tint: Rework sem::Constant to be variant-of-vector

Instead of vector-of-variant.
This:
• Makes it impossible to produce a mix of scalar variant types, which
  would make no sense.
• Reduces the size of a Constant, by removing the union-tag from each
  element.

Also clean up terminology. Rename 'Constant::Scalar' to
 'Constant::Element'. Scalars are well-defined in WGSL, and with the
introduction of abstract-numerics, this no longer makes sense.

Bug: tint:1504
Change-Id: I599aa97ad1ea798b7db8e512a5990ba75827faad
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/91304
Reviewed-by: Antonio Maiorano <amaiorano@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@chromium.org>
Commit-Queue: Ben Clayton <bclayton@google.com>
This commit is contained in:
Ben Clayton 2022-05-25 19:28:55 +00:00 committed by Dawn LUCI CQ
parent ce425feef5
commit 9707e6bb38
16 changed files with 545 additions and 171 deletions

View File

@ -529,6 +529,8 @@ libtint_source_set("libtint_core_all_src") {
"transform/zero_init_workgroup_memory.h",
"utils/bitcast.h",
"utils/block_allocator.h",
"utils/compiler_macros.h",
"utils/concat.h",
"utils/crc32.h",
"utils/debugger.cc",
"utils/debugger.h",

View File

@ -456,6 +456,8 @@ set(TINT_LIB_SRCS
transform/zero_init_workgroup_memory.h
utils/bitcast.h
utils/block_allocator.h
utils/compiler_macros.h
utils/concat.h
utils/crc32.h
utils/enum_set.h
utils/hash.h
@ -801,6 +803,7 @@ if(TINT_BUILD_TESTS)
sem/atomic.cc
sem/bool_test.cc
sem/builtin_test.cc
sem/constant_test.cc
sem/depth_multisampled_texture_test.cc
sem/depth_texture_test.cc
sem/expression_test.cc

View File

@ -252,11 +252,13 @@ TEST_P(MaterializeAbstractNumeric, Test) {
uint32_t num_elems = 0;
const sem::Type* target_sem_el_ty = sem::Type::ElementOf(target_sem_ty, &num_elems);
EXPECT_TYPE(expr->ConstantValue().ElementType(), target_sem_el_ty);
std::visit(
[&](auto&& v) {
EXPECT_EQ(expr->ConstantValue().Elements(), sem::Constant::Scalars(num_elems, {v}));
},
data.materialized_value);
expr->ConstantValue().WithElements([&](auto&& vec) {
using VEC_TY = std::decay_t<decltype(vec)>;
using EL_TY = typename VEC_TY::value_type;
ASSERT_TRUE(std::holds_alternative<EL_TY>(data.materialized_value));
VEC_TY expected(num_elems, std::get<EL_TY>(data.materialized_value));
EXPECT_EQ(vec, expected);
});
};
switch (expectation) {

View File

@ -806,7 +806,7 @@ bool Resolver::WorkgroupSize(const ast::Function* func) {
return false;
}
ws[i].value = static_cast<uint32_t>(value.Element<AInt>(0).value);
ws[i].value = value.Element<uint32_t>(0);
}
current_function_->SetWorkgroupSize(std::move(ws));
@ -1119,7 +1119,7 @@ const sem::Expression* Resolver::Materialize(const sem::Expression* expr,
<< (expr->Type() ? expr->Type()->FriendlyName(builder_->Symbols()) : "<null>");
return nullptr;
}
auto materialized_val = ConstantCast(expr_val, target_ty);
auto materialized_val = ConvertValue(expr_val, target_ty);
auto* m = builder_->create<sem::Materialize>(expr, current_statement_, materialized_val);
m->Behaviors() = expr->Behaviors();
builder_->Sem().Replace(expr->Declaration(), m);
@ -2022,7 +2022,7 @@ sem::Array* Resolver::Array(const ast::Array* arr) {
return nullptr;
}
count = static_cast<uint32_t>(count_val.Element<AInt>(0).value);
count = count_val.Element<uint32_t>(0);
}
auto size = std::max<uint64_t>(count, 1) * stride;

View File

@ -354,11 +354,10 @@ class Resolver {
//////////////////////////////////////////////////////////////////////////////
/// Constant value evaluation methods
//////////////////////////////////////////////////////////////////////////////
/// Cast `Value` to `target_type`
/// @return the casted value
sem::Constant ConstantCast(const sem::Constant& value,
const sem::Type* target_type,
const sem::Type* target_element_type = nullptr);
/// Convert the `value` to `target_type`
/// @return the converted value
sem::Constant ConvertValue(const sem::Constant& value, const sem::Type* target_type);
sem::Constant EvaluateConstantValue(const ast::Expression* expr, const sem::Type* type);
sem::Constant EvaluateConstantValue(const ast::LiteralExpression* literal,

