tint/resolver: Split up the Array resolving logic

In preparation for array constructors that can infer type and count
based on constructor arguments.

Bug: tint:1628
Change-Id: I9f12d7a30de232cf0d34ed7e1a356dd5b92d26d7
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/97587
Reviewed-by: Antonio Maiorano <amaiorano@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
This commit is contained in:
Ben Clayton 2022-07-31 19:33:04 +00:00 committed by Dawn LUCI CQ
parent 122322b532
commit 9c4d0c9410
6 changed files with 151 additions and 108 deletions

View File

@ -895,7 +895,8 @@ TEST_P(ArrayStrideTest, All) {
<< ", should_pass: " << params.should_pass; << ", should_pass: " << params.should_pass;
SCOPED_TRACE(ss.str()); SCOPED_TRACE(ss.str());
auto* arr = ty.array(Source{{12, 34}}, el_ty, 4_u, params.stride); auto* arr =
ty.array(el_ty, 4_u, {create<ast::StrideAttribute>(Source{{12, 34}}, params.stride)});
GlobalVar("myarray", arr, ast::StorageClass::kPrivate); GlobalVar("myarray", arr, ast::StorageClass::kPrivate);
@ -906,7 +907,7 @@ TEST_P(ArrayStrideTest, All) {
EXPECT_EQ(r()->error(), EXPECT_EQ(r()->error(),
"12:34 error: arrays decorated with the stride attribute must " "12:34 error: arrays decorated with the stride attribute must "
"have a stride that is at least the size of the element type, " "have a stride that is at least the size of the element type, "
"and be a multiple of the element type's alignment value."); "and be a multiple of the element type's alignment value");
} }
} }

