tint/resolver: Implement candidate overload resolution

Once abstract-numerics are supported, we encounter our first ambiguous
overloads which need resolving. Implement this.

Bug: tint:1504
Change-Id: I79ade04ac3c7ae754b92cb0691b46f449766824a
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/91964
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Commit-Queue: Ben Clayton <bclayton@chromium.org>
Reviewed-by: Dan Sinclair <dsinclair@chromium.org>
This commit is contained in:
Ben Clayton 2022-05-31 21:46:19 +00:00 committed by Dawn LUCI CQ
parent 16175ac2df
commit 7e495d8f2e
3 changed files with 157 additions and 44 deletions

View File

@ -208,13 +208,12 @@ match workgroup_or_storage: workgroup | storage
// Matching algorithm for a single overload: // // Matching algorithm for a single overload: //
// ----------------------------------------- // // ----------------------------------------- //
// // // //
// The goal of matching is to compare a function call's arguments in the // // The goal of matching is to compare a function call's arguments and any //
// program source against a possibly-templated overload declaration, and // // explicitly provided template types in the program source against an //
// determine if the call satisfies the form and type constraints of the // // overload declaration in this file, and determine if the call satisfies //
// overload. Currently it is impossible for a call to match more than one // // the form and type constraints of the overload. If the call matches an //
// overload definition. In the event that more than one overload matches, an // // overload, then the overload is added to the list of 'overload candidates' //
// ICE will be raised. Note that Tint may need to support multiple-overload // // used for overload resolution (described below). //
// resolution in the future, depending on future overload definitions. //
// // // //
// Prior to matching an overload, all template types are undefined. // // Prior to matching an overload, all template types are undefined. //
// // // //
@ -258,11 +257,11 @@ match workgroup_or_storage: workgroup | storage
// need to be checked next. If the defined type does not match the // // need to be checked next. If the defined type does not match the //
// 'match' constraint, then the overload is no longer considered. // // 'match' constraint, then the overload is no longer considered. //
// // // //
// This algorithm is less general than the overload resolution described in // // This algorithm for matching a single overload is less general than the //
// the WGSL spec. But it makes the same decisions because the overloads // // algorithm described in the WGSL spec. But it makes the same decisions //
// defined by WGSL are monotonic in the sense that once a template parameter // // because the overloads defined by WGSL are monotonic in the sense that once //
// has been refined, there is never a need to backtrack and un-refine it to // // a template parameter has been refined, there is never a need to backtrack //
// match a later argument. // // and un-refine it to match a later argument. //
// // // //
// The algorithm for matching template numbers is similar to matching // // The algorithm for matching template numbers is similar to matching //
// template types, except numbers need to exactly match across all uses - // // template types, except numbers need to exactly match across all uses - //
@ -270,7 +269,24 @@ match workgroup_or_storage: workgroup | storage
// numbers or enumerators. // // numbers or enumerators. //
// // // //
// // // //
// * More examples: // // Overload resolution for candidate overloads //
// ------------------------------------------- //
// //
// If multiple candidate overloads match a given set of arguments, then a //
// final overload resolution pass needs to be performed. The arguments and //
// overload parameter types for each candidate overload are compared, //
// following the algorithm described at: //
// https://www.w3.org/TR/WGSL/#overload-resolution-section //
// //
// If the candidate list contains a single entry, then that single candidate //
// is picked, and no overload resolution needs to be performed. //
// //
// If the candidate list is empty, then the call fails to resolve and an //
// error diagnostic is raised. //
// //
// //
// More examples //
// ------------- //
// // // //
// fn F() // // fn F() //
// - Function called F. // // - Function called F. //

