msl: Overload matrix-vector arithmetic operators

These operators are not defined in the metal namespace when the vector
operands are packed.

Fixed: tint:1121
Change-Id: I2e8f4302e08117ca41bac6c05fb24a70d1215740
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/62480
Kokoro: Kokoro <noreply+kokoro@google.com>
Auto-Submit: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
This commit is contained in:
James Price 2021-08-23 21:45:23 +00:00
parent 46978033a7
commit 85d2e448de
38 changed files with 1687 additions and 0 deletions

View File

@ -2310,6 +2310,26 @@ bool GeneratorImpl::EmitPackedType(std::ostream& out,
if (!EmitType(out, vec, "")) { if (!EmitType(out, vec, "")) {
return false; return false;
} }
if (vec->is_float_vector() && !matrix_packed_vector_overloads_) {
// Overload operators for matrix-vector arithmetic where the vector
// operand is packed, as these overloads to not exist in the metal
// namespace.
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
line(&b) << R"(template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
)";
matrix_packed_vector_overloads_ = true;
}
return true; return true;
} }

View File

@ -355,6 +355,9 @@ class GeneratorImpl : public TextGenerator {
/// True if an invariant attribute has been generated. /// True if an invariant attribute has been generated.
bool has_invariant_ = false; bool has_invariant_ = false;
/// True if matrix-packed_vector operator overloads have been generated.
bool matrix_packed_vector_overloads_ = false;
std::unordered_map<const sem::Intrinsic*, std::string> intrinsics_; std::unordered_map<const sem::Intrinsic*, std::string> intrinsics_;
std::unordered_map<const sem::Type*, std::string> unary_minus_funcs_; std::unordered_map<const sem::Type*, std::string> unary_minus_funcs_;
}; };

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct tint_array_wrapper { struct tint_array_wrapper {
/* 0x0000 */ int4 arr[4]; /* 0x0000 */ int4 arr[4];
}; };

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct tint_array_wrapper { struct tint_array_wrapper {
/* 0x0000 */ int4 arr[4]; /* 0x0000 */ int4 arr[4];
}; };

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct Inner { struct Inner {
/* 0x0000 */ int x; /* 0x0000 */ int x;
}; };

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct Inner { struct Inner {
/* 0x0000 */ int x; /* 0x0000 */ int x;
}; };

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct tint_array_wrapper { struct tint_array_wrapper {
/* 0x0000 */ int4 arr[4]; /* 0x0000 */ int4 arr[4];
}; };

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct Inner { struct Inner {
/* 0x0000 */ int x; /* 0x0000 */ int x;
}; };

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct Uniforms { struct Uniforms {
/* 0x0000 */ uint numTriangles; /* 0x0000 */ uint numTriangles;
/* 0x0004 */ uint gridSize; /* 0x0004 */ uint gridSize;

127
test/bug/tint/1121.wgsl Normal file
View File

@ -0,0 +1,127 @@
// Take from here:
// https://github.com/shrekshao/webgpu-deferred-renderer/blob/4f8bf0910793100aa8d60dbd1319bddb5357b1fa/renderer/LightCulling.js
// With these token replacements:
// $NUM_TILE_LIGHT_SLOT = 64
// $NUM_TILES = 4
// $TILE_COUNT_Y = 2
// $TILE_COUNT_X = 2
// $TILE_SIZE = 16
struct LightData {
position : vec4<f32>;
color : vec3<f32>;
radius : f32;
};
[[block]] struct LightsBuffer {
lights: array<LightData>;
};
[[group(0), binding(0)]] var<storage, read_write> lightsBuffer: LightsBuffer;
struct TileLightIdData {
count: atomic<u32>;
lightId: array<u32, 64>;
};
[[block]] struct Tiles {
data: array<TileLightIdData, 4>;
};
[[group(1), binding(0)]] var<storage, read_write> tileLightId: Tiles;
[[block]] struct Config {
numLights : u32;
numTiles : u32;
tileCountX : u32;
tileCountY : u32;
numTileLightSlot : u32;
tileSize : u32;
};
[[group(2), binding(0)]] var<uniform> config: Config;
[[block]] struct Uniforms {
min : vec4<f32>;
max : vec4<f32>;
// camera
viewMatrix : mat4x4<f32>;
projectionMatrix : mat4x4<f32>;
// Tile info
fullScreenSize : vec4<f32>; // width, height
};
[[group(3), binding(0)]] var<uniform> uniforms: Uniforms;
[[stage(compute), workgroup_size(64, 1, 1)]]
fn main([[builtin(global_invocation_id)]] GlobalInvocationID : vec3<u32>) {
var index = GlobalInvocationID.x;
if (index >= config.numLights) {
return;
}
// Light position updating
lightsBuffer.lights[index].position.y = lightsBuffer.lights[index].position.y - 0.1 + 0.001 * (f32(index) - 64.0 * floor(f32(index) / 64.0));
if (lightsBuffer.lights[index].position.y < uniforms.min.y) {
lightsBuffer.lights[index].position.y = uniforms.max.y;
}
// Light culling
// Implementation here is Tiled without per tile min-max depth
// You could also implement cluster culling
// Feel free to add more compute passes if necessary
// some math reference: http://www.txutxi.com/?p=444
var M: mat4x4<f32> = uniforms.projectionMatrix;
var viewNear: f32 = - M[3][2] / ( -1.0 + M[2][2]);
var viewFar: f32 = - M[3][2] / (1.0 + M[2][2]);
var lightPos = lightsBuffer.lights[index].position;
lightPos = uniforms.viewMatrix * lightPos;
lightPos = lightPos / lightPos.w;
var lightRadius: f32 = lightsBuffer.lights[index].radius;
var boxMin: vec4<f32> = lightPos - vec4<f32>(vec3<f32>(lightRadius), 0.0);
var boxMax: vec4<f32> = lightPos + vec4<f32>(vec3<f32>(lightRadius), 0.0);
var frustumPlanes: array<vec4<f32>, 6>;
frustumPlanes[4] = vec4<f32>(0.0, 0.0, -1.0, viewNear); // near
frustumPlanes[5] = vec4<f32>(0.0, 0.0, 1.0, -viewFar); // far
let TILE_SIZE: i32 = 16;
let TILE_COUNT_X: i32 = 2;
let TILE_COUNT_Y: i32 = 2;
for (var y : i32 = 0; y < TILE_COUNT_Y; y = y + 1) {
for (var x : i32 = 0; x < TILE_COUNT_X; x = x + 1) {
var tilePixel0Idx : vec2<i32> = vec2<i32>(x * TILE_SIZE, y * TILE_SIZE);
// tile position in NDC space
var floorCoord: vec2<f32> = 2.0 * vec2<f32>(tilePixel0Idx) / uniforms.fullScreenSize.xy - vec2<f32>(1.0); // -1, 1
var ceilCoord: vec2<f32> = 2.0 * vec2<f32>(tilePixel0Idx + vec2<i32>(TILE_SIZE)) / uniforms.fullScreenSize.xy - vec2<f32>(1.0); // -1, 1
var viewFloorCoord: vec2<f32> = vec2<f32>( (- viewNear * floorCoord.x - M[2][0] * viewNear) / M[0][0] , (- viewNear * floorCoord.y - M[2][1] * viewNear) / M[1][1] );
var viewCeilCoord: vec2<f32> = vec2<f32>( (- viewNear * ceilCoord.x - M[2][0] * viewNear) / M[0][0] , (- viewNear * ceilCoord.y - M[2][1] * viewNear) / M[1][1] );
frustumPlanes[0] = vec4<f32>(1.0, 0.0, - viewFloorCoord.x / viewNear, 0.0); // left
frustumPlanes[1] = vec4<f32>(-1.0, 0.0, viewCeilCoord.x / viewNear, 0.0); // right
frustumPlanes[2] = vec4<f32>(0.0, 1.0, - viewFloorCoord.y / viewNear, 0.0); // bottom
frustumPlanes[3] = vec4<f32>(0.0, -1.0, viewCeilCoord.y / viewNear, 0.0); // top
var dp: f32 = 0.0; // dot product
for (var i: u32 = 0u; i < 6u; i = i + 1u)
{
var p: vec4<f32>;
if (frustumPlanes[i].x > 0.0) {
p.x = boxMax.x;
} else {
p.x = boxMin.x;
}
if (frustumPlanes[i].y > 0.0) {
p.y = boxMax.y;
} else {
p.y = boxMin.y;
}
if (frustumPlanes[i].z > 0.0) {
p.z = boxMax.z;
} else {
p.z = boxMin.z;
}
p.w = 1.0;
dp = dp + min(0.0, dot(p, frustumPlanes[i]));
}
if (dp >= 0.0) {
// light is overlapping with the tile
var tileId: u32 = u32(x + y * TILE_COUNT_X);
if (tileId < 0u || tileId >= config.numTiles) {
continue;
}
var offset: u32 = atomicAdd(&(tileLightId.data[tileId].count), 1u);
if (offset >= config.numTileLightSlot) {
continue;
}
tileLightId.data[tileId].lightId[offset] = GlobalInvocationID.x;
}
}
}
}