View File

@ -2259,102 +2259,128 @@ sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) {
} }
sem::Array* Resolver::Array(const ast::Array* arr) { sem::Array* Resolver::Array(const ast::Array* arr) {
auto source = arr->source; if (!arr->type) {
AddError("missing array element type", arr->source.End());
auto* elem_type = Type(arr->type);
if (!elem_type) {
return nullptr; return nullptr;
} }
if (!validator_.IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize() auto* el_ty = Type(arr->type);
AddError(sem_.TypeNameOf(elem_type) + " cannot be used as an element type of an array", if (!el_ty) {
source);
return nullptr;
}
uint32_t el_align = elem_type->Align();
uint32_t el_size = elem_type->Size();
if (!validator_.NoDuplicateAttributes(arr->attributes)) {
return nullptr; return nullptr;
} }
// Look for explicit stride via @stride(n) attribute // Look for explicit stride via @stride(n) attribute
uint32_t explicit_stride = 0; uint32_t explicit_stride = 0;
for (auto* attr : arr->attributes) { if (!ArrayAttributes(arr->attributes, el_ty, explicit_stride)) {
Mark(attr);
if (auto* sd = attr->As<ast::StrideAttribute>()) {
explicit_stride = sd->stride;
if (!validator_.ArrayStrideAttribute(sd, el_size, el_align, source)) {
return nullptr;
}
continue;
}
AddError("attribute is not valid for array types", attr->source);
return nullptr; return nullptr;
} }
// Calculate implicit stride uint32_t el_count = 0; // sem::Array uses a size of 0 for a runtime-sized array.
uint64_t implicit_stride = utils::RoundUp<uint64_t>(el_align, el_size);
uint64_t stride = explicit_stride ? explicit_stride : implicit_stride;
int64_t count = 0; // sem::Array uses a size of 0 for a runtime-sized array.
// Evaluate the constant array size expression. // Evaluate the constant array size expression.
if (auto* count_expr = arr->count) { if (auto* count_expr = arr->count) {
if (auto count = ArrayCount(count_expr)) {
el_count = count.Get();
} else {
return nullptr;
}
}
auto* out = Array(arr->source, el_ty, el_count, explicit_stride);
if (out == nullptr) {
return nullptr;
}
if (el_ty->Is<sem::Atomic>()) {
atomic_composite_info_.emplace(out, arr->type->source);
} else {
auto found = atomic_composite_info_.find(el_ty);
if (found != atomic_composite_info_.end()) {
atomic_composite_info_.emplace(out, found->second);
}
}
return out;
}
utils::Result<uint32_t> Resolver::ArrayCount(const ast::Expression* count_expr) {
// Evaluate the constant array size expression.
const auto* count_sem = Materialize(Expression(count_expr)); const auto* count_sem = Materialize(Expression(count_expr));
if (!count_sem) { if (!count_sem) {
return nullptr; return utils::Failure;
} }
auto* count_val = count_sem->ConstantValue(); auto* count_val = count_sem->ConstantValue();
if (!count_val) { if (!count_val) {
AddError("array size must evaluate to a constant integer expression", AddError("array size must evaluate to a constant integer expression", count_expr->source);
count_expr->source); return utils::Failure;
return nullptr;
} }
if (auto* ty = count_val->Type(); !ty->is_integer_scalar()) { if (auto* ty = count_val->Type(); !ty->is_integer_scalar()) {
AddError("array size must evaluate to a constant integer expression, but is type '" + AddError("array size must evaluate to a constant integer expression, but is type '" +
builder_->FriendlyName(ty) + "'", builder_->FriendlyName(ty) + "'",
count_expr->source); count_expr->source);
return nullptr; return utils::Failure;
} }
count = count_val->As<AInt>(); int64_t count = count_val->As<AInt>();
if (count < 1) { if (count < 1) {
AddError("array size (" + std::to_string(count) + ") must be greater than 0", AddError("array size (" + std::to_string(count) + ") must be greater than 0",
count_expr->source); count_expr->source);
return nullptr; return utils::Failure;
}
} }
auto size = std::max<uint64_t>(static_cast<uint32_t>(count), 1u) * stride; return static_cast<uint32_t>(count);
}
bool Resolver::ArrayAttributes(const ast::AttributeList& attributes,
const sem::Type* el_ty,
uint32_t& explicit_stride) {
if (!validator_.NoDuplicateAttributes(attributes)) {
return false;
}
for (auto* attr : attributes) {
Mark(attr);
if (auto* sd = attr->As<ast::StrideAttribute>()) {
explicit_stride = sd->stride;
if (!validator_.ArrayStrideAttribute(sd, el_ty->Size(), el_ty->Align())) {
return false;
}
continue;
}
AddError("attribute is not valid for array types", attr->source);
return false;
}
return true;
}
sem::Array* Resolver::Array(const Source& source,
const sem::Type* el_ty,
uint32_t el_count,
uint32_t explicit_stride) {
uint32_t el_align = el_ty->Align();
uint32_t el_size = el_ty->Size();
uint64_t implicit_stride = el_size ? utils::RoundUp<uint64_t>(el_align, el_size) : 0;
uint64_t stride = explicit_stride ? explicit_stride : implicit_stride;
auto size = std::max<uint64_t>(el_count, 1u) * stride;
if (size > std::numeric_limits<uint32_t>::max()) { if (size > std::numeric_limits<uint32_t>::max()) {
std::stringstream msg; std::stringstream msg;
msg << "array size (0x" << std::hex << size << ") must not exceed 0xffffffff bytes"; msg << "array size (0x" << std::hex << size << ") must not exceed 0xffffffff bytes";
AddError(msg.str(), arr->source); AddError(msg.str(), source);
return nullptr; return nullptr;
} }
auto* out = builder_->create<sem::Array>( auto* out = builder_->create<sem::Array>(el_ty, el_count, el_align, static_cast<uint32_t>(size),
elem_type, static_cast<uint32_t>(count), el_align, static_cast<uint32_t>(size), static_cast<uint32_t>(stride),
static_cast<uint32_t>(stride), static_cast<uint32_t>(implicit_stride)); static_cast<uint32_t>(implicit_stride));
if (!validator_.Array(out, source)) { if (!validator_.Array(out, source)) {
return nullptr; return nullptr;
} }
if (elem_type->Is<sem::Atomic>()) {
atomic_composite_info_.emplace(out, arr->type->source);
} else {
auto found = atomic_composite_info_.find(elem_type);
if (found != atomic_composite_info_.end()) {
atomic_composite_info_.emplace(out, found->second);
}
}
return out; return out;
} }

View File

@ -286,14 +286,38 @@ class Resolver {
/// @returns the resolved semantic type /// @returns the resolved semantic type
sem::Type* TypeDecl(const ast::TypeDecl* named_type); sem::Type* TypeDecl(const ast::TypeDecl* named_type);
/// Builds and returns the semantic information for the array `arr`. /// Builds and returns the semantic information for the AST array `arr`.
/// This method does not mark the ast::Array node, nor attach the generated /// This method does not mark the ast::Array node, nor attach the generated semantic information
/// semantic information to the AST node. /// to the AST node