View File

@ -14,39 +14,70 @@
#include "src/tint/resolver/resolver.h"
#include <optional>
#include "src/tint/sem/abstract_float.h"
#include "src/tint/sem/abstract_int.h"
#include "src/tint/sem/constant.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/utils/compiler_macros.h"
#include "src/tint/utils/map.h"
#include "src/tint/utils/transform.h"
using namespace tint::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
sem::Constant::Scalars CastScalars(sem::Constant::Scalars in, const sem::Type* target_type) {
sem::Constant::Scalars out;
out.reserve(in.size());
for (auto v : in) {
// TODO(crbug.com/tint/1504): Check that value fits in new type
out.emplace_back(Switch<sem::Constant::Scalar>(
target_type, //
[&](const sem::AbstractInt*) { return sem::Constant::Cast<AInt>(v); },
[&](const sem::AbstractFloat*) { return sem::Constant::Cast<AFloat>(v); },
[&](const sem::I32*) { return sem::Constant::Cast<AInt>(v); },
[&](const sem::U32*) { return sem::Constant::Cast<AInt>(v); },
[&](const sem::F32*) { return sem::Constant::Cast<AFloat>(v); },
[&](const sem::F16*) { return sem::Constant::Cast<AFloat>(v); },
[&](const sem::Bool*) { return sem::Constant::Cast<bool>(v); },
[&](Default) {
/// Converts all the element values of `in` to the type `T`.
/// @param elements_in the vector of elements to be converted
/// @returns the elements converted to type T.
template <typename T, typename ELEMENTS_IN>
sem::Constant::Elements Convert(const ELEMENTS_IN& elements_in) {
TINT_BEGIN_DISABLE_WARNING_UNREACHABLE_CODE();
using E = UnwrapNumber<T>;
return utils::Transform(elements_in, [&](auto value_in) {
if constexpr (std::is_same_v<E, bool>) {
return AInt(value_in != 0);
}
E converted = static_cast<E>(value_in);
if constexpr (IsFloatingPoint<E>) {
return AFloat(converted);
} else {
return AInt(converted);
}
});
TINT_END_DISABLE_WARNING_UNREACHABLE_CODE();
}
/// Converts and returns all the element values of `in` to the semantic type `el_ty`.
/// @param in the constant to convert
/// @param el_ty the target element type
/// @returns the elements converted to `type`
sem::Constant::Elements Convert(const sem::Constant::Elements& in, const sem::Type* el_ty) {
return std::visit(
[&](auto&& v) {
return Switch(
el_ty, //
[&](const sem::AbstractInt*) { return Convert<AInt>(v); },
[&](const sem::AbstractFloat*) { return Convert<AFloat>(v); },
[&](const sem::I32*) { return Convert<i32>(v); },
[&](const sem::U32*) { return Convert<u32>(v); },
[&](const sem::F32*) { return Convert<f32>(v); },
[&](const sem::F16*) { return Convert<f16>(v); },
[&](const sem::Bool*) { return Convert<bool>(v); },
[&](Default) -> sem::Constant::Elements {
diag::List diags;
TINT_UNREACHABLE(Semantic, diags)
<< "invalid element type " << target_type->TypeInfo().name;
return sem::Constant::Scalar(false);
}));
}
return out;
<< "invalid element type " << el_ty->TypeInfo().name;
return {};
});
},
in);
}
} // namespace
@ -72,43 +103,42 @@ sem::Constant Resolver::EvaluateConstantValue(const ast::LiteralExpression* lite
return sem::Constant{type, {AFloat(lit->value)}};
},
[&](const ast::BoolLiteralExpression* lit) {
return sem::Constant{type, {lit->value}};
return sem::Constant{type, {AInt(lit->value ? 1 : 0)}};
});
}
sem::Constant Resolver::EvaluateConstantValue(const ast::CallExpression* call,
const sem::Type* type) {
const sem::Type* ty) {
uint32_t result_size = 0;
auto* el_ty = sem::Type::ElementOf(type, &result_size);
auto* el_ty = sem::Type::ElementOf(ty, &result_size);
if (!el_ty) {
return {};
}
// ElementOf() will also return the element type of array, which we do not support.
if (type->Is<sem::Array>()) {