View File

@ -0,0 +1,115 @@
uint atomicAdd_1(RWByteAddressBuffer buffer, uint offset, uint value) {
uint original_value = 0;
buffer.InterlockedAdd(offset, value, original_value);
return original_value;
}
RWByteAddressBuffer lightsBuffer : register(u0, space0);
RWByteAddressBuffer tileLightId : register(u0, space1);
cbuffer cbuffer_config : register(b0, space2) {
uint4 config[2];
};
cbuffer cbuffer_uniforms : register(b0, space3) {
uint4 uniforms[11];
};
struct tint_symbol_1 {
uint3 GlobalInvocationID : SV_DispatchThreadID;
};
float4x4 tint_symbol_6(uint4 buffer[11], uint offset) {
const uint scalar_offset = ((offset + 0u)) / 4;
const uint scalar_offset_1 = ((offset + 16u)) / 4;
const uint scalar_offset_2 = ((offset + 32u)) / 4;
const uint scalar_offset_3 = ((offset + 48u)) / 4;
return float4x4(asfloat(buffer[scalar_offset / 4]), asfloat(buffer[scalar_offset_1 / 4]), asfloat(buffer[scalar_offset_2 / 4]), asfloat(buffer[scalar_offset_3 / 4]));
}
void main_inner(uint3 GlobalInvocationID) {
uint index = GlobalInvocationID.x;
if ((index >= config[0].x)) {
return;
}
lightsBuffer.Store(((32u * index) + 4u), asuint(((asfloat(lightsBuffer.Load(((32u * index) + 4u))) - 0.100000001f) + (0.001f * (float(index) - (64.0f * floor((float(index) / 64.0f))))))));
if ((asfloat(lightsBuffer.Load(((32u * index) + 4u))) < asfloat(uniforms[0].y))) {
lightsBuffer.Store(((32u * index) + 4u), asuint(asfloat(uniforms[1].y)));
}
float4x4 M = tint_symbol_6(uniforms, 96u);
float viewNear = (-(M[3][2]) / (-1.0f + M[2][2]));
float viewFar = (-(M[3][2]) / (1.0f + M[2][2]));
float4 lightPos = asfloat(lightsBuffer.Load4((32u * index)));
lightPos = mul(lightPos, tint_symbol_6(uniforms, 32u));
lightPos = (lightPos / lightPos.w);
float lightRadius = asfloat(lightsBuffer.Load(((32u * index) + 28u)));
float4 boxMin = (lightPos - float4(float3((lightRadius).xxx), 0.0f));
float4 boxMax = (lightPos + float4(float3((lightRadius).xxx), 0.0f));
float4 frustumPlanes[6] = (float4[6])0;
frustumPlanes[4] = float4(0.0f, 0.0f, -1.0f, viewNear);
frustumPlanes[5] = float4(0.0f, 0.0f, 1.0f, -(viewFar));
const int TILE_SIZE = 16;
const int TILE_COUNT_X = 2;
{
for(int y_1 = 0; (y_1 < 2); y_1 = (y_1 + 1)) {
{
for(int x_1 = 0; (x_1 < TILE_COUNT_X); x_1 = (x_1 + 1)) {
int2 tilePixel0Idx = int2((x_1 * TILE_SIZE), (y_1 * TILE_SIZE));
float2 floorCoord = (((2.0f * float2(tilePixel0Idx)) / asfloat(uniforms[10]).xy) - float2((1.0f).xx));
float2 ceilCoord = (((2.0f * float2((tilePixel0Idx + int2((TILE_SIZE).xx)))) / asfloat(uniforms[10]).xy) - float2((1.0f).xx));
float2 viewFloorCoord = float2((((-(viewNear) * floorCoord.x) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * floorCoord.y) - (M[2][1] * viewNear)) / M[1][1]));
float2 viewCeilCoord = float2((((-(viewNear) * ceilCoord.x) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * ceilCoord.y) - (M[2][1] * viewNear)) / M[1][1]));
frustumPlanes[0] = float4(1.0f, 0.0f, (-(viewFloorCoord.x) / viewNear), 0.0f);
frustumPlanes[1] = float4(-1.0f, 0.0f, (viewCeilCoord.x / viewNear), 0.0f);
frustumPlanes[2] = float4(0.0f, 1.0f, (-(viewFloorCoord.y) / viewNear), 0.0f);
frustumPlanes[3] = float4(0.0f, -1.0f, (viewCeilCoord.y / viewNear), 0.0f);
float dp = 0.0f;
{
for(uint i = 0u; (i < 6u); i = (i + 1u)) {
float4 p = float4(0.0f, 0.0f, 0.0f, 0.0f);
if ((frustumPlanes[i].x > 0.0f)) {
p.x = boxMax.x;
} else {
p.x = boxMin.x;
}
if ((frustumPlanes[i].y > 0.0f)) {
p.y = boxMax.y;
} else {
p.y = boxMin.y;
}
if ((frustumPlanes[i].z > 0.0f)) {
p.z = boxMax.z;
} else {
p.z = boxMin.z;
}
p.w = 1.0f;
dp = (dp + min(0.0f, dot(p, frustumPlanes[i])));
}
}
if ((dp >= 0.0f)) {
uint tileId = uint((x_1 + (y_1 * TILE_COUNT_X)));
bool tint_tmp = (tileId < 0u);
if (!tint_tmp) {
tint_tmp = (tileId >= config[0].y);
}
if ((tint_tmp)) {
continue;
}
uint offset = atomicAdd_1(tileLightId, (260u * tileId), 1u);
if ((offset >= config[1].x)) {
continue;
}
tileLightId.Store((((260u * tileId) + 4u) + (4u * offset)), asuint(GlobalInvocationID.x));
}
}
}
}
}
}
[numthreads(64, 1, 1)]
void main(tint_symbol_1 tint_symbol) {
main_inner(tint_symbol.GlobalInvocationID);
return;
}