View File

@ -944,6 +944,12 @@ class Impl : public IntrinsicTable {
/// Callback function when no overloads match. /// Callback function when no overloads match.
using OnNoMatch = std::function<void(Candidates)>; using OnNoMatch = std::function<void(Candidates)>;
/// Sorts the candidates based on their score, with the lowest (best-ranking) scores first.
static inline void SortCandidates(Candidates& candidates) {
std::stable_sort(candidates.begin(), candidates.end(),
[&](const Candidate& a, const Candidate& b) { return a.score < b.score; });
}
/// Attempts to find a single intrinsic overload that matches the provided argument types. /// Attempts to find a single intrinsic overload that matches the provided argument types.
/// @param intrinsic the intrinsic being called /// @param intrinsic the intrinsic being called
/// @param intrinsic_name the name of the intrinsic /// @param intrinsic_name the name of the intrinsic
@ -962,7 +968,7 @@ class Impl : public IntrinsicTable {
TemplateState templates, TemplateState templates,
OnNoMatch on_no_match) const; OnNoMatch on_no_match) const;
/// Evaluates the overload for the provided argument types. /// Evaluates the single overload for the provided argument types.
/// @param overload the overload being considered /// @param overload the overload being considered
/// @param args the argument types /// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template /// @param templates initial template state. This may contain explicitly specified template
@ -973,6 +979,21 @@ class Impl : public IntrinsicTable {
const std::vector<const sem::Type*>& args, const std::vector<const sem::Type*>& args,
TemplateState templates) const; TemplateState templates) const;
/// Performs overload resolution given the list of candidates, by ranking the conversions of
/// arguments to the each of the candidate's parameter types.
/// @param candidates the list of candidate overloads
/// @param intrinsic_name the name of the intrinsic
/// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template
/// arguments. For example `vec3<f32>()` would have the first template-type
/// template as `f32`.
/// @see https://www.w3.org/TR/WGSL/#overload-resolution-section
/// @returns the resolved Candidate.
Candidate ResolveCandidate(Candidates&& candidates,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates) const;
/// Match constructs a new MatchState /// Match constructs a new MatchState
/// @param templates the template state used for matcher evaluation /// @param templates the template state used for matcher evaluation
/// @param overload the overload being evaluated /// @param overload the overload being evaluated
@ -991,9 +1012,8 @@ class Impl : public IntrinsicTable {
const Candidates& candidates, const Candidates& candidates,
const char* intrinsic_name) const; const char* intrinsic_name) const;
/// Raises an ICE when multiple overload candidates match, as this should never happen. /// Raises an error when no overload is a clear winner of overload resolution
void ErrMultipleOverloadsMatched(size_t num_matched, void ErrAmbiguousOverload(const char* intrinsic_name,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args, const std::vector<const sem::Type*>& args,
TemplateState templates, TemplateState templates,
Candidates candidates) const; Candidates candidates) const;
@ -1280,38 +1300,38 @@ IntrinsicPrototype Impl::MatchIntrinsic(const IntrinsicInfo& intrinsic,
TemplateState templates, TemplateState templates,
OnNoMatch on_no_match) const { OnNoMatch on_no_match) const {
size_t num_matched = 0; size_t num_matched = 0;
size_t match_idx = 0;
Candidates candidates; Candidates candidates;
candidates.reserve(intrinsic.num_overloads); candidates.reserve(intrinsic.num_overloads);
for (size_t overload_idx = 0; overload_idx < static_cast<size_t>(intrinsic.num_overloads); for (size_t overload_idx = 0; overload_idx < static_cast<size_t>(intrinsic.num_overloads);
overload_idx++) { overload_idx++) {
auto candidate = ScoreOverload(&intrinsic.overloads[overload_idx], args, templates); auto candidate = ScoreOverload(&intrinsic.overloads[overload_idx], args, templates);
if (candidate.score == 0) { if (candidate.score == 0) {
match_idx = overload_idx;
num_matched++; num_matched++;
} }
candidates.emplace_back(std::move(candidate)); candidates.emplace_back(std::move(candidate));
} }
// Sort the candidates with the most promising first
std::stable_sort(candidates.begin(), candidates.end(),
[&](const Candidate& a, const Candidate& b) { return a.score < b.score; });
// How many candidates matched? // How many candidates matched?
switch (num_matched) { if (num_matched == 0) {
case 0: // Sort the candidates with the most promising first
SortCandidates(candidates);
on_no_match(std::move(candidates)); on_no_match(std::move(candidates));
return {}; return {};
case 1:
break;
default:
// Note: Currently the intrinsic table does not contain any overloads which may result
// in ambiguities, so here we call ErrMultipleOverloadsMatched() which will produce and
// ICE. If we end up in the situation where this is unavoidable, we'll need to perform
// further overload resolution as described in
