;
for (IntegerT bit : IterateBitSet(mStateBits & otherBits)) {
EXPECT_EQ(0u, seenBits.count(bit));
seenBits.insert(bit);
EXPECT_TRUE(mStateBits[bit]);
EXPECT_TRUE(otherBits[bit]);
}
EXPECT_EQ((mStateBits & otherBits).count(), seenBits.size());
}

View File

@ -0,0 +1,95 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "common/TypedInteger.h"
#include "common/ityp_array.h"
class ITypArrayTest : public testing::Test {
protected:
using Key = TypedInteger<struct KeyT, uint32_t>;
using Val = TypedInteger<struct ValT, uint32_t>;
using Array = ityp::array<Key, Val, 10>;
// Test that the expected array methods can be constexpr
struct ConstexprTest {
static constexpr Array kArr = {Val(0), Val(1), Val(2), Val(3), Val(4),
Val(5), Val(6), Val(7), Val(8), Val(9)};
static_assert(kArr[Key(3)] == Val(3), "");
static_assert(kArr.at(Key(7)) == Val(7), "");
static_assert(kArr.size() == Key(10), "");
};
};
// Test that values can be set at an index and retrieved from the same index.
TEST_F(ITypArrayTest, Indexing) {
Array arr;
{
arr[Key(2)] = Val(5);
arr[Key(1)] = Val(9);
arr[Key(9)] = Val(2);
ASSERT_EQ(arr[Key(2)], Val(5));
ASSERT_EQ(arr[Key(1)], Val(9));
ASSERT_EQ(arr[Key(9)], Val(2));
}
{
arr.at(Key(4)) = Val(5);
arr.at(Key(3)) = Val(8);
arr.at(Key(1)) = Val(7);
ASSERT_EQ(arr.at(Key(4)), Val(5));
ASSERT_EQ(arr.at(Key(3)), Val(8));
ASSERT_EQ(arr.at(Key(1)), Val(7));
}
}
// Test that the array can be iterated in order with a range-based for loop
TEST_F(ITypArrayTest, RangeBasedIteration) {
Array arr;
// Assign in a non-const range-based for loop
uint32_t i = 0;
for (Val& val : arr) {
val = Val(i);
}
// Check values in a const range-based for loop
i = 0;
for (Val val : static_cast<const Array&>(arr)) {
ASSERT_EQ(val, arr[Key(i++)]);
}
}
// Test that begin/end/front/back/data return pointers/references to the correct elements.
TEST_F(ITypArrayTest, BeginEndFrontBackData) {
Array arr;
// non-const versions
ASSERT_EQ(arr.begin(), &arr[Key(0)]);
ASSERT_EQ(arr.end(), &arr[Key(0)] + static_cast<uint32_t>(arr.size()));
ASSERT_EQ(&arr.front(), &arr[Key(0)]);
ASSERT_EQ(&arr.back(), &arr[Key(9)]);
ASSERT_EQ(arr.data(), &arr[Key(0)]);
// const versions
const Array& constArr = arr;
ASSERT_EQ(constArr.begin(), &constArr[Key(0)]);
ASSERT_EQ(constArr.end(), &constArr[Key(0)] + static_cast<uint32_t>(constArr.size()));
ASSERT_EQ(&constArr.front(), &constArr[Key(0)]);
ASSERT_EQ(&constArr.back(), &constArr[Key(9)]);
ASSERT_EQ(constArr.data(), &constArr[Key(0)]);
}