if (ty->Is<sem::Array>()) {
return {};
}
// For zero value init, return 0s
if (call->args.empty()) {
using Scalars = sem::Constant::Scalars;
return Switch(
el_ty,
[&](const sem::AbstractInt*) {
return sem::Constant(type, Scalars(result_size, AInt(0)));
return sem::Constant(ty, std::vector(result_size, AInt(0)));
},
[&](const sem::AbstractFloat*) {
return sem::Constant(type, Scalars(result_size, AFloat(0)));
return sem::Constant(ty, std::vector(result_size, AFloat(0)));
},
[&](const sem::I32*) { return sem::Constant(type, Scalars(result_size, AInt(0))); },
[&](const sem::U32*) { return sem::Constant(type, Scalars(result_size, AInt(0))); },
[&](const sem::F32*) { return sem::Constant(type, Scalars(result_size, AFloat(0))); },
[&](const sem::F16*) { return sem::Constant(type, Scalars(result_size, AFloat(0))); },
[&](const sem::Bool*) { return sem::Constant(type, Scalars(result_size, false)); });
[&](const sem::I32*) { return sem::Constant(ty, std::vector(result_size, AInt(0))); },
[&](const sem::U32*) { return sem::Constant(ty, std::vector(result_size, AInt(0))); },
[&](const sem::F32*) { return sem::Constant(ty, std::vector(result_size, AFloat(0))); },
[&](const sem::F16*) { return sem::Constant(ty, std::vector(result_size, AFloat(0))); },
[&](const sem::Bool*) { return sem::Constant(ty, std::vector(result_size, AInt(0))); });
}
// Build value for type_ctor from each child value by casting to type_ctor's type.
sem::Constant::Scalars elems;
// Build value for type_ctor from each child value by converting to type_ctor's type.
std::optional<sem::Constant::Elements> elements;
for (auto* expr : call->args) {
auto* arg = builder_->Sem().Get(expr);
if (!arg) {
@ -118,42 +148,52 @@ sem::Constant Resolver::EvaluateConstantValue(const ast::CallExpression* call,
if (!value) {
return {};
}
elems.insert(elems.end(), value.Elements().begin(), value.Elements().end());
// Convert the elements to the desired type.
auto converted = Convert(value.GetElements(), el_ty);
if (elements.has_value()) {
// Append the converted vector to elements
std::visit(
[&](auto&& dst) {
using VEC_TY = std::decay_t<decltype(dst)>;
const auto& src = std::get<VEC_TY>(converted);
dst.insert(dst.end(), src.begin(), src.end());
},
elements.value());
} else {
elements = std::move(converted);
}
}
// Splat single-value initializers
if (elems.size() == 1) {
std::visit(
[&](auto&& v) {
if (v.size() == 1) {
for (uint32_t i = 0; i < result_size - 1; ++i) {
elems.emplace_back(elems[0]);
v.emplace_back(v[0]);
}
}
},
elements.value());
// Finally cast the elements to the desired type.
auto cast = CastScalars(elems, el_ty);
return sem::Constant(type, std::move(cast));
return sem::Constant(ty, std::move(elements.value()));
}
sem::Constant Resolver::ConstantCast(const sem::Constant& value,
const sem::Type* target_type,
const sem::Type* target_element_type /* = nullptr */) {
if (value.Type() == target_type) {
sem::Constant Resolver::ConvertValue(const sem::Constant& value, const sem::Type* ty) {
if (value.Type() == ty) {
return value;
}
if (target_element_type == nullptr) {
target_element_type = sem::Type::ElementOf(target_type);
}
if (target_element_type == nullptr) {
auto* el_ty = sem::Type::ElementOf(ty);
if (el_ty == nullptr) {
return {};
}
if (value.ElementType() == target_element_type) {
return sem::Constant(target_type, value.Elements());
if (value.ElementType() == el_ty) {
return sem::Constant(ty, value.GetElements());
}
auto elems = CastScalars(value.Elements(), target_element_type);
return sem::Constant(target_type, elems);
return sem::Constant(ty, Convert(value.GetElements(), el_ty));
}
} // namespace tint::resolver