View File

@ -0,0 +1,130 @@
#include <metal_stdlib>
using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct LightData {
/* 0x0000 */ float4 position;
/* 0x0010 */ packed_float3 color;
/* 0x001c */ float radius;
};
struct LightsBuffer {
/* 0x0000 */ LightData lights[1];
};
struct tint_array_wrapper {
/* 0x0000 */ uint arr[64];
};
struct TileLightIdData {
/* 0x0000 */ atomic_uint count;
/* 0x0004 */ tint_array_wrapper lightId;
};
struct tint_array_wrapper_1 {
/* 0x0000 */ TileLightIdData arr[4];
};
struct Tiles {
/* 0x0000 */ tint_array_wrapper_1 data;
};
struct Config {
/* 0x0000 */ uint numLights;
/* 0x0004 */ uint numTiles;
/* 0x0008 */ uint tileCountX;
/* 0x000c */ uint tileCountY;
/* 0x0010 */ uint numTileLightSlot;
/* 0x0014 */ uint tileSize;
};
struct Uniforms {
/* 0x0000 */ float4 min;
/* 0x0010 */ float4 max;
/* 0x0020 */ float4x4 viewMatrix;
/* 0x0060 */ float4x4 projectionMatrix;
/* 0x00a0 */ float4 fullScreenSize;
};
struct tint_array_wrapper_2 {
float4 arr[6];
};
void tint_symbol_inner(constant Config& config, constant Uniforms& uniforms, device LightsBuffer& lightsBuffer, device Tiles& tileLightId, uint3 GlobalInvocationID) {
uint index = GlobalInvocationID.x;
if ((index >= config.numLights)) {
return;
}
lightsBuffer.lights[index].position.y = ((lightsBuffer.lights[index].position.y - 0.100000001f) + (0.001f * (float(index) - (64.0f * floor((float(index) / 64.0f))))));
if ((lightsBuffer.lights[index].position.y < uniforms.min.y)) {
lightsBuffer.lights[index].position.y = uniforms.max.y;
}
float4x4 M = uniforms.projectionMatrix;
float viewNear = (-(M[3][2]) / (-1.0f + M[2][2]));
float viewFar = (-(M[3][2]) / (1.0f + M[2][2]));
float4 lightPos = lightsBuffer.lights[index].position;
lightPos = (uniforms.viewMatrix * lightPos);
lightPos = (lightPos / lightPos.w);
float lightRadius = lightsBuffer.lights[index].radius;
float4 boxMin = (lightPos - float4(float3(lightRadius), 0.0f));
float4 boxMax = (lightPos + float4(float3(lightRadius), 0.0f));
tint_array_wrapper_2 frustumPlanes = {};
frustumPlanes.arr[4] = float4(0.0f, 0.0f, -1.0f, viewNear);
frustumPlanes.arr[5] = float4(0.0f, 0.0f, 1.0f, -(viewFar));
int const TILE_SIZE = 16;
int const TILE_COUNT_X = 2;
int const TILE_COUNT_Y = 2;
for(int y_1 = 0; (y_1 < TILE_COUNT_Y); y_1 = as_type<int>((as_type<uint>(y_1) + as_type<uint>(1)))) {
for(int x_1 = 0; (x_1 < TILE_COUNT_X); x_1 = as_type<int>((as_type<uint>(x_1) + as_type<uint>(1)))) {
int2 tilePixel0Idx = int2(as_type<int>((as_type<uint>(x_1) * as_type<uint>(TILE_SIZE))), as_type<int>((as_type<uint>(y_1) * as_type<uint>(TILE_SIZE))));
float2 floorCoord = (((2.0f * float2(tilePixel0Idx)) / uniforms.fullScreenSize.xy) - float2(1.0f));
float2 ceilCoord = (((2.0f * float2(as_type<int2>((as_type<uint2>(tilePixel0Idx) + as_type<uint2>(int2(TILE_SIZE)))))) / uniforms.fullScreenSize.xy) - float2(1.0f));
float2 viewFloorCoord = float2((((-(viewNear) * floorCoord.x) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * floorCoord.y) - (M[2][1] * viewNear)) / M[1][1]));
float2 viewCeilCoord = float2((((-(viewNear) * ceilCoord.x) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * ceilCoord.y) - (M[2][1] * viewNear)) / M[1][1]));
frustumPlanes.arr[0] = float4(1.0f, 0.0f, (-(viewFloorCoord.x) / viewNear), 0.0f);
frustumPlanes.arr[1] = float4(-1.0f, 0.0f, (viewCeilCoord.x / viewNear), 0.0f);
frustumPlanes.arr[2] = float4(0.0f, 1.0f, (-(viewFloorCoord.y) / viewNear), 0.0f);
frustumPlanes.arr[3] = float4(0.0f, -1.0f, (viewCeilCoord.y / viewNear), 0.0f);
float dp = 0.0f;
for(uint i = 0u; (i < 6u); i = (i + 1u)) {
float4 p = 0.0f;
if ((frustumPlanes.arr[i].x > 0.0f)) {
p.x = boxMax.x;
} else {
p.x = boxMin.x;
}
if ((frustumPlanes.arr[i].y > 0.0f)) {
p.y = boxMax.y;
} else {
p.y = boxMin.y;
}
if ((frustumPlanes.arr[i].z > 0.0f)) {
p.z = boxMax.z;
} else {
p.z = boxMin.z;
}
p.w = 1.0f;
dp = (dp + fmin(0.0f, dot(p, frustumPlanes.arr[i])));
}
if ((dp >= 0.0f)) {
uint tileId = uint(as_type<int>((as_type<uint>(x_1) + as_type<uint>(as_type<int>((as_type<uint>(y_1) * as_type<uint>(TILE_COUNT_X)))))));
if (((tileId < 0u) || (tileId >= config.numTiles))) {
continue;
}
uint offset = atomic_fetch_add_explicit(&(tileLightId.data.arr[tileId].count), 1u, memory_order_relaxed);
if ((offset >= config.numTileLightSlot)) {
continue;
}
tileLightId.data.arr[tileId].lightId.arr[offset] = GlobalInvocationID.x;
}
}
}
}
kernel void tint_symbol(uint3 GlobalInvocationID [[thread_position_in_grid]], constant Config& config [[buffer(0)]], constant Uniforms& uniforms [[buffer(1)]], device LightsBuffer& lightsBuffer [[buffer(2)]], device Tiles& tileLightId [[buffer(3)]]) {
tint_symbol_inner(config, uniforms, lightsBuffer, tileLightId, GlobalInvocationID);
return;
}