// https://www.w3.org/TR/WGSL/#overload-resolution-section.
ErrMultipleOverloadsMatched(num_matched, intrinsic_name, args, templates, candidates);
} }
auto match = candidates[0]; Candidate match;
if (num_matched == 1) {
match = std::move(candidates[match_idx]);
} else {
match = ResolveCandidate(std::move(candidates), intrinsic_name, args, std::move(templates));
if (!match.overload) {
// Ambiguous overload. ResolveCandidate() will have already raised an error diagnostic.
return {};
}
}
// Build the return type // Build the return type
const sem::Type* return_type = nullptr; const sem::Type* return_type = nullptr;
@ -1423,6 +1443,70 @@ Impl::Candidate Impl::ScoreOverload(const OverloadInfo* overload,
return Candidate{overload, templates, parameters, score}; return Candidate{overload, templates, parameters, score};
} }
Impl::Candidate Impl::ResolveCandidate(Impl::Candidates&& candidates,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args,
TemplateState templates) const {
std::vector<uint32_t> best_ranks(args.size(), 0xffffffff);
size_t num_matched = 0;
Candidate* best = nullptr;
for (auto& candidate : candidates) {
if (candidate.score > 0) {
continue; // Candidate has already been ruled out.
}
bool some_won = false; // An argument ranked less than the 'best' overload's argument
bool some_lost = false; // An argument ranked more than the 'best' overload's argument
for (size_t i = 0; i < args.size(); i++) {
auto rank = sem::Type::ConversionRank(args[i], candidate.parameters[i].type);
if (best_ranks[i] > rank) {
best_ranks[i] = rank;
some_won = true;
} else if (best_ranks[i] < rank) {
some_lost = true;
}
}
// If no arguments of this candidate ranked worse than the previous best candidate, then
// this candidate becomes the new best candidate.
// If no arguments of this candidate ranked better than the previous best candidate, then
// this candidate is removed from the list of matches.
// If neither of the above apply, then we have two candidates with no clear winner, which
// results in an ambiguous overload error. In this situation the loop ends with
// `num_matched > 1`.
if (some_won) {
// One or more arguments of this candidate ranked better than the previous best
// candidate's argument(s).
num_matched++;
if (!some_lost) {
// All arguments were at as-good or better than the previous best.
if (best) {
// Mark the previous best candidate as no longer being in the running, by
// setting its score to a non-zero value. We pick 1 as this is the closest to 0
// (match) as we can get.
best->score = 1;
num_matched--;
}
// This candidate is the new best.
best = &candidate;
}
} else {
// No arguments ranked better than the current best.
// Change the score of this candidate to a non-zero value, so that it's not considered a
// match.
candidate.score = 1;
}
}
if (num_matched > 1) {
// Re-sort the candidates with the most promising first
SortCandidates(candidates);
// Raise an error
ErrAmbiguousOverload(intrinsic_name, args, templates, candidates);
return {};
}
return std::move(*best);
}
MatchState Impl::Match(TemplateState& templates, MatchState Impl::Match(TemplateState& templates,
const OverloadInfo* overload, const OverloadInfo* overload,
MatcherIndex const* matcher_indices) const { MatcherIndex const* matcher_indices) const {
@ -1512,13 +1596,12 @@ std::string MatchState::NumName() {
return matcher->String(this); return matcher->String(this);
} }
void Impl::ErrMultipleOverloadsMatched(size_t num_matched, void Impl::ErrAmbiguousOverload(const char* intrinsic_name,
const char* intrinsic_name,
const std::vector<const sem::Type*>& args, const std::vector<const sem::Type*>& args,
TemplateState templates, TemplateState templates,
Candidates candidates) const { Candidates candidates) const {
std::stringstream ss; std::stringstream ss;
ss << num_matched << " overloads matched " << intrinsic_name; ss << "ambiguous overload while attempting to match " << intrinsic_name;
for (size_t i = 0; i < std::numeric_limits<size_t>::max(); i++) { for (size_t i = 0; i < std::numeric_limits<size_t>::max(); i++) {
if (auto* ty = templates.Type(i)) { if (auto* ty = templates.Type(i)) {
ss << ((i == 0) ? "<" : ", ") << ty->FriendlyName(builder.Symbols()); ss << ((i == 0) ? "<" : ", ") << ty->FriendlyName(builder.Symbols());

View File

@ -793,6 +793,20 @@ TEST_F(IntrinsicTableTest, Err257Arguments) { // crbug.com/1323605
ASSERT_THAT(Diagnostics().str(), HasSubstr("no matching call")); ASSERT_THAT(Diagnostics().str(), HasSubstr("no matching call"));
} }
TEST_F(IntrinsicTableTest, OverloadResolution) {
// i32(abstract-int) produces candidates for both:
// ctor i32(i32) -> i32
// conv i32<T: scalar_no_i32>(T) -> i32
// The first should win overload resolution.
auto* ai = create<sem::AbstractInt>();
auto* i32 = create<sem::I32>();
auto result = table->Lookup(CtorConvIntrinsic::kI32, nullptr, {ai}, Source{});
ASSERT_NE(result, nullptr);
EXPECT_EQ(result->ReturnType(), i32);
EXPECT_EQ(result->Parameters().size(), 1u);
EXPECT_EQ(result->Parameters()[0]->Type(), i32);
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// AbstractBinaryTests // AbstractBinaryTests
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////