View File

@ -23,8 +23,6 @@ using namespace tint::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
using Scalar = sem::Constant::Scalar;
using ResolverConstantsTest = ResolverTest;
TEST_F(ResolverConstantsTest, Scalar_i32) {
@ -38,7 +36,7 @@ TEST_F(ResolverConstantsTest, Scalar_i32) {
EXPECT_TRUE(sem->Type()->Is<sem::I32>());
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_EQ(sem->ConstantValue().ElementType(), sem->Type());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 1u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 1u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 99);
}
@ -53,7 +51,7 @@ TEST_F(ResolverConstantsTest, Scalar_u32) {
EXPECT_TRUE(sem->Type()->Is<sem::U32>());
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_EQ(sem->ConstantValue().ElementType(), sem->Type());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 1u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 1u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 99u);
}
@ -68,7 +66,7 @@ TEST_F(ResolverConstantsTest, Scalar_f32) {
EXPECT_TRUE(sem->Type()->Is<sem::F32>());
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_EQ(sem->ConstantValue().ElementType(), sem->Type());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 1u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 1u);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(0).value, 9.9f);
}
@ -83,7 +81,7 @@ TEST_F(ResolverConstantsTest, Scalar_bool) {
EXPECT_TRUE(sem->Type()->Is<sem::Bool>());
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_EQ(sem->ConstantValue().ElementType(), sem->Type());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 1u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 1u);
EXPECT_EQ(sem->ConstantValue().Element<bool>(0), true);
}
@ -100,7 +98,7 @@ TEST_F(ResolverConstantsTest, Vec3_ZeroInit_i32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::I32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 0);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 0);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 0);
@ -119,7 +117,7 @@ TEST_F(ResolverConstantsTest, Vec3_ZeroInit_u32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::U32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 0u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 0u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 0u);
@ -138,7 +136,7 @@ TEST_F(ResolverConstantsTest, Vec3_ZeroInit_f32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::F32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(0).value, 0.0);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(1).value, 0.0);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(2).value, 0.0);
@ -157,7 +155,7 @@ TEST_F(ResolverConstantsTest, Vec3_ZeroInit_bool) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::Bool>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<bool>(0), false);
EXPECT_EQ(sem->ConstantValue().Element<bool>(1), false);
EXPECT_EQ(sem->ConstantValue().Element<bool>(2), false);
@ -176,7 +174,7 @@ TEST_F(ResolverConstantsTest, Vec3_Splat_i32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::I32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 99);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 99);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 99);
@ -195,7 +193,7 @@ TEST_F(ResolverConstantsTest, Vec3_Splat_u32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::U32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 99u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 99u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 99u);
@ -214,7 +212,7 @@ TEST_F(ResolverConstantsTest, Vec3_Splat_f32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::F32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(0).value, 9.9f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(1).value, 9.9f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(2).value, 9.9f);
@ -233,7 +231,7 @@ TEST_F(ResolverConstantsTest, Vec3_Splat_bool) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::Bool>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<bool>(0), true);
EXPECT_EQ(sem->ConstantValue().Element<bool>(1), true);
EXPECT_EQ(sem->ConstantValue().Element<bool>(2), true);
@ -252,7 +250,7 @@ TEST_F(ResolverConstantsTest, Vec3_FullConstruct_i32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::I32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 1);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 2);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 3);
@ -271,7 +269,7 @@ TEST_F(ResolverConstantsTest, Vec3_FullConstruct_u32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::U32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 1);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 2);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 3);
@ -290,7 +288,7 @@ TEST_F(ResolverConstantsTest, Vec3_FullConstruct_f32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::F32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(0).value, 1.f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(1).value, 2.f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(2).value, 3.f);
@ -309,7 +307,7 @@ TEST_F(ResolverConstantsTest, Vec3_FullConstruct_bool) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::Bool>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<bool>(0), true);
EXPECT_EQ(sem->ConstantValue().Element<bool>(1), false);
EXPECT_EQ(sem->ConstantValue().Element<bool>(2), true);
@ -328,7 +326,7 @@ TEST_F(ResolverConstantsTest, Vec3_MixConstruct_i32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::I32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 1);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 2);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 3);
@ -347,7 +345,7 @@ TEST_F(ResolverConstantsTest, Vec3_MixConstruct_u32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::U32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 1);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 2);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 3);
@ -366,7 +364,7 @@ TEST_F(ResolverConstantsTest, Vec3_MixConstruct_f32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::F32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(0).value, 1.f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(1).value, 2.f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(2).value, 3.f);
@ -385,13 +383,13 @@ TEST_F(ResolverConstantsTest, Vec3_MixConstruct_bool) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::Bool>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<bool>(0), true);
EXPECT_EQ(sem->ConstantValue().Element<bool>(1), false);
EXPECT_EQ(sem->ConstantValue().Element<bool>(2), true);
}
TEST_F(ResolverConstantsTest, Vec3_Cast_f32_to_32) {
TEST_F(ResolverConstantsTest, Vec3_Cast_f32_to_i32) {
auto* expr = vec3<i32>(vec3<f32>(1.1_f, 2.2_f, 3.3_f));
WrapInFunction(expr);
@ -404,7 +402,7 @@ TEST_F(ResolverConstantsTest, Vec3_Cast_f32_to_32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::I32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(0).value, 1);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(1).value, 2);
EXPECT_EQ(sem->ConstantValue().Element<AInt>(2).value, 3);
@ -423,7 +421,7 @@ TEST_F(ResolverConstantsTest, Vec3_Cast_u32_to_f32) {
EXPECT_EQ(sem->Type()->As<sem::Vector>()->Width(), 3u);
EXPECT_EQ(sem->ConstantValue().Type(), sem->Type());
EXPECT_TRUE(sem->ConstantValue().ElementType()->Is<sem::F32>());
ASSERT_EQ(sem->ConstantValue().Elements().size(), 3u);
ASSERT_EQ(sem->ConstantValue().ElementCount(), 3u);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(0).value, 10.f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(1).value, 20.f);
EXPECT_EQ(sem->ConstantValue().Element<AFloat>(2).value, 30.f);