View File

@ -0,0 +1,617 @@
; SPIR-V
; Version: 1.3
; Generator: Google Tint Compiler; 0
; Bound: 417
; Schema: 0
OpCapability Shader
%60 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main" %GlobalInvocationID_1
OpExecutionMode %main LocalSize 64 1 1
OpName %GlobalInvocationID_1 "GlobalInvocationID_1"
OpName %LightsBuffer "LightsBuffer"
OpMemberName %LightsBuffer 0 "lights"
OpName %LightData "LightData"
OpMemberName %LightData 0 "position"
OpMemberName %LightData 1 "color"
OpMemberName %LightData 2 "radius"
OpName %lightsBuffer "lightsBuffer"
OpName %Tiles "Tiles"
OpMemberName %Tiles 0 "data"
OpName %TileLightIdData "TileLightIdData"
OpMemberName %TileLightIdData 0 "count"
OpMemberName %TileLightIdData 1 "lightId"
OpName %tileLightId "tileLightId"
OpName %Config "Config"
OpMemberName %Config 0 "numLights"
OpMemberName %Config 1 "numTiles"
OpMemberName %Config 2 "tileCountX"
OpMemberName %Config 3 "tileCountY"
OpMemberName %Config 4 "numTileLightSlot"
OpMemberName %Config 5 "tileSize"
OpName %config "config"
OpName %Uniforms "Uniforms"
OpMemberName %Uniforms 0 "min"
OpMemberName %Uniforms 1 "max"
OpMemberName %Uniforms 2 "viewMatrix"
OpMemberName %Uniforms 3 "projectionMatrix"
OpMemberName %Uniforms 4 "fullScreenSize"
OpName %uniforms "uniforms"
OpName %main_inner "main_inner"
OpName %GlobalInvocationID "GlobalInvocationID"
OpName %index "index"
OpName %M "M"
OpName %viewNear "viewNear"
OpName %viewFar "viewFar"
OpName %lightPos "lightPos"
OpName %lightRadius "lightRadius"
OpName %boxMin "boxMin"
OpName %boxMax "boxMax"
OpName %frustumPlanes "frustumPlanes"
OpName %y "y"
OpName %x "x"
OpName %tilePixel0Idx "tilePixel0Idx"
OpName %floorCoord "floorCoord"
OpName %ceilCoord "ceilCoord"
OpName %viewFloorCoord "viewFloorCoord"
OpName %viewCeilCoord "viewCeilCoord"
OpName %dp "dp"
OpName %i "i"
OpName %p "p"
OpName %tileId "tileId"
OpName %offset "offset"
OpName %main "main"
OpDecorate %GlobalInvocationID_1 BuiltIn GlobalInvocationId
OpDecorate %LightsBuffer Block
OpMemberDecorate %LightsBuffer 0 Offset 0
OpMemberDecorate %LightData 0 Offset 0
OpMemberDecorate %LightData 1 Offset 16
OpMemberDecorate %LightData 2 Offset 28
OpDecorate %_runtimearr_LightData ArrayStride 32
OpDecorate %lightsBuffer DescriptorSet 0
OpDecorate %lightsBuffer Binding 0
OpDecorate %Tiles Block
OpMemberDecorate %Tiles 0 Offset 0
OpMemberDecorate %TileLightIdData 0 Offset 0
OpMemberDecorate %TileLightIdData 1 Offset 4
OpDecorate %_arr_uint_uint_64 ArrayStride 4
OpDecorate %_arr_TileLightIdData_uint_4 ArrayStride 260
OpDecorate %tileLightId DescriptorSet 1
OpDecorate %tileLightId Binding 0
OpDecorate %Config Block
OpMemberDecorate %Config 0 Offset 0
OpMemberDecorate %Config 1 Offset 4
OpMemberDecorate %Config 2 Offset 8
OpMemberDecorate %Config 3 Offset 12
OpMemberDecorate %Config 4 Offset 16
OpMemberDecorate %Config 5 Offset 20
OpDecorate %config NonWritable
OpDecorate %config DescriptorSet 2
OpDecorate %config Binding 0
OpDecorate %Uniforms Block
OpMemberDecorate %Uniforms 0 Offset 0
OpMemberDecorate %Uniforms 1 Offset 16
OpMemberDecorate %Uniforms 2 Offset 32
OpMemberDecorate %Uniforms 2 ColMajor
OpMemberDecorate %Uniforms 2 MatrixStride 16
OpMemberDecorate %Uniforms 3 Offset 96
OpMemberDecorate %Uniforms 3 ColMajor
OpMemberDecorate %Uniforms 3 MatrixStride 16
OpMemberDecorate %Uniforms 4 Offset 160
OpDecorate %uniforms NonWritable
OpDecorate %uniforms DescriptorSet 3
OpDecorate %uniforms Binding 0
OpDecorate %_arr_v4float_uint_6 ArrayStride 16
%uint = OpTypeInt 32 0
%v3uint = OpTypeVector %uint 3
%_ptr_Input_v3uint = OpTypePointer Input %v3uint
%GlobalInvocationID_1 = OpVariable %_ptr_Input_v3uint Input
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%v3float = OpTypeVector %float 3
%LightData = OpTypeStruct %v4float %v3float %float
%_runtimearr_LightData = OpTypeRuntimeArray %LightData
%LightsBuffer = OpTypeStruct %_runtimearr_LightData
%_ptr_StorageBuffer_LightsBuffer = OpTypePointer StorageBuffer %LightsBuffer
%lightsBuffer = OpVariable %_ptr_StorageBuffer_LightsBuffer StorageBuffer
%uint_64 = OpConstant %uint 64
%_arr_uint_uint_64 = OpTypeArray %uint %uint_64
%TileLightIdData = OpTypeStruct %uint %_arr_uint_uint_64
%uint_4 = OpConstant %uint 4
%_arr_TileLightIdData_uint_4 = OpTypeArray %TileLightIdData %uint_4
%Tiles = OpTypeStruct %_arr_TileLightIdData_uint_4
%_ptr_StorageBuffer_Tiles = OpTypePointer StorageBuffer %Tiles
%tileLightId = OpVariable %_ptr_StorageBuffer_Tiles StorageBuffer
%Config = OpTypeStruct %uint %uint %uint %uint %uint %uint
%_ptr_Uniform_Config = OpTypePointer Uniform %Config
%config = OpVariable %_ptr_Uniform_Config Uniform
%mat4v4float = OpTypeMatrix %v4float 4
%Uniforms = OpTypeStruct %v4float %v4float %mat4v4float %mat4v4float %v4float
%_ptr_Uniform_Uniforms = OpTypePointer Uniform %Uniforms
%uniforms = OpVariable %_ptr_Uniform_Uniforms Uniform
%void = OpTypeVoid
%28 = OpTypeFunction %void %v3uint
%_ptr_Function_uint = OpTypePointer Function %uint
%36 = OpConstantNull %uint
%uint_0 = OpConstant %uint 0
%_ptr_Uniform_uint = OpTypePointer Uniform %uint
%bool = OpTypeBool
%uint_1 = OpConstant %uint 1
%_ptr_StorageBuffer_float = OpTypePointer StorageBuffer %float
%float_0_100000001 = OpConstant %float 0.100000001
%float_0_00100000005 = OpConstant %float 0.00100000005
%float_64 = OpConstant %float 64
%_ptr_Uniform_float = OpTypePointer Uniform %float
%uint_3 = OpConstant %uint 3
%_ptr_Uniform_mat4v4float = OpTypePointer Uniform %mat4v4float
%_ptr_Function_mat4v4float = OpTypePointer Function %mat4v4float
%87 = OpConstantNull %mat4v4float
%int = OpTypeInt 32 1
%int_3 = OpConstant %int 3
%int_2 = OpConstant %int 2
%_ptr_Function_float = OpTypePointer Function %float
%float_n1 = OpConstant %float -1
%101 = OpConstantNull %float
%float_1 = OpConstant %float 1
%_ptr_StorageBuffer_v4float = OpTypePointer StorageBuffer %v4float
%_ptr_Function_v4float = OpTypePointer Function %v4float
%117 = OpConstantNull %v4float
%uint_2 = OpConstant %uint 2
%float_0 = OpConstant %float 0
%uint_6 = OpConstant %uint 6
%_arr_v4float_uint_6 = OpTypeArray %v4float %uint_6
%_ptr_Function__arr_v4float_uint_6 = OpTypePointer Function %_arr_v4float_uint_6
%156 = OpConstantNull %_arr_v4float_uint_6
%int_4 = OpConstant %int 4
%int_5 = OpConstant %int 5
%int_16 = OpConstant %int 16
%int_0 = OpConstant %int 0
%_ptr_Function_int = OpTypePointer Function %int
%170 = OpConstantNull %int
%v2int = OpTypeVector %int 2
%_ptr_Function_v2int = OpTypePointer Function %v2int
%198 = OpConstantNull %v2int
%float_2 = OpConstant %float 2
%v2float = OpTypeVector %float 2
%_ptr_Uniform_v4float = OpTypePointer Uniform %v4float
%209 = OpConstantComposite %v2float %float_1 %float_1
%_ptr_Function_v2float = OpTypePointer Function %v2float
%213 = OpConstantNull %v2float
%int_1 = OpConstant %int 1
%_ptr_StorageBuffer_uint = OpTypePointer StorageBuffer %uint
%_ptr_StorageBuffer_uint_0 = OpTypePointer StorageBuffer %uint
%412 = OpTypeFunction %void
%main_inner = OpFunction %void None %28
%GlobalInvocationID = OpFunctionParameter %v3uint
%32 = OpLabel
%index = OpVariable %_ptr_Function_uint Function %36
%M = OpVariable %_ptr_Function_mat4v4float Function %87
%viewNear = OpVariable %_ptr_Function_float Function %101
%viewFar = OpVariable %_ptr_Function_float Function %101