View File

@ -0,0 +1,178 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "common/TypedInteger.h"
#include "common/ityp_bitset.h"
#include <set>
class ITypBitsetTest : public testing::Test {
protected:
using Key = TypedInteger<struct KeyT, size_t>;
using Bitset = ityp::bitset<Key, 9>;
// Test that the expected bitset methods can be constexpr
struct ConstexprTest {
static constexpr Bitset kBitset = {1 << 0 | 1 << 3 | 1 << 7 | 1 << 8};
static_assert(kBitset[Key(0)] == true, "");
static_assert(kBitset[Key(1)] == false, "");
static_assert(kBitset[Key(2)] == false, "");
static_assert(kBitset[Key(3)] == true, "");
static_assert(kBitset[Key(4)] == false, "");
static_assert(kBitset[Key(5)] == false, "");
static_assert(kBitset[Key(6)] == false, "");
static_assert(kBitset[Key(7)] == true, "");
static_assert(kBitset[Key(8)] == true, "");
static_assert(kBitset.size() == 9, "");
};
void ExpectBits(const Bitset& bits, std::set<size_t> indices) {
size_t mask = 0;
for (size_t i = 0; i < bits.size(); ++i) {
if (indices.count(i) == 0) {
ASSERT_FALSE(bits[Key(i)]) << i;
ASSERT_FALSE(bits.test(Key(i))) << i;
} else {
mask |= (1 << i);
ASSERT_TRUE(bits[Key(i)]) << i;
ASSERT_TRUE(bits.test(Key(i))) << i;
}
}
ASSERT_EQ(bits.to_ullong(), mask);
ASSERT_EQ(bits.to_ulong(), mask);
ASSERT_EQ(bits.count(), indices.size());
ASSERT_EQ(bits.all(), indices.size() == bits.size());
ASSERT_EQ(bits.any(), indices.size() != 0);
ASSERT_EQ(bits.none(), indices.size() == 0);
}
};
// Test that by default no bits are set
TEST_F(ITypBitsetTest, DefaultZero) {
Bitset bits;
ExpectBits(bits, {});
}
// Test the bitset can be initialized with a bitmask
TEST_F(ITypBitsetTest, InitializeByBits) {
Bitset bits = {1 << 1 | 1 << 2 | 1 << 7};
ExpectBits(bits, {1, 2, 7});
}
// Test that bits can be set at an index and retrieved from the same index.
TEST_F(ITypBitsetTest, Indexing) {
Bitset bits;
ExpectBits(bits, {});
bits[Key(2)] = true;
bits[Key(4)] = false;
bits.set(Key(1));
bits.set(Key(7), true);
bits.set(Key(8), false);
ExpectBits(bits, {1, 2, 7});
bits.reset(Key(2));
bits.reset(Key(7));
ExpectBits(bits, {1});
}
// Test that bits can be flipped
TEST_F(ITypBitsetTest, Flip) {
Bitset bits = {1 << 1 | 1 << 2 | 1 << 7};
ExpectBits(bits, {1, 2, 7});
bits.flip(Key(4));
bits.flip(Key(1)); // false
bits.flip(Key(6));
bits.flip(Key(5));
ExpectBits(bits, {2, 4, 5, 6, 7});
bits.flip();
ExpectBits(bits, {0, 1, 3, 8});
ExpectBits(~bits, {2, 4, 5, 6, 7});
}
// Test that all the bits can be set/reset.