View File

@ -1535,7 +1535,7 @@ bool Validator::TextureBuiltinFunction(const sem::Call* call) const {
});
if (is_const_expr) {
auto vector = builtin->Parameters()[index]->Type()->Is<sem::Vector>();
for (size_t i = 0; i < values.Elements().size(); i++) {
for (size_t i = 0, n = values.ElementCount(); i < n; i++) {
auto value = values.Element<AInt>(i).value;
if (value < min || value > max) {
if (vector) {

View File

@ -23,29 +23,19 @@
namespace tint::sem {
namespace {
const Type* CheckElemType(const Type* ty, size_t num_scalars) {
diag::List diag;
if (ty->is_abstract_or_scalar() || ty->IsAnyOf<Vector, Matrix>()) {
uint32_t count = 0;
auto* el_ty = Type::ElementOf(ty, &count);
if (num_scalars != count) {
TINT_ICE(Semantic, diag) << "sem::Constant() type <-> scalar mismatch. type: '"
<< ty->TypeInfo().name << "' scalar: " << num_scalars;
size_t CountElements(const Constant::Elements& elements) {
return std::visit([](auto&& vec) { return vec.size(); }, elements);
}
TINT_ASSERT(Semantic, el_ty->is_abstract_or_scalar());
return el_ty;
}
TINT_UNREACHABLE(Semantic, diag) << "Unsupported sem::Constant type: " << ty->TypeInfo().name;
return nullptr;
}
} // namespace
Constant::Constant() {}
Constant::Constant(const sem::Type* ty, Scalars els)
: type_(ty), elem_type_(CheckElemType(ty, els.size())), elems_(std::move(els)) {}
Constant::Constant(const sem::Type* ty, Elements els)
: type_(ty), elem_type_(CheckElemType(ty, CountElements(els))), elems_(std::move(els)) {}
Constant::Constant(const sem::Type* ty, AInts vec) : Constant(ty, Elements{std::move(vec)}) {}
Constant::Constant(const sem::Type* ty, AFloats vec) : Constant(ty, Elements{std::move(vec)}) {}
Constant::Constant(const Constant&) = default;
@ -54,16 +44,31 @@ Constant::~Constant() = default;
Constant& Constant::operator=(const Constant& rhs) = default;
bool Constant::AnyZero() const {
for (auto scalar : elems_) {
auto is_zero = [&](auto&& s) {
using T = std::remove_reference_t<decltype(s)>;
return s == T(0);
};
if (std::visit(is_zero, scalar)) {
return WithElements([&](auto&& vec) {
for (auto scalar : vec) {
using T = std::remove_reference_t<decltype(scalar)>;
if (scalar == T(0)) {
return true;
}
}
return false;
});
}
const Type* Constant::CheckElemType(const sem::Type* ty, size_t num_elements) {
diag::List diag;
if (ty->is_abstract_or_scalar() || ty->IsAnyOf<Vector, Matrix>()) {
uint32_t count = 0;
auto* el_ty = Type::ElementOf(ty, &count);
if (num_elements != count) {
TINT_ICE(Semantic, diag) << "sem::Constant() type <-> element mismatch. type: '"
<< ty->TypeInfo().name << "' element: " << num_elements;
}
TINT_ASSERT(Semantic, el_ty->is_abstract_or_scalar());
return el_ty;
}
TINT_UNREACHABLE(Semantic, diag) << "Unsupported sem::Constant type: " << ty->TypeInfo().name;
return nullptr;
}
} // namespace tint::sem