%lightPos = OpVariable %_ptr_Function_v4float Function %117
%127 = OpVariable %_ptr_Function_v4float Function %117
%lightRadius = OpVariable %_ptr_Function_float Function %101
%boxMin = OpVariable %_ptr_Function_v4float Function %117
%boxMax = OpVariable %_ptr_Function_v4float Function %117
%frustumPlanes = OpVariable %_ptr_Function__arr_v4float_uint_6 Function %156
%y = OpVariable %_ptr_Function_int Function %170
%x = OpVariable %_ptr_Function_int Function %170
%tilePixel0Idx = OpVariable %_ptr_Function_v2int Function %198
%floorCoord = OpVariable %_ptr_Function_v2float Function %213
%ceilCoord = OpVariable %_ptr_Function_v2float Function %213
%viewFloorCoord = OpVariable %_ptr_Function_v2float Function %213
%viewCeilCoord = OpVariable %_ptr_Function_v2float Function %213
%dp = OpVariable %_ptr_Function_float Function %101
%i = OpVariable %_ptr_Function_uint Function %36
%p = OpVariable %_ptr_Function_v4float Function %117
%tileId = OpVariable %_ptr_Function_uint Function %36
%offset = OpVariable %_ptr_Function_uint Function %36
%33 = OpCompositeExtract %uint %GlobalInvocationID 0
OpStore %index %33
%37 = OpLoad %uint %index
%40 = OpAccessChain %_ptr_Uniform_uint %config %uint_0
%41 = OpLoad %uint %40
%42 = OpUGreaterThanEqual %bool %37 %41
OpSelectionMerge %44 None
OpBranchConditional %42 %45 %44
%45 = OpLabel
OpReturn
%44 = OpLabel
%46 = OpLoad %uint %index
%49 = OpAccessChain %_ptr_StorageBuffer_float %lightsBuffer %uint_0 %46 %uint_0 %uint_1
%50 = OpLoad %uint %index
%51 = OpAccessChain %_ptr_StorageBuffer_float %lightsBuffer %uint_0 %50 %uint_0 %uint_1
%52 = OpLoad %float %51
%54 = OpFSub %float %52 %float_0_100000001
%57 = OpLoad %uint %index
%56 = OpConvertUToF %float %57
%62 = OpLoad %uint %index
%61 = OpConvertUToF %float %62
%63 = OpFDiv %float %61 %float_64
%59 = OpExtInst %float %60 Floor %63
%64 = OpFMul %float %float_64 %59
%65 = OpFSub %float %56 %64
%66 = OpFMul %float %float_0_00100000005 %65
%67 = OpFAdd %float %54 %66
OpStore %49 %67
%68 = OpLoad %uint %index
%69 = OpAccessChain %_ptr_StorageBuffer_float %lightsBuffer %uint_0 %68 %uint_0 %uint_1
%70 = OpLoad %float %69
%72 = OpAccessChain %_ptr_Uniform_float %uniforms %uint_0 %uint_1
%73 = OpLoad %float %72
%74 = OpFOrdLessThan %bool %70 %73
OpSelectionMerge %75 None
OpBranchConditional %74 %76 %75
%76 = OpLabel
%77 = OpLoad %uint %index
%78 = OpAccessChain %_ptr_StorageBuffer_float %lightsBuffer %uint_0 %77 %uint_0 %uint_1
%79 = OpAccessChain %_ptr_Uniform_float %uniforms %uint_1 %uint_1
%80 = OpLoad %float %79
OpStore %78 %80
OpBranch %75
%75 = OpLabel
%83 = OpAccessChain %_ptr_Uniform_mat4v4float %uniforms %uint_3
%84 = OpLoad %mat4v4float %83
OpStore %M %84
%93 = OpAccessChain %_ptr_Function_float %M %int_3 %int_2
%94 = OpLoad %float %93
%88 = OpFNegate %float %94
%96 = OpAccessChain %_ptr_Function_float %M %int_2 %int_2
%97 = OpLoad %float %96
%98 = OpFAdd %float %float_n1 %97
%99 = OpFDiv %float %88 %98
OpStore %viewNear %99
%103 = OpAccessChain %_ptr_Function_float %M %int_3 %int_2
%104 = OpLoad %float %103
%102 = OpFNegate %float %104
%106 = OpAccessChain %_ptr_Function_float %M %int_2 %int_2
%107 = OpLoad %float %106
%108 = OpFAdd %float %float_1 %107
%109 = OpFDiv %float %102 %108
OpStore %viewFar %109
%111 = OpLoad %uint %index
%113 = OpAccessChain %_ptr_StorageBuffer_v4float %lightsBuffer %uint_0 %111 %uint_0
%114 = OpLoad %v4float %113
OpStore %lightPos %114
%119 = OpAccessChain %_ptr_Uniform_mat4v4float %uniforms %uint_2
%120 = OpLoad %mat4v4float %119
%121 = OpLoad %v4float %lightPos
%122 = OpMatrixTimesVector %v4float %120 %121
OpStore %lightPos %122
%123 = OpLoad %v4float %lightPos
%124 = OpAccessChain %_ptr_Function_float %lightPos %uint_3
%125 = OpLoad %float %124
%128 = OpCompositeConstruct %v4float %125 %125 %125 %125
%126 = OpFDiv %v4float %123 %128
OpStore %lightPos %126
%129 = OpLoad %uint %index
%130 = OpAccessChain %_ptr_StorageBuffer_float %lightsBuffer %uint_0 %129 %uint_2
%131 = OpLoad %float %130
OpStore %lightRadius %131
%133 = OpLoad %v4float %lightPos
%134 = OpLoad %float %lightRadius
%135 = OpCompositeConstruct %v3float %134 %134 %134
%136 = OpCompositeExtract %float %135 0
%137 = OpCompositeExtract %float %135 1
%138 = OpCompositeExtract %float %135 2
%140 = OpCompositeConstruct %v4float %136 %137 %138 %float_0
%141 = OpFSub %v4float %133 %140
OpStore %boxMin %141
%143 = OpLoad %v4float %lightPos
%144 = OpLoad %float %lightRadius
%145 = OpCompositeConstruct %v3float %144 %144 %144
%146 = OpCompositeExtract %float %145 0
%147 = OpCompositeExtract %float %145 1
%148 = OpCompositeExtract %float %145 2
%149 = OpCompositeConstruct %v4float %146 %147 %148 %float_0
%150 = OpFAdd %v4float %143 %149
OpStore %boxMax %150
%158 = OpAccessChain %_ptr_Function_v4float %frustumPlanes %int_4
%159 = OpLoad %float %viewNear
%160 = OpCompositeConstruct %v4float %float_0 %float_0 %float_n1 %159
OpStore %158 %160
%162 = OpAccessChain %_ptr_Function_v4float %frustumPlanes %int_5
%164 = OpLoad %float %viewFar
%163 = OpFNegate %float %164
%165 = OpCompositeConstruct %v4float %float_0 %float_0 %float_1 %163
OpStore %162 %165
OpStore %y %int_0
OpBranch %171
%171 = OpLabel
OpLoopMerge %172 %173 None
OpBranch %174
%174 = OpLabel
%176 = OpLoad %int %y
%177 = OpSLessThan %bool %176 %int_2
%175 = OpLogicalNot %bool %177
OpSelectionMerge %178 None
OpBranchConditional %175 %179 %178
%179 = OpLabel
OpBranch %172
%178 = OpLabel
OpStore %x %int_0
OpBranch %181
%181 = OpLabel
OpLoopMerge %182 %183 None
OpBranch %184
%184 = OpLabel
%186 = OpLoad %int %x
%187 = OpSLessThan %bool %186 %int_2
%185 = OpLogicalNot %bool %187
OpSelectionMerge %188 None
OpBranchConditional %185 %189 %188
%189 = OpLabel
OpBranch %182
%188 = OpLabel
%191 = OpLoad %int %x
%192 = OpIMul %int %191 %int_16
%193 = OpLoad %int %y
%194 = OpIMul %int %193 %int_16
%195 = OpCompositeConstruct %v2int %192 %194
OpStore %tilePixel0Idx %195
%202 = OpLoad %v2int %tilePixel0Idx
%200 = OpConvertSToF %v2float %202
%203 = OpVectorTimesScalar %v2float %200 %float_2
%205 = OpAccessChain %_ptr_Uniform_v4float %uniforms %uint_4
%206 = OpLoad %v4float %205
%207 = OpVectorShuffle %v2float %206 %206 0 1
%208 = OpFDiv %v2float %203 %207
%210 = OpFSub %v2float %208 %209
OpStore %floorCoord %210
%215 = OpLoad %v2int %tilePixel0Idx
%216 = OpCompositeConstruct %v2int %int_16 %int_16
%217 = OpIAdd %v2int %215 %216
%214 = OpConvertSToF %v2float %217
%218 = OpVectorTimesScalar %v2float %214 %float_2
%219 = OpAccessChain %_ptr_Uniform_v4float %uniforms %uint_4
%220 = OpLoad %v4float %219
%221 = OpVectorShuffle %v2float %220 %220 0 1
%222 = OpFDiv %v2float %218 %221
%223 = OpFSub %v2float %222 %209
OpStore %ceilCoord %223
%226 = OpLoad %float %viewNear
%225 = OpFNegate %float %226
%227 = OpAccessChain %_ptr_Function_float %floorCoord %uint_0
%228 = OpLoad %float %227
%229 = OpFMul %float %225 %228
%230 = OpAccessChain %_ptr_Function_float %M %int_2 %int_0
%231 = OpLoad %float %230
%232 = OpLoad %float %viewNear
%233 = OpFMul %float %231 %232
%234 = OpFSub %float %229 %233
%235 = OpAccessChain %_ptr_Function_float %M %int_0 %int_0
%236 = OpLoad %float %235
%237 = OpFDiv %float %234 %236
%239 = OpLoad %float %viewNear
%238 = OpFNegate %float %239
%240 = OpAccessChain %_ptr_Function_float %floorCoord %uint_1
%241 = OpLoad %float %240