TEST_F(ITypBitsetTest, SetResetAll) {
Bitset bits;
bits.set();
ASSERT_EQ(bits.count(), 9u);
ASSERT_TRUE(bits.all());
ASSERT_TRUE(bits.any());
ASSERT_FALSE(bits.none());
for (Key i(0); i < Key(9); ++i) {
ASSERT_TRUE(bits[i]);
}
bits.reset();
ASSERT_EQ(bits.count(), 0u);
ASSERT_FALSE(bits.all());
ASSERT_FALSE(bits.any());
ASSERT_TRUE(bits.none());
for (Key i(0); i < Key(9); ++i) {
ASSERT_FALSE(bits[i]);
}
}
// Test And operations
TEST_F(ITypBitsetTest, And) {
Bitset bits = {1 << 1 | 1 << 2 | 1 << 7};
ExpectBits(bits, {1, 2, 7});
Bitset bits2 = bits & Bitset{1 << 0 | 1 << 3 | 1 << 7};
ExpectBits(bits2, {7});
ExpectBits(bits, {1, 2, 7});
bits &= Bitset{1 << 1 | 1 << 6};
ExpectBits(bits, {1});
}
// Test Or operations
TEST_F(ITypBitsetTest, Or) {
Bitset bits = {1 << 1 | 1 << 2 | 1 << 7};
ExpectBits(bits, {1, 2, 7});
Bitset bits2 = bits | Bitset{1 << 0 | 1 << 3 | 1 << 7};
ExpectBits(bits2, {0, 1, 2, 3, 7});
ExpectBits(bits, {1, 2, 7});
bits |= Bitset{1 << 1 | 1 << 6};
ExpectBits(bits, {1, 2, 6, 7});
}
// Test xor operations
TEST_F(ITypBitsetTest, Xor) {
Bitset bits = {1 << 1 | 1 << 2 | 1 << 7};
ExpectBits(bits, {1, 2, 7});
Bitset bits2 = bits ^ Bitset { 1 << 0 | 1 << 3 | 1 << 7 };
ExpectBits(bits2, {0, 1, 2, 3});
ExpectBits(bits, {1, 2, 7});
bits ^= Bitset{1 << 1 | 1 << 6};
ExpectBits(bits, {2, 6, 7});
}

View File

@ -0,0 +1,81 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "common/TypedInteger.h"
#include "common/ityp_span.h"
#include <array>
class ITypSpanTest : public testing::Test {
protected:
using Key = TypedInteger<struct KeyT, size_t>;
using Val = TypedInteger<struct ValT, uint32_t>;
using Span = ityp::span<Key, Val>;
};
// Test that values can be set at an index and retrieved from the same index.
TEST_F(ITypSpanTest, Indexing) {
std::array<Val, 10> arr;
Span span(arr.data(), Key(arr.size()));
{
span[Key(2)] = Val(5);
span[Key(1)] = Val(9);
span[Key(9)] = Val(2);
ASSERT_EQ(span[Key(2)], Val(5));
ASSERT_EQ(span[Key(1)], Val(9));
ASSERT_EQ(span[Key(9)], Val(2));
}
}
// Test that the span can be is iterated in order with a range-based for loop
TEST_F(ITypSpanTest, RangeBasedIteration) {
std::array<Val, 10> arr;
Span span(arr.data(), Key(arr.size()));
// Assign in a non-const range-based for loop
uint32_t i = 0;
for (Val& val : span) {
val = Val(i);
}
// Check values in a const range-based for loop
i = 0;
for (Val val : static_cast<const Span&>(span)) {
ASSERT_EQ(val, span[Key(i++)]);
}
}
// Test that begin/end/front/back/data return pointers/references to the correct elements.