View File

@ -15,7 +15,10 @@
#ifndef SRC_TINT_SEM_CONSTANT_H_
#define SRC_TINT_SEM_CONSTANT_H_
#include <variant>
#include <ostream>
// TODO(https://crbug.com/dawn/1379) Update cpplint and remove NOLINT
#include <utility>
#include <variant> // NOLINT(build/include_order)
#include <vector>
#include "src/tint/program_builder.h"
@ -23,15 +26,31 @@
namespace tint::sem {
/// A Constant is compile-time known expression value, expressed as a flattened
/// list of scalar values. Value may be of a scalar or vector type.
/// A Constant holds a compile-time evaluated expression value, expressed as a flattened list of
/// element values. The expression type may be of an abstract-numeric, scalar, vector or matrix
/// type. Constant holds the element values in either a vector of abstract-integer (AInt) or
/// abstract-float (AFloat), depending on the element type.
class Constant {
public:
/// Scalar holds a single constant scalar value - one of: AInt, AFloat or bool.
using Scalar = std::variant<AInt, AFloat, bool>;
/// AInts is a vector of AInt, used to hold elements of the WGSL types:
/// * abstract-integer
/// * i32
/// * u32
/// * bool (0 or 1)
using AInts = std::vector<AInt>;
/// Scalars is a list of scalar values
using Scalars = std::vector<Scalar>;
/// AFloats is a vector of AFloat, used to hold elements of the WGSL types:
/// * abstract-float
/// * f32
/// * f16
using AFloats = std::vector<AFloat>;
/// Elements is either a vector of AInts or AFloats
using Elements = std::variant<AInts, AFloats>;
/// Helper that resolves to either AInts or AFloats based on the element type T.
template <typename T>
using ElementVectorFor = std::conditional_t<IsFloatingPoint<UnwrapNumber<T>>, AFloats, AInts>;
/// Constructs an invalid Constant
Constant();
@ -39,7 +58,23 @@ class Constant {
/// Constructs a Constant of the given type and element values
/// @param ty the Constant type
/// @param els the Constant element values
Constant(const Type* ty, Scalars els);
Constant(const sem::Type* ty, Elements els);
/// Constructs a Constant of the given type and element values
/// @param ty the Constant type
/// @param vec the Constant element values
Constant(const sem::Type* ty, AInts vec);
/// Constructs a Constant of the given type and element values
/// @param ty the Constant type
/// @param vec the Constant element values
Constant(const sem::Type* ty, AFloats vec);
/// Constructs a Constant of the given type and element values
/// @param ty the Constant type
/// @param els the Constant element values
template <typename T>
Constant(const sem::Type* ty, std::initializer_list<T> els);
/// Copy constructor
Constant(const Constant&);
@ -61,42 +96,77 @@ class Constant {
/// @returns the type of the Constant
const sem::Type* Type() const { return type_; }
/// @returns the number of elements
size_t ElementCount() const {
return std::visit([](auto&& v) { return v.size(); }, elems_);
}
/// @returns the element type of the Constant
const sem::Type* ElementType() const { return elem_type_; }
/// @returns the constant's scalar elements
const Scalars& Elements() const { return elems_; }
/// @returns the constant's elements
const Elements& GetElements() const { return elems_; }
/// @returns true if any scalar element is zero
/// WithElements calls the function `f` with the vector of elements as either AFloats or AInts
/// @param f a function-like with the signature `R(auto&&)`.
/// @returns the result of calling `f`.
template <typename F>
auto WithElements(F&& f) const {
return std::visit(std::forward<F>(f), elems_);
}
/// WithElements calls the function `f` with the element vector as either AFloats or AInts
/// @param f a function-like with the signature `R(auto&&)`.
/// @returns the result of calling `f`.
template <typename F>
auto WithElements(F&& f) {
return std::visit(std::forward<F>(f), elems_);
}
/// @returns the elements as a vector of AInt
inline const AInts& IElements() const { return std::get<AInts>(elems_); }
/// @returns the elements as a vector of AFloat
inline const AFloats& FElements() const { return std::get<AFloats>(elems_); }
/// @returns true if any element is zero
bool AnyZero() const;
/// @param index the index of the scalar value
/// @return the value of the scalar at `index`, which must be of type `T`.
/// @param index the index of the element
/// @return the element at `index`, which must be of type `T`.
template <typename T>
T Element(size_t index) const {
return std::get<T>(elems_[index]);
}
/// @param index the index of the scalar value
/// @return the value of the scalar `static_cast` to type T.
template <typename T>
T ElementAs(size_t index) const {
return Cast<T>(elems_[index]);
}
/// @param s the input scalar
/// @returns the scalar `s` cast to the type `T`.
template <typename T>
static T Cast(Scalar s) {
return std::visit([](auto v) { return static_cast<T>(v); }, s);
}
T Element(size_t index) const;
private:
/// Checks that the provided type matches the number of expected elements.
/// @returns the element type of `ty`.
const sem::Type* CheckElemType(const sem::Type* ty, size_t num_elements);
const sem::Type* type_ = nullptr;
const sem::Type* elem_type_ = nullptr;
Scalars elems_;
Elements elems_;
};
template <typename T>
Constant::Constant(const sem::Type* ty, std::initializer_list<T> els)
: type_(ty), elem_type_(CheckElemType(type_, els.size())) {
ElementVectorFor<T> elements;
elements.reserve(els.size());
for (auto el : els) {
elements.emplace_back(AFloat(el));
}
elems_ = Elements{std::move(elements)};
}
template <typename T>
T Constant::Element(size_t index) const {
if constexpr (std::is_same_v<ElementVectorFor<T>, AFloats>) {
return static_cast<T>(FElements()[index].value);
} else {
return static_cast<T>(IElements()[index].value);
}
}
} // namespace tint::sem
#endif // SRC_TINT_SEM_CONSTANT_H_