%242 = OpFMul %float %238 %241
%244 = OpAccessChain %_ptr_Function_float %M %int_2 %int_1
%245 = OpLoad %float %244
%246 = OpLoad %float %viewNear
%247 = OpFMul %float %245 %246
%248 = OpFSub %float %242 %247
%249 = OpAccessChain %_ptr_Function_float %M %int_1 %int_1
%250 = OpLoad %float %249
%251 = OpFDiv %float %248 %250
%252 = OpCompositeConstruct %v2float %237 %251
OpStore %viewFloorCoord %252
%255 = OpLoad %float %viewNear
%254 = OpFNegate %float %255
%256 = OpAccessChain %_ptr_Function_float %ceilCoord %uint_0
%257 = OpLoad %float %256
%258 = OpFMul %float %254 %257
%259 = OpAccessChain %_ptr_Function_float %M %int_2 %int_0
%260 = OpLoad %float %259
%261 = OpLoad %float %viewNear
%262 = OpFMul %float %260 %261
%263 = OpFSub %float %258 %262
%264 = OpAccessChain %_ptr_Function_float %M %int_0 %int_0
%265 = OpLoad %float %264
%266 = OpFDiv %float %263 %265
%268 = OpLoad %float %viewNear
%267 = OpFNegate %float %268
%269 = OpAccessChain %_ptr_Function_float %ceilCoord %uint_1
%270 = OpLoad %float %269
%271 = OpFMul %float %267 %270
%272 = OpAccessChain %_ptr_Function_float %M %int_2 %int_1
%273 = OpLoad %float %272
%274 = OpLoad %float %viewNear
%275 = OpFMul %float %273 %274
%276 = OpFSub %float %271 %275
%277 = OpAccessChain %_ptr_Function_float %M %int_1 %int_1
%278 = OpLoad %float %277
%279 = OpFDiv %float %276 %278
%280 = OpCompositeConstruct %v2float %266 %279
OpStore %viewCeilCoord %280
%282 = OpAccessChain %_ptr_Function_v4float %frustumPlanes %int_0
%284 = OpAccessChain %_ptr_Function_float %viewFloorCoord %uint_0
%285 = OpLoad %float %284
%283 = OpFNegate %float %285
%286 = OpLoad %float %viewNear
%287 = OpFDiv %float %283 %286
%288 = OpCompositeConstruct %v4float %float_1 %float_0 %287 %float_0
OpStore %282 %288
%289 = OpAccessChain %_ptr_Function_v4float %frustumPlanes %int_1
%290 = OpAccessChain %_ptr_Function_float %viewCeilCoord %uint_0
%291 = OpLoad %float %290
%292 = OpLoad %float %viewNear
%293 = OpFDiv %float %291 %292
%294 = OpCompositeConstruct %v4float %float_n1 %float_0 %293 %float_0
OpStore %289 %294
%295 = OpAccessChain %_ptr_Function_v4float %frustumPlanes %int_2
%297 = OpAccessChain %_ptr_Function_float %viewFloorCoord %uint_1
%298 = OpLoad %float %297
%296 = OpFNegate %float %298
%299 = OpLoad %float %viewNear
%300 = OpFDiv %float %296 %299
%301 = OpCompositeConstruct %v4float %float_0 %float_1 %300 %float_0
OpStore %295 %301
%302 = OpAccessChain %_ptr_Function_v4float %frustumPlanes %int_3
%303 = OpAccessChain %_ptr_Function_float %viewCeilCoord %uint_1
%304 = OpLoad %float %303
%305 = OpLoad %float %viewNear
%306 = OpFDiv %float %304 %305
%307 = OpCompositeConstruct %v4float %float_0 %float_n1 %306 %float_0
OpStore %302 %307
OpStore %dp %float_0
OpStore %i %uint_0
OpBranch %310
%310 = OpLabel
OpLoopMerge %311 %312 None
OpBranch %313
%313 = OpLabel
%315 = OpLoad %uint %i
%316 = OpULessThan %bool %315 %uint_6
%314 = OpLogicalNot %bool %316
OpSelectionMerge %317 None
OpBranchConditional %314 %318 %317
%318 = OpLabel
OpBranch %311
%317 = OpLabel
%320 = OpLoad %uint %i
%321 = OpAccessChain %_ptr_Function_float %frustumPlanes %320 %uint_0
%322 = OpLoad %float %321
%323 = OpFOrdGreaterThan %bool %322 %float_0
OpSelectionMerge %324 None
OpBranchConditional %323 %325 %326
%325 = OpLabel
%327 = OpAccessChain %_ptr_Function_float %p %uint_0
%328 = OpAccessChain %_ptr_Function_float %boxMax %uint_0
%329 = OpLoad %float %328
OpStore %327 %329
OpBranch %324
%326 = OpLabel
%330 = OpAccessChain %_ptr_Function_float %p %uint_0
%331 = OpAccessChain %_ptr_Function_float %boxMin %uint_0
%332 = OpLoad %float %331
OpStore %330 %332
OpBranch %324
%324 = OpLabel
%333 = OpLoad %uint %i
%334 = OpAccessChain %_ptr_Function_float %frustumPlanes %333 %uint_1
%335 = OpLoad %float %334
%336 = OpFOrdGreaterThan %bool %335 %float_0
OpSelectionMerge %337 None
OpBranchConditional %336 %338 %339
%338 = OpLabel
%340 = OpAccessChain %_ptr_Function_float %p %uint_1
%341 = OpAccessChain %_ptr_Function_float %boxMax %uint_1
%342 = OpLoad %float %341
OpStore %340 %342
OpBranch %337
%339 = OpLabel
%343 = OpAccessChain %_ptr_Function_float %p %uint_1
%344 = OpAccessChain %_ptr_Function_float %boxMin %uint_1
%345 = OpLoad %float %344
OpStore %343 %345
OpBranch %337
%337 = OpLabel
%346 = OpLoad %uint %i
%347 = OpAccessChain %_ptr_Function_float %frustumPlanes %346 %uint_2
%348 = OpLoad %float %347
%349 = OpFOrdGreaterThan %bool %348 %float_0
OpSelectionMerge %350 None
OpBranchConditional %349 %351 %352
%351 = OpLabel
%353 = OpAccessChain %_ptr_Function_float %p %uint_2
%354 = OpAccessChain %_ptr_Function_float %boxMax %uint_2
%355 = OpLoad %float %354
OpStore %353 %355
OpBranch %350
%352 = OpLabel
%356 = OpAccessChain %_ptr_Function_float %p %uint_2
%357 = OpAccessChain %_ptr_Function_float %boxMin %uint_2
%358 = OpLoad %float %357
OpStore %356 %358
OpBranch %350
%350 = OpLabel
%359 = OpAccessChain %_ptr_Function_float %p %uint_3
OpStore %359 %float_1
%360 = OpLoad %float %dp
%363 = OpLoad %v4float %p
%364 = OpLoad %uint %i
%365 = OpAccessChain %_ptr_Function_v4float %frustumPlanes %364
%366 = OpLoad %v4float %365
%362 = OpDot %float %363 %366
%361 = OpExtInst %float %60 NMin %float_0 %362
%367 = OpFAdd %float %360 %361
OpStore %dp %367
OpBranch %312
%312 = OpLabel
%368 = OpLoad %uint %i
%369 = OpIAdd %uint %368 %uint_1
OpStore %i %369
OpBranch %310
%311 = OpLabel
%370 = OpLoad %float %dp
%371 = OpFOrdGreaterThanEqual %bool %370 %float_0
OpSelectionMerge %372 None
OpBranchConditional %371 %373 %372
%373 = OpLabel
%375 = OpLoad %int %x
%376 = OpLoad %int %y
%377 = OpIMul %int %376 %int_2
%378 = OpIAdd %int %375 %377
%374 = OpBitcast %uint %378
OpStore %tileId %374
%380 = OpLoad %uint %tileId
%381 = OpULessThan %bool %380 %uint_0
OpSelectionMerge %382 None
OpBranchConditional %381 %382 %383
%383 = OpLabel
%384 = OpLoad %uint %tileId
%385 = OpAccessChain %_ptr_Uniform_uint %config %uint_1
%386 = OpLoad %uint %385
%387 = OpUGreaterThanEqual %bool %384 %386
OpBranch %382
%382 = OpLabel
%388 = OpPhi %bool %381 %373 %387 %383
OpSelectionMerge %389 None
OpBranchConditional %388 %390 %389
%390 = OpLabel
OpBranch %183
%389 = OpLabel
%393 = OpLoad %uint %tileId
%395 = OpAccessChain %_ptr_StorageBuffer_uint %tileLightId %uint_0 %393 %uint_0
%391 = OpAtomicIAdd %uint %395 %uint_1 %uint_0 %uint_1
OpStore %offset %391
%397 = OpLoad %uint %offset
%398 = OpAccessChain %_ptr_Uniform_uint %config %uint_4
%399 = OpLoad %uint %398
%400 = OpUGreaterThanEqual %bool %397 %399
OpSelectionMerge %401 None
OpBranchConditional %400 %402 %401
%402 = OpLabel
OpBranch %183
%401 = OpLabel
%403 = OpLoad %uint %tileId
%404 = OpLoad %uint %offset
%406 = OpAccessChain %_ptr_StorageBuffer_uint_0 %tileLightId %uint_0 %403 %uint_1 %404
%407 = OpCompositeExtract %uint %GlobalInvocationID 0
OpStore %406 %407
OpBranch %372
%372 = OpLabel
OpBranch %183
%183 = OpLabel
%408 = OpLoad %int %x
%409 = OpIAdd %int %408 %int_1
OpStore %x %409
OpBranch %181
%182 = OpLabel
OpBranch %173
%173 = OpLabel
%410 = OpLoad %int %y
%411 = OpIAdd %int %410 %int_1
OpStore %y %411
OpBranch %171
%172 = OpLabel
OpReturn
OpFunctionEnd
%main = OpFunction %void None %412
%414 = OpLabel
%416 = OpLoad %v3uint %GlobalInvocationID_1
%415 = OpFunctionCall %void %main_inner %416
OpReturn
OpFunctionEnd

