Move and improve RefCounted

- Move RefCounted to common (from dawn_native) so that we can use
it from additional places.
- Use EXPECT_ macros instead of ASSERT_ in RefCounted tests for
improved logging on failures.
- Add a missing test for Ref::Detach.
- Plug memory leak in RaceOnReferenceRelease

Change-Id: Iaa7b11b5a6fa146e3c322143279a21a4ac027547
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/19903
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
Reviewed-by: Austin Eng <enga@chromium.org>
Commit-Queue: Rafael Cintron <rafael.cintron@microsoft.com>
This commit is contained in:
Rafael Cintron
2020-04-20 17:36:22 +00:00
committed by Commit Bot service account
parent 8edb723dea
commit 7e8385c183
19 changed files with 289 additions and 280 deletions

View File

@@ -131,6 +131,8 @@ if (is_win || is_linux || is_mac || is_fuchsia || is_android) {
"Math.h",
"PlacementAllocated.h",
"Platform.h",
"RefCounted.cpp",
"RefCounted.h",
"Result.cpp",
"Result.h",
"Serial.h",

View File

@@ -31,6 +31,8 @@ target_sources(dawn_common PRIVATE
"Math.h"
"PlacementAllocated.h"
"Platform.h"
"RefCounted.cpp"
"RefCounted.h"
"Result.cpp"
"Result.h"
"Serial.h"

78
src/common/RefCounted.cpp Normal file
View File

@@ -0,0 +1,78 @@
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "common/RefCounted.h"
#include "common/Assert.h"
#include <cstddef>
static constexpr size_t kPayloadBits = 1;
static constexpr uint64_t kPayloadMask = (uint64_t(1) << kPayloadBits) - 1;
static constexpr uint64_t kRefCountIncrement = (uint64_t(1) << kPayloadBits);
RefCounted::RefCounted(uint64_t payload) : mRefCount(kRefCountIncrement + payload) {
ASSERT((payload & kPayloadMask) == payload);
}
uint64_t RefCounted::GetRefCountForTesting() const {
return mRefCount >> kPayloadBits;
}
uint64_t RefCounted::GetRefCountPayload() const {
// We only care about the payload bits of the refcount. These never change after
// initialization so we can use the relaxed memory order. The order doesn't guarantee
// anything except the atomicity of the load, which is enough since any past values of the
// atomic will have the correct payload bits.
return kPayloadMask & mRefCount.load(std::memory_order_relaxed);
}
void RefCounted::Reference() {
ASSERT((mRefCount & ~kPayloadMask) != 0);
// The relaxed ordering guarantees only the atomicity of the update, which is enough here
// because the reference we are copying from still exists and makes sure other threads
// don't delete `this`.
// See the explanation in the Boost documentation:
// https://www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html
mRefCount.fetch_add(kRefCountIncrement, std::memory_order_relaxed);
}
void RefCounted::Release() {
ASSERT((mRefCount & ~kPayloadMask) != 0);
// The release fence here is to make sure all accesses to the object on a thread A
// happen-before the object is deleted on a thread B. The release memory order ensures that
// all accesses on thread A happen-before the refcount is decreased and the atomic variable
// makes sure the refcount decrease in A happens-before the refcount decrease in B. Finally
// the acquire fence in the destruction case makes sure the refcount decrease in B
// happens-before the `delete this`.
//
// See the explanation in the Boost documentation:
// https://www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html
uint64_t previousRefCount = mRefCount.fetch_sub(kRefCountIncrement, std::memory_order_release);
// Check that the previous reference count was strictly less than 2, ignoring payload bits.
if (previousRefCount < 2 * kRefCountIncrement) {
// Note that on ARM64 this will generate a `dmb ish` instruction which is a global
// memory barrier, when an acquire load on mRefCount (using the `ldar` instruction)
// should be enough and could end up being faster.
std::atomic_thread_fence(std::memory_order_acquire);
DeleteThis();
}
}
void RefCounted::DeleteThis() {
delete this;
}

139
src/common/RefCounted.h Normal file
View File

@@ -0,0 +1,139 @@
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef COMMON_REFCOUNTED_H_
#define COMMON_REFCOUNTED_H_
#include <atomic>
#include <cstdint>
class RefCounted {
public:
RefCounted(uint64_t payload = 0);
uint64_t GetRefCountForTesting() const;
uint64_t GetRefCountPayload() const;
// Dawn API
void Reference();
void Release();
protected:
virtual ~RefCounted() = default;
// A Derived class may override this if they require a custom deleter.
virtual void DeleteThis();
private:
std::atomic_uint64_t mRefCount;
};
template <typename T>
class Ref {
public:
Ref() {
}
Ref(T* p) : mPointee(p) {
Reference();
}
Ref(const Ref<T>& other) : mPointee(other.mPointee) {
Reference();
}
Ref<T>& operator=(const Ref<T>& other) {
if (&other == this)
return *this;
other.Reference();
Release();
mPointee = other.mPointee;
return *this;
}
Ref(Ref<T>&& other) {
mPointee = other.mPointee;
other.mPointee = nullptr;
}
Ref<T>& operator=(Ref<T>&& other) {
if (&other == this)
return *this;
Release();
mPointee = other.mPointee;
other.mPointee = nullptr;
return *this;
}
~Ref() {
Release();
mPointee = nullptr;
}
operator bool() {
return mPointee != nullptr;
}
const T& operator*() const {
return *mPointee;
}
T& operator*() {
return *mPointee;
}
const T* operator->() const {
return mPointee;
}
T* operator->() {
return mPointee;
}
const T* Get() const {
return mPointee;
}
T* Get() {
return mPointee;
}
T* Detach() {
T* pointee = mPointee;
mPointee = nullptr;
return pointee;
}
private:
void Reference() const {
if (mPointee != nullptr) {
mPointee->Reference();
}
}
void Release() const {
if (mPointee != nullptr) {
mPointee->Release();
}
}
// static_assert(std::is_base_of<RefCounted, T>::value, "");
T* mPointee = nullptr;
};
template <typename T>
Ref<T> AcquireRef(T* pointee) {
Ref<T> ref(pointee);
ref->Release();
return ref;
}
#endif // COMMON_REFCOUNTED_H_