TEST_F(ITypSpanTest, BeginEndFrontBackData) {
std::array<Val, 10> arr;
Span span(arr.data(), Key(arr.size()));
// non-const versions
ASSERT_EQ(span.begin(), &span[Key(0)]);
ASSERT_EQ(span.end(), &span[Key(0)] + static_cast<size_t>(span.size()));
ASSERT_EQ(&span.front(), &span[Key(0)]);
ASSERT_EQ(&span.back(), &span[Key(9)]);
ASSERT_EQ(span.data(), &span[Key(0)]);
// const versions
const Span& constSpan = span;
ASSERT_EQ(constSpan.begin(), &constSpan[Key(0)]);
ASSERT_EQ(constSpan.end(), &constSpan[Key(0)] + static_cast<size_t>(constSpan.size()));
ASSERT_EQ(&constSpan.front(), &constSpan[Key(0)]);
ASSERT_EQ(&constSpan.back(), &constSpan[Key(9)]);
ASSERT_EQ(constSpan.data(), &constSpan[Key(0)]);
}

View File

@ -0,0 +1,234 @@
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "common/TypedInteger.h"
#include "common/UnderlyingType.h"
class TypedIntegerTest : public testing::Test {
protected:
using Unsigned = TypedInteger<struct UnsignedT, uint32_t>;
using Signed = TypedInteger<struct SignedT, int32_t>;
};
// Test that typed integers can be created and cast and the internal values are identical
TEST_F(TypedIntegerTest, ConstructionAndCast) {
Signed svalue(2);
EXPECT_EQ(static_cast<int32_t>(svalue), 2);
Unsigned uvalue(7);
EXPECT_EQ(static_cast<uint32_t>(uvalue), 7u);
static_assert(static_cast<int32_t>(Signed(3)) == 3, "");
static_assert(static_cast<uint32_t>(Unsigned(28)) == 28, "");
}
// Test typed integer comparison operators
TEST_F(TypedIntegerTest, Comparison) {
Unsigned value(8);
// Truthy usages of comparison operators
EXPECT_TRUE(value < Unsigned(9));
EXPECT_TRUE(value <= Unsigned(9));
EXPECT_TRUE(value <= Unsigned(8));
EXPECT_TRUE(value == Unsigned(8));
EXPECT_TRUE(value >= Unsigned(8));
EXPECT_TRUE(value >= Unsigned(7));
EXPECT_TRUE(value > Unsigned(7));
EXPECT_TRUE(value != Unsigned(7));
// Falsy usages of comparison operators
EXPECT_FALSE(value >= Unsigned(9));
EXPECT_FALSE(value > Unsigned(9));
EXPECT_FALSE(value > Unsigned(8));
EXPECT_FALSE(value != Unsigned(8));
EXPECT_FALSE(value < Unsigned(8));
EXPECT_FALSE(value < Unsigned(7));
EXPECT_FALSE(value <= Unsigned(7));
EXPECT_FALSE(value == Unsigned(7));
}
TEST_F(TypedIntegerTest, Arithmetic) {
// Postfix Increment
{
Signed value(0);
EXPECT_EQ(value++, Signed(0));
EXPECT_EQ(value, Signed(1));
}
// Prefix Increment
{
Signed value(0);
EXPECT_EQ(++value, Signed(1));
EXPECT_EQ(value, Signed(1));
}
// Postfix Decrement
{
Signed value(0);
EXPECT_EQ(value--, Signed(0));
EXPECT_EQ(value, Signed(-1));
}
// Prefix Decrement
{
Signed value(0);
EXPECT_EQ(--value, Signed(-1));
EXPECT_EQ(value, Signed(-1));
}
// Signed addition
{
Signed a(3);
Signed b(-4);
Signed c = a + b;
EXPECT_EQ(a, Signed(3));
EXPECT_EQ(b, Signed(-4));
EXPECT_EQ(c, Signed(-1));
}
// Signed subtraction
{
Signed a(3);
Signed b(-4);
Signed c = a - b;
EXPECT_EQ(a, Signed(3));
EXPECT_EQ(b, Signed(-4));
EXPECT_EQ(c, Signed(7));
}
// Unsigned addition
{
Unsigned a(9);
Unsigned b(3);
Unsigned c = a + b;
EXPECT_EQ(a, Unsigned(9));
EXPECT_EQ(b, Unsigned(3));
EXPECT_EQ(c, Unsigned(12));
}
// Unsigned subtraction
{
Unsigned a(9);
Unsigned b(2);
Unsigned c = a - b;
EXPECT_EQ(a, Unsigned(9));
EXPECT_EQ(b, Unsigned(2));
EXPECT_EQ(c, Unsigned(7));
}
// Negation
{
Signed a(5);
Signed b = -a;
EXPECT_EQ(a, Signed(5));
EXPECT_EQ(b, Signed(-5));
}
}
TEST_F(TypedIntegerTest, NumericLimits) {
EXPECT_EQ(std::numeric_limits<Unsigned>::max(), Unsigned(std::numeric_limits<uint32_t>::max()));
EXPECT_EQ(std::numeric_limits<Unsigned>::min(), Unsigned(std::numeric_limits<uint32_t>::min()));
EXPECT_EQ(std::numeric_limits<Signed>::max(), Signed(std::numeric_limits<int32_t>::max()));
EXPECT_EQ(std::numeric_limits<Signed>::min(), Signed(std::numeric_limits<int32_t>::min()));
}
TEST_F(TypedIntegerTest, UnderlyingType) {
static_assert(std::is_same<UnderlyingType<Unsigned>, uint32_t>::value, "");
static_assert(std::is_same<UnderlyingType<Signed>, int32_t>::value, "");
}
// Tests for bounds assertions on arithmetic overflow and underflow.