View File

@ -0,0 +1,119 @@
struct LightData {
position : vec4<f32>;
color : vec3<f32>;
radius : f32;
};
[[block]]
struct LightsBuffer {
lights : array<LightData>;
};
[[group(0), binding(0)]] var<storage, read_write> lightsBuffer : LightsBuffer;
struct TileLightIdData {
count : atomic<u32>;
lightId : array<u32, 64>;
};
[[block]]
struct Tiles {
data : array<TileLightIdData, 4>;
};
[[group(1), binding(0)]] var<storage, read_write> tileLightId : Tiles;
[[block]]
struct Config {
numLights : u32;
numTiles : u32;
tileCountX : u32;
tileCountY : u32;
numTileLightSlot : u32;
tileSize : u32;
};
[[group(2), binding(0)]] var<uniform> config : Config;
[[block]]
struct Uniforms {
min : vec4<f32>;
max : vec4<f32>;
viewMatrix : mat4x4<f32>;
projectionMatrix : mat4x4<f32>;
fullScreenSize : vec4<f32>;
};
[[group(3), binding(0)]] var<uniform> uniforms : Uniforms;
[[stage(compute), workgroup_size(64, 1, 1)]]
fn main([[builtin(global_invocation_id)]] GlobalInvocationID : vec3<u32>) {
var index = GlobalInvocationID.x;
if ((index >= config.numLights)) {
return;
}
lightsBuffer.lights[index].position.y = ((lightsBuffer.lights[index].position.y - 0.100000001) + (0.001 * (f32(index) - (64.0 * floor((f32(index) / 64.0))))));
if ((lightsBuffer.lights[index].position.y < uniforms.min.y)) {
lightsBuffer.lights[index].position.y = uniforms.max.y;
}
var M : mat4x4<f32> = uniforms.projectionMatrix;
var viewNear : f32 = (-(M[3][2]) / (-1.0 + M[2][2]));
var viewFar : f32 = (-(M[3][2]) / (1.0 + M[2][2]));
var lightPos = lightsBuffer.lights[index].position;
lightPos = (uniforms.viewMatrix * lightPos);
lightPos = (lightPos / lightPos.w);
var lightRadius : f32 = lightsBuffer.lights[index].radius;
var boxMin : vec4<f32> = (lightPos - vec4<f32>(vec3<f32>(lightRadius), 0.0));
var boxMax : vec4<f32> = (lightPos + vec4<f32>(vec3<f32>(lightRadius), 0.0));
var frustumPlanes : array<vec4<f32>, 6>;
frustumPlanes[4] = vec4<f32>(0.0, 0.0, -1.0, viewNear);
frustumPlanes[5] = vec4<f32>(0.0, 0.0, 1.0, -(viewFar));
let TILE_SIZE : i32 = 16;
let TILE_COUNT_X : i32 = 2;
let TILE_COUNT_Y : i32 = 2;
for(var y : i32 = 0; (y < TILE_COUNT_Y); y = (y + 1)) {
for(var x : i32 = 0; (x < TILE_COUNT_X); x = (x + 1)) {
var tilePixel0Idx : vec2<i32> = vec2<i32>((x * TILE_SIZE), (y * TILE_SIZE));
var floorCoord : vec2<f32> = (((2.0 * vec2<f32>(tilePixel0Idx)) / uniforms.fullScreenSize.xy) - vec2<f32>(1.0));
var ceilCoord : vec2<f32> = (((2.0 * vec2<f32>((tilePixel0Idx + vec2<i32>(TILE_SIZE)))) / uniforms.fullScreenSize.xy) - vec2<f32>(1.0));
var viewFloorCoord : vec2<f32> = vec2<f32>((((-(viewNear) * floorCoord.x) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * floorCoord.y) - (M[2][1] * viewNear)) / M[1][1]));
var viewCeilCoord : vec2<f32> = vec2<f32>((((-(viewNear) * ceilCoord.x) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * ceilCoord.y) - (M[2][1] * viewNear)) / M[1][1]));
frustumPlanes[0] = vec4<f32>(1.0, 0.0, (-(viewFloorCoord.x) / viewNear), 0.0);
frustumPlanes[1] = vec4<f32>(-1.0, 0.0, (viewCeilCoord.x / viewNear), 0.0);
frustumPlanes[2] = vec4<f32>(0.0, 1.0, (-(viewFloorCoord.y) / viewNear), 0.0);
frustumPlanes[3] = vec4<f32>(0.0, -1.0, (viewCeilCoord.y / viewNear), 0.0);
var dp : f32 = 0.0;
for(var i : u32 = 0u; (i < 6u); i = (i + 1u)) {
var p : vec4<f32>;
if ((frustumPlanes[i].x > 0.0)) {
p.x = boxMax.x;
} else {
p.x = boxMin.x;
}
if ((frustumPlanes[i].y > 0.0)) {
p.y = boxMax.y;
} else {
p.y = boxMin.y;
}
if ((frustumPlanes[i].z > 0.0)) {
p.z = boxMax.z;
} else {
p.z = boxMin.z;
}
p.w = 1.0;
dp = (dp + min(0.0, dot(p, frustumPlanes[i])));
}
if ((dp >= 0.0)) {
var tileId : u32 = u32((x + (y * TILE_COUNT_X)));
if (((tileId < 0u) || (tileId >= config.numTiles))) {
continue;
}
var offset : u32 = atomicAdd(&(tileLightId.data[tileId].count), 1u);
if ((offset >= config.numTileLightSlot)) {
continue;
}
tileLightId.data[tileId].lightId[offset] = GlobalInvocationID.x;
}
}
}
}

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct Light { struct Light {
/* 0x0000 */ packed_float3 position; /* 0x0000 */ packed_float3 position;
/* 0x000c */ int8_t tint_pad[4]; /* 0x000c */ int8_t tint_pad[4];

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct LeftOver { struct LeftOver {
/* 0x0000 */ float time; /* 0x0000 */ float time;
/* 0x0004 */ uint padding; /* 0x0004 */ uint padding;

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct lightingInfo { struct lightingInfo {
float3 diffuse; float3 diffuse;
float3 specular; float3 specular;

View File

@ -1,6 +1,17 @@
#include <metal_stdlib> #include <metal_stdlib>
using namespace metal; using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct S { struct S {
/* 0x0000 */ packed_float3 v; /* 0x0000 */ packed_float3 v;
/* 0x000c */ uint i; /* 0x000c */ uint i;

View File

@ -0,0 +1,11 @@
[[block]]
struct S {
matrix : mat3x2<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data: S;
[[stage(fragment)]]
fn main() {
let x = data.matrix * data.vector;
}

View File

@ -0,0 +1,18 @@
cbuffer cbuffer_data : register(b0, space0) {
uint4 data[3];
};
float3x2 tint_symbol_2(uint4 buffer[3], uint offset) {
const uint scalar_offset = ((offset + 0u)) / 4;
uint4 ubo_load = buffer[scalar_offset / 4];
const uint scalar_offset_1 = ((offset + 8u)) / 4;
uint4 ubo_load_1 = buffer[scalar_offset_1 / 4];
const uint scalar_offset_2 = ((offset + 16u)) / 4;
uint4 ubo_load_2 = buffer[scalar_offset_2 / 4];
return float3x2(asfloat(((scalar_offset & 2) ? ubo_load.zw : ubo_load.xy)), asfloat(((scalar_offset_1 & 2) ? ubo_load_1.zw : ubo_load_1.xy)), asfloat(((scalar_offset_2 & 2) ? ubo_load_2.zw : ubo_load_2.xy)));
}
void main() {
const float2 x = mul(asfloat(data[2].xyz), tint_symbol_2(data, 0u));
return;
}

View File

@ -0,0 +1,26 @@
#include <metal_stdlib>
using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct S {
/* 0x0000 */ float3x2 tint_symbol;
/* 0x0018 */ int8_t tint_pad[8];
/* 0x0020 */ packed_float3 vector;
/* 0x002c */ int8_t tint_pad_1[4];
};
fragment void tint_symbol_1(constant S& data [[buffer(0)]]) {
float2 const x = (data.tint_symbol * data.vector);
return;
}

View File

@ -0,0 +1,45 @@
; SPIR-V
; Version: 1.3
; Generator: Google Tint Compiler; 0
; Bound: 22
; Schema: 0
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpName %S "S"
OpMemberName %S 0 "matrix"
OpMemberName %S 1 "vector"
OpName %data "data"
OpName %main "main"
OpDecorate %S Block
OpMemberDecorate %S 0 Offset 0
OpMemberDecorate %S 0 ColMajor
OpMemberDecorate %S 0 MatrixStride 8
OpMemberDecorate %S 1 Offset 32
OpDecorate %data NonWritable
OpDecorate %data DescriptorSet 0
OpDecorate %data Binding 0
%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%mat3v2float = OpTypeMatrix %v2float 3
%v3float = OpTypeVector %float 3
%S = OpTypeStruct %mat3v2float %v3float
%_ptr_Uniform_S = OpTypePointer Uniform %S
%data = OpVariable %_ptr_Uniform_S Uniform
%void = OpTypeVoid
%8 = OpTypeFunction %void
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%_ptr_Uniform_mat3v2float = OpTypePointer Uniform %mat3v2float
%uint_1 = OpConstant %uint 1
%_ptr_Uniform_v3float = OpTypePointer Uniform %v3float
%main = OpFunction %void None %8
%11 = OpLabel
%15 = OpAccessChain %_ptr_Uniform_mat3v2float %data %uint_0
%16 = OpLoad %mat3v2float %15
%19 = OpAccessChain %_ptr_Uniform_v3float %data %uint_1
%20 = OpLoad %v3float %19
%21 = OpMatrixTimesVector %v2float %16 %20
OpReturn
OpFunctionEnd

View File

@ -0,0 +1,12 @@
[[block]]
struct S {
matrix : mat3x2<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data : S;
[[stage(fragment)]]
fn main() {
let x = (data.matrix * data.vector);
}

View File

@ -0,0 +1,11 @@
[[block]]
struct S {
matrix : mat3x3<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data: S;
[[stage(fragment)]]
fn main() {
let x = data.matrix * data.vector;
}

View File

@ -0,0 +1,15 @@
cbuffer cbuffer_data : register(b0, space0) {
uint4 data[4];
};
float3x3 tint_symbol_2(uint4 buffer[4], uint offset) {
const uint scalar_offset = ((offset + 0u)) / 4;
const uint scalar_offset_1 = ((offset + 16u)) / 4;
const uint scalar_offset_2 = ((offset + 32u)) / 4;
return float3x3(asfloat(buffer[scalar_offset / 4].xyz), asfloat(buffer[scalar_offset_1 / 4].xyz), asfloat(buffer[scalar_offset_2 / 4].xyz));
}
void main() {
const float3 x = mul(asfloat(data[3].xyz), tint_symbol_2(data, 0u));
return;
}

View File

@ -0,0 +1,25 @@
#include <metal_stdlib>
using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct S {
/* 0x0000 */ float3x3 tint_symbol;
/* 0x0030 */ packed_float3 vector;
/* 0x003c */ int8_t tint_pad[4];
};
fragment void tint_symbol_1(constant S& data [[buffer(0)]]) {
float3 const x = (data.tint_symbol * data.vector);
return;
}