View File

@ -0,0 +1,199 @@
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/sem/constant.h"
#include <gmock/gmock.h>
#include "src/tint/sem/abstract_float.h"
#include "src/tint/sem/abstract_int.h"
#include "src/tint/sem/test_helper.h"
using namespace tint::number_suffixes; // NOLINT
namespace tint::sem {
namespace {
using ConstantTest = TestHelper;
TEST_F(ConstantTest, ConstructorInitializerList) {
{
Constant c(create<AbstractInt>(), {1_a});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(1_a)); });
}
{
Constant c(create<I32>(), {1_i});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(1_a)); });
}
{
Constant c(create<U32>(), {1_u});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(1_a)); });
}
{
Constant c(create<Bool>(), {false});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(0_a)); });
}
{
Constant c(create<Bool>(), {true});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(1_a)); });
}
{
Constant c(create<AbstractFloat>(), {1.0_a});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(1.0_a)); });
}
{
Constant c(create<F32>(), {1.0_f});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(1.0_a)); });
}
{
Constant c(create<F16>(), {1.0_h});
c.WithElements([&](auto&& vec) { EXPECT_THAT(vec, testing::ElementsAre(1.0_a)); });
}
}
TEST_F(ConstantTest, Element_ai) {
Constant c(create<AbstractInt>(), {1_a});
EXPECT_EQ(c.Element<AInt>(0), 1_a);
EXPECT_EQ(c.ElementCount(), 1u);
}
TEST_F(ConstantTest, Element_i32) {
Constant c(create<I32>(), {1_a});
EXPECT_EQ(c.Element<i32>(0), 1_i);
EXPECT_EQ(c.ElementCount(), 1u);
}
TEST_F(ConstantTest, Element_u32) {
Constant c(create<U32>(), {1_a});
EXPECT_EQ(c.Element<u32>(0), 1_u);
EXPECT_EQ(c.ElementCount(), 1u);
}
TEST_F(ConstantTest, Element_bool) {
Constant c(create<Bool>(), {true});
EXPECT_EQ(c.Element<bool>(0), true);
EXPECT_EQ(c.ElementCount(), 1u);
}
TEST_F(ConstantTest, Element_af) {
Constant c(create<AbstractFloat>(), {1.0_a});
EXPECT_EQ(c.Element<AFloat>(0), 1.0_a);
EXPECT_EQ(c.ElementCount(), 1u);
}
TEST_F(ConstantTest, Element_f32) {
Constant c(create<F32>(), {1.0_a});
EXPECT_EQ(c.Element<f32>(0), 1.0_f);
EXPECT_EQ(c.ElementCount(), 1u);
}
TEST_F(ConstantTest, Element_f16) {
Constant c(create<F16>(), {1.0_a});
EXPECT_EQ(c.Element<f16>(0), 1.0_h);
EXPECT_EQ(c.ElementCount(), 1u);
}
TEST_F(ConstantTest, Element_vec3_ai) {
Constant c(create<Vector>(create<AbstractInt>(), 3u), {1_a, 2_a, 3_a});
EXPECT_EQ(c.Element<AInt>(0), 1_a);
EXPECT_EQ(c.Element<AInt>(1), 2_a);
EXPECT_EQ(c.Element<AInt>(2), 3_a);
EXPECT_EQ(c.ElementCount(), 3u);
}
TEST_F(ConstantTest, Element_vec3_i32) {
Constant c(create<Vector>(create<I32>(), 3u), {1_a, 2_a, 3_a});
EXPECT_EQ(c.Element<i32>(0), 1_i);
EXPECT_EQ(c.Element<i32>(1), 2_i);
EXPECT_EQ(c.Element<i32>(2), 3_i);
EXPECT_EQ(c.ElementCount(), 3u);
}
TEST_F(ConstantTest, Element_vec3_u32) {
Constant c(create<Vector>(create<U32>(), 3u), {1_a, 2_a, 3_a});
EXPECT_EQ(c.Element<u32>(0), 1_u);
EXPECT_EQ(c.Element<u32>(1), 2_u);
EXPECT_EQ(c.Element<u32>(2), 3_u);
EXPECT_EQ(c.ElementCount(), 3u);
}
TEST_F(ConstantTest, Element_vec3_bool) {
Constant c(create<Vector>(create<Bool>(), 2u), {true, false});
EXPECT_EQ(c.Element<bool>(0), true);
EXPECT_EQ(c.Element<bool>(1), false);
EXPECT_EQ(c.ElementCount(), 2u);
}
TEST_F(ConstantTest, Element_vec3_af) {
Constant c(create<Vector>(create<AbstractFloat>(), 3u), {1.0_a, 2.0_a, 3.0_a});
EXPECT_EQ(c.Element<AFloat>(0), 1.0_a);
EXPECT_EQ(c.Element<AFloat>(1), 2.0_a);
EXPECT_EQ(c.Element<AFloat>(2), 3.0_a);
EXPECT_EQ(c.ElementCount(), 3u);
}
TEST_F(ConstantTest, Element_vec3_f32) {
Constant c(create<Vector>(create<F32>(), 3u), {1.0_a, 2.0_a, 3.0_a});
EXPECT_EQ(c.Element<f32>(0), 1.0_f);
EXPECT_EQ(c.Element<f32>(1), 2.0_f);
EXPECT_EQ(c.Element<f32>(2), 3.0_f);
EXPECT_EQ(c.ElementCount(), 3u);
}
TEST_F(ConstantTest, Element_vec3_f16) {
Constant c(create<Vector>(create<F16>(), 3u), {1.0_a, 2.0_a, 3.0_a});
EXPECT_EQ(c.Element<f16>(0), 1.0_h);
EXPECT_EQ(c.Element<f16>(1), 2.0_h);
EXPECT_EQ(c.Element<f16>(2), 3.0_h);
EXPECT_EQ(c.ElementCount(), 3u);
}
TEST_F(ConstantTest, Element_mat2x3_af) {
Constant c(create<Matrix>(create<Vector>(create<AbstractFloat>(), 3u), 2u),
{1.0_a, 2.0_a, 3.0_a, 4.0_a, 5.0_a, 6.0_a});
EXPECT_EQ(c.Element<AFloat>(0), 1.0_a);
EXPECT_EQ(c.Element<AFloat>(1), 2.0_a);
EXPECT_EQ(c.Element<AFloat>(2), 3.0_a);
EXPECT_EQ(c.Element<AFloat>(3), 4.0_a);
EXPECT_EQ(c.Element<AFloat>(4), 5.0_a);
EXPECT_EQ(c.Element<AFloat>(5), 6.0_a);
EXPECT_EQ(c.ElementCount(), 6u);
}
TEST_F(ConstantTest, Element_mat2x3_f32) {
Constant c(create<Matrix>(create<Vector>(create<F32>(), 3u), 2u),
{1.0_a, 2.0_a, 3.0_a, 4.0_a, 5.0_a, 6.0_a});
EXPECT_EQ(c.Element<f32>(0), 1.0_f);
EXPECT_EQ(c.Element<f32>(1), 2.0_f);
EXPECT_EQ(c.Element<f32>(2), 3.0_f);
EXPECT_EQ(c.Element<f32>(3), 4.0_f);
EXPECT_EQ(c.Element<f32>(4), 5.0_f);
EXPECT_EQ(c.Element<f32>(5), 6.0_f);
EXPECT_EQ(c.ElementCount(), 6u);
}
TEST_F(ConstantTest, Element_mat2x3_f16) {
Constant c(create<Matrix>(create<Vector>(create<F16>(), 3u), 2u),
{1.0_a, 2.0_a, 3.0_a, 4.0_a, 5.0_a, 6.0_a});
EXPECT_EQ(c.Element<f16>(0), 1.0_h);
EXPECT_EQ(c.Element<f16>(1), 2.0_h);
EXPECT_EQ(c.Element<f16>(2), 3.0_h);
EXPECT_EQ(c.Element<f16>(3), 4.0_h);
EXPECT_EQ(c.Element<f16>(4), 5.0_h);
EXPECT_EQ(c.Element<f16>(5), 6.0_h);
EXPECT_EQ(c.ElementCount(), 6u);
}
} // namespace
} // namespace tint::sem