#if defined(DAWN_ENABLE_ASSERTS)
TEST_F(TypedIntegerTest, IncrementUnsignedOverflow) {
Unsigned value(std::numeric_limits<uint32_t>::max() - 1);
value++; // Doesn't overflow.
EXPECT_DEATH(value++, ""); // Overflows.
}
TEST_F(TypedIntegerTest, IncrementSignedOverflow) {
Signed value(std::numeric_limits<int32_t>::max() - 1);
value++; // Doesn't overflow.
EXPECT_DEATH(value++, ""); // Overflows.
}
TEST_F(TypedIntegerTest, DecrementUnsignedUnderflow) {
Unsigned value(std::numeric_limits<uint32_t>::min() + 1);
value--; // Doesn't underflow.
EXPECT_DEATH(value--, ""); // Underflows.
}
TEST_F(TypedIntegerTest, DecrementSignedUnderflow) {
Signed value(std::numeric_limits<int32_t>::min() + 1);
value--; // Doesn't underflow.
EXPECT_DEATH(value--, ""); // Underflows.
}
TEST_F(TypedIntegerTest, UnsignedAdditionOverflow) {
Unsigned value(std::numeric_limits<uint32_t>::max() - 1);
value + Unsigned(1); // Doesn't overflow.
EXPECT_DEATH(value + Unsigned(2), ""); // Overflows.
}
TEST_F(TypedIntegerTest, UnsignedSubtractionUnderflow) {
Unsigned value(1);
value - Unsigned(1); // Doesn't underflow.
EXPECT_DEATH(value - Unsigned(2), ""); // Underflows.
}
TEST_F(TypedIntegerTest, SignedAdditionOverflow) {
Signed value(std::numeric_limits<int32_t>::max() - 1);
value + Signed(1); // Doesn't overflow.
EXPECT_DEATH(value + Signed(2), ""); // Overflows.
}
TEST_F(TypedIntegerTest, SignedAdditionUnderflow) {
Signed value(std::numeric_limits<int32_t>::min() + 1);
value + Signed(-1); // Doesn't underflow.
EXPECT_DEATH(value + Signed(-2), ""); // Underflows.
}
TEST_F(TypedIntegerTest, SignedSubtractionOverflow) {
Signed value(std::numeric_limits<int32_t>::max() - 1);
value - Signed(-1); // Doesn't overflow.
EXPECT_DEATH(value - Signed(-2), ""); // Overflows.
}
TEST_F(TypedIntegerTest, SignedSubtractionUnderflow) {
Signed value(std::numeric_limits<int32_t>::min() + 1);
value - Signed(1); // Doesn't underflow.
EXPECT_DEATH(value - Signed(2), ""); // Underflows.
}
TEST_F(TypedIntegerTest, NegationOverflow) {
Signed maxValue(std::numeric_limits<int32_t>::max());
-maxValue; // Doesn't underflow.
Signed minValue(std::numeric_limits<int32_t>::min());
EXPECT_DEATH(-minValue, ""); // Overflows.
}
#endif // defined(DAWN_ENABLE_ASSERTS)