View File

@ -0,0 +1,44 @@
; SPIR-V
; Version: 1.3
; Generator: Google Tint Compiler; 0
; Bound: 21
; Schema: 0
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpName %S "S"
OpMemberName %S 0 "matrix"
OpMemberName %S 1 "vector"
OpName %data "data"
OpName %main "main"
OpDecorate %S Block
OpMemberDecorate %S 0 Offset 0
OpMemberDecorate %S 0 ColMajor
OpMemberDecorate %S 0 MatrixStride 16
OpMemberDecorate %S 1 Offset 48
OpDecorate %data NonWritable
OpDecorate %data DescriptorSet 0
OpDecorate %data Binding 0
%float = OpTypeFloat 32
%v3float = OpTypeVector %float 3
%mat3v3float = OpTypeMatrix %v3float 3
%S = OpTypeStruct %mat3v3float %v3float
%_ptr_Uniform_S = OpTypePointer Uniform %S
%data = OpVariable %_ptr_Uniform_S Uniform
%void = OpTypeVoid
%7 = OpTypeFunction %void
%uint = OpTypeInt 32 0
%uint_0 = OpConstant %uint 0
%_ptr_Uniform_mat3v3float = OpTypePointer Uniform %mat3v3float
%uint_1 = OpConstant %uint 1
%_ptr_Uniform_v3float = OpTypePointer Uniform %v3float
%main = OpFunction %void None %7
%10 = OpLabel
%14 = OpAccessChain %_ptr_Uniform_mat3v3float %data %uint_0
%15 = OpLoad %mat3v3float %14
%18 = OpAccessChain %_ptr_Uniform_v3float %data %uint_1
%19 = OpLoad %v3float %18
%20 = OpMatrixTimesVector %v3float %15 %19
OpReturn
OpFunctionEnd

View File

@ -0,0 +1,12 @@
[[block]]
struct S {
matrix : mat3x3<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data : S;
[[stage(fragment)]]
fn main() {
let x = (data.matrix * data.vector);
}

View File

@ -0,0 +1,11 @@
[[block]]
struct S {
matrix : mat3x3<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data: S;
[[stage(fragment)]]
fn main() {
let x = data.vector * data.matrix;
}

View File

@ -0,0 +1,15 @@
cbuffer cbuffer_data : register(b0, space0) {
uint4 data[4];
};
float3x3 tint_symbol_3(uint4 buffer[4], uint offset) {
const uint scalar_offset = ((offset + 0u)) / 4;
const uint scalar_offset_1 = ((offset + 16u)) / 4;
const uint scalar_offset_2 = ((offset + 32u)) / 4;
return float3x3(asfloat(buffer[scalar_offset / 4].xyz), asfloat(buffer[scalar_offset_1 / 4].xyz), asfloat(buffer[scalar_offset_2 / 4].xyz));
}
void main() {
const float3 x = mul(tint_symbol_3(data, 0u), asfloat(data[3].xyz));
return;
}

View File

@ -0,0 +1,25 @@
#include <metal_stdlib>
using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct S {
/* 0x0000 */ float3x3 tint_symbol;
/* 0x0030 */ packed_float3 vector;
/* 0x003c */ int8_t tint_pad[4];
};
fragment void tint_symbol_1(constant S& data [[buffer(0)]]) {
float3 const x = (data.vector * data.tint_symbol);
return;
}

View File

@ -0,0 +1,44 @@
; SPIR-V
; Version: 1.3
; Generator: Google Tint Compiler; 0
; Bound: 21
; Schema: 0
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpName %S "S"
OpMemberName %S 0 "matrix"
OpMemberName %S 1 "vector"
OpName %data "data"
OpName %main "main"
OpDecorate %S Block
OpMemberDecorate %S 0 Offset 0
OpMemberDecorate %S 0 ColMajor
OpMemberDecorate %S 0 MatrixStride 16
OpMemberDecorate %S 1 Offset 48
OpDecorate %data NonWritable
OpDecorate %data DescriptorSet 0
OpDecorate %data Binding 0
%float = OpTypeFloat 32
%v3float = OpTypeVector %float 3
%mat3v3float = OpTypeMatrix %v3float 3
%S = OpTypeStruct %mat3v3float %v3float
%_ptr_Uniform_S = OpTypePointer Uniform %S
%data = OpVariable %_ptr_Uniform_S Uniform
%void = OpTypeVoid
%7 = OpTypeFunction %void
%uint = OpTypeInt 32 0
%uint_1 = OpConstant %uint 1
%_ptr_Uniform_v3float = OpTypePointer Uniform %v3float
%uint_0 = OpConstant %uint 0
%_ptr_Uniform_mat3v3float = OpTypePointer Uniform %mat3v3float
%main = OpFunction %void None %7
%10 = OpLabel
%14 = OpAccessChain %_ptr_Uniform_v3float %data %uint_1
%15 = OpLoad %v3float %14
%18 = OpAccessChain %_ptr_Uniform_mat3v3float %data %uint_0
%19 = OpLoad %mat3v3float %18
%20 = OpVectorTimesMatrix %v3float %15 %19
OpReturn
OpFunctionEnd

View File

@ -0,0 +1,12 @@
[[block]]
struct S {
matrix : mat3x3<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data : S;
[[stage(fragment)]]
fn main() {
let x = (data.vector * data.matrix);
}

View File

@ -0,0 +1,11 @@
[[block]]
struct S {
matrix : mat4x3<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data: S;
[[stage(fragment)]]
fn main() {
let x = data.vector * data.matrix;
}

View File

@ -0,0 +1,16 @@
cbuffer cbuffer_data : register(b0, space0) {
uint4 data[5];
};
float4x3 tint_symbol_3(uint4 buffer[5], uint offset) {
const uint scalar_offset = ((offset + 0u)) / 4;
const uint scalar_offset_1 = ((offset + 16u)) / 4;
const uint scalar_offset_2 = ((offset + 32u)) / 4;
const uint scalar_offset_3 = ((offset + 48u)) / 4;
return float4x3(asfloat(buffer[scalar_offset / 4].xyz), asfloat(buffer[scalar_offset_1 / 4].xyz), asfloat(buffer[scalar_offset_2 / 4].xyz), asfloat(buffer[scalar_offset_3 / 4].xyz));
}
void main() {
const float4 x = mul(tint_symbol_3(data, 0u), asfloat(data[4].xyz));
return;
}

View File

@ -0,0 +1,25 @@
#include <metal_stdlib>
using namespace metal;
template<typename T, int N, int M>
inline auto operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) {
return lhs * vec<T, N>(rhs);
}
template<typename T, int N, int M>
inline auto operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) {
return vec<T, M>(lhs) * rhs;
}
struct S {
/* 0x0000 */ float4x3 tint_symbol;
/* 0x0040 */ packed_float3 vector;
/* 0x004c */ int8_t tint_pad[4];
};
fragment void tint_symbol_1(constant S& data [[buffer(0)]]) {
float4 const x = (data.vector * data.tint_symbol);
return;
}

View File

@ -0,0 +1,45 @@
; SPIR-V
; Version: 1.3
; Generator: Google Tint Compiler; 0
; Bound: 22
; Schema: 0
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpName %S "S"
OpMemberName %S 0 "matrix"
OpMemberName %S 1 "vector"
OpName %data "data"
OpName %main "main"
OpDecorate %S Block
OpMemberDecorate %S 0 Offset 0
OpMemberDecorate %S 0 ColMajor
OpMemberDecorate %S 0 MatrixStride 16
OpMemberDecorate %S 1 Offset 64
OpDecorate %data NonWritable
OpDecorate %data DescriptorSet 0
OpDecorate %data Binding 0
%float = OpTypeFloat 32
%v3float = OpTypeVector %float 3
%mat4v3float = OpTypeMatrix %v3float 4
%S = OpTypeStruct %mat4v3float %v3float
%_ptr_Uniform_S = OpTypePointer Uniform %S
%data = OpVariable %_ptr_Uniform_S Uniform
%void = OpTypeVoid
%7 = OpTypeFunction %void
%uint = OpTypeInt 32 0
%uint_1 = OpConstant %uint 1
%_ptr_Uniform_v3float = OpTypePointer Uniform %v3float
%uint_0 = OpConstant %uint 0
%_ptr_Uniform_mat4v3float = OpTypePointer Uniform %mat4v3float
%v4float = OpTypeVector %float 4
%main = OpFunction %void None %7
%10 = OpLabel
%14 = OpAccessChain %_ptr_Uniform_v3float %data %uint_1
%15 = OpLoad %v3float %14
%18 = OpAccessChain %_ptr_Uniform_mat4v3float %data %uint_0
%19 = OpLoad %mat4v3float %18
%20 = OpVectorTimesMatrix %v4float %15 %19
OpReturn
OpFunctionEnd

View File

@ -0,0 +1,12 @@
[[block]]
struct S {
matrix : mat4x3<f32>;
vector : vec3<f32>;
};
[[group(0), binding(0)]] var<uniform> data : S;
[[stage(fragment)]]
fn main() {
let x = (data.vector * data.matrix);
}