View File

@ -23,6 +23,7 @@
#include "src/tint/sem/expression.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/sem/type_conversion.h"
#include "src/tint/utils/transform.h"
TINT_INSTANTIATE_TYPEINFO(tint::transform::FoldConstants);
@ -50,24 +51,40 @@ void FoldConstants::Run(CloneContext& ctx, const DataMap&, DataMap&) const {
return nullptr;
}
// If original ctor expression had no init values, don't replace the
// expression
// If original ctor expression had no init values, don't replace the expression
if (call->Arguments().empty()) {
return nullptr;
}
auto build_scalar = [&](sem::Constant::Scalar s) {
auto build_elements = [&](size_t limit) {
return Switch(
value.ElementType(), //
[&](const sem::I32*) { return ctx.dst->Expr(i32(std::get<AInt>(s).value)); },
[&](const sem::U32*) { return ctx.dst->Expr(u32(std::get<AInt>(s).value)); },
[&](const sem::F32*) { return ctx.dst->Expr(f32(std::get<AFloat>(s).value)); },
[&](const sem::Bool*) { return ctx.dst->Expr(std::get<bool>(s)); },
[&](const sem::Bool*) {
return utils::TransformN(value.IElements(), limit, [&](AInt i) {
return static_cast<const ast::Expression*>(
ctx.dst->Expr(static_cast<bool>(i.value)));
});
},
[&](const sem::I32*) {
return utils::TransformN(value.IElements(), limit, [&](AInt i) {
return static_cast<const ast::Expression*>(ctx.dst->Expr(i32(i.value)));
});
},
[&](const sem::U32*) {
return utils::TransformN(value.IElements(), limit, [&](AInt i) {
return static_cast<const ast::Expression*>(ctx.dst->Expr(u32(i.value)));
});
},
[&](const sem::F32*) {
return utils::TransformN(value.FElements(), limit, [&](AFloat f) {
return static_cast<const ast::Expression*>(ctx.dst->Expr(f32(f.value)));
});
},
[&](Default) {
TINT_ICE(Transform, ctx.dst->Diagnostics())
<< "unhandled Constant::Scalar type: "
<< value.ElementType()->FriendlyName(ctx.src->Symbols());
return nullptr;
return ast::ExpressionList{};
});
};
@ -78,17 +95,17 @@ void FoldConstants::Run(CloneContext& ctx, const DataMap&, DataMap&) const {
// constructor args that the original node had, but after folding
// constants, cases like the following are problematic:
//
// vec3<f32> = vec3<f32>(vec2<f32>, 1.0) // vec_size=3, ctor_size=2
// vec3<f32> = vec3<f32>(vec2<f32>(), 1.0) // vec_size=3, ctor_size=2
//
// In this case, creating a vec3 with 2 args is invalid, so we should
// create it with 3. So what we do is construct with vec_size args,
// except if the original vector was single-value initialized, in
// which case, we only construct with one arg again.
uint32_t ctor_size = (call->Arguments().size() == 1) ? 1 : vec_size;
ast::ExpressionList ctors;
for (uint32_t i = 0; i < ctor_size; ++i) {
ctors.emplace_back(build_scalar(value.Elements()[i]));
if (call->Arguments().size() == 1) {
ctors = build_elements(1);
} else {
ctors = build_elements(value.ElementCount());
}
auto* el_ty = CreateASTTypeFor(ctx, vec->type());
@ -96,7 +113,7 @@ void FoldConstants::Run(CloneContext& ctx, const DataMap&, DataMap&) const {
}
if (ty->is_scalar()) {
return build_scalar(value.Elements()[0]);
return build_elements(1)[0];
}
return nullptr;

View File

@ -0,0 +1,39 @@
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_TINT_UTILS_COMPILER_MACROS_H_
#define SRC_TINT_UTILS_COMPILER_MACROS_H_
#define TINT_REQUIRE_SEMICOLON \
do { \
} while (false)
#if defined(_MSC_VER)
// clang-format off
#define TINT_BEGIN_DISABLE_WARNING_UNREACHABLE_CODE() \
__pragma(warning(push)) \
__pragma(warning(disable:4702)) \
TINT_REQUIRE_SEMICOLON
#define TINT_END_DISABLE_WARNING_UNREACHABLE_CODE() \
__pragma(warning(pop)) \
TINT_REQUIRE_SEMICOLON
// clang-format on
#else
// clang-format off
#define TINT_BEGIN_DISABLE_WARNING_UNREACHABLE_CODE() TINT_REQUIRE_SEMICOLON
#define TINT_END_DISABLE_WARNING_UNREACHABLE_CODE() TINT_REQUIRE_SEMICOLON
// clang-format on
#endif // defined(_MSC_VER)
#endif // SRC_TINT_UTILS_COMPILER_MACROS_H_

View File

@ -639,7 +639,6 @@ bool GeneratorImpl::EmitAssign(const ast::AssignmentStatement* stmt) {
bool GeneratorImpl::EmitExpressionOrOneIfZero(std::ostream& out, const ast::Expression* expr) {
// For constants, replace literal 0 with 1.
sem::Constant::Scalars elems;
if (const auto& val = builder_.Sem().Get(expr)->ConstantValue()) {
if (!val.AnyZero()) {
return EmitExpression(out, expr);
@ -657,7 +656,7 @@ bool GeneratorImpl::EmitExpressionOrOneIfZero(std::ostream& out, const ast::Expr
}
out << "(";
for (size_t i = 0; i < val.Elements().size(); ++i) {
for (size_t i = 0; i < val.ElementCount(); ++i) {
if (i != 0) {
out << ", ";
}

View File

@ -924,7 +924,7 @@ bool Builder::GenerateIndexAccessor(const ast::IndexAccessorExpression* expr, Ac
Operand(result_type_id),
extract,
Operand(info->source_id),
Operand(idx_constval.ElementAs<uint32_t>(0)),
Operand(idx_constval.Element<uint32_t>(0)),
})) {
return false;
}

View File

@ -289,6 +289,7 @@ tint_unittests_source_set("tint_unittests_sem_src") {
"../../src/tint/sem/atomic_test.cc",
"../../src/tint/sem/bool_test.cc",
"../../src/tint/sem/builtin_test.cc",
"../../src/tint/sem/constant_test.cc",
"../../src/tint/sem/depth_multisampled_texture_test.cc",
"../../src/tint/sem/depth_texture_test.cc",
"../../src/tint/sem/expression_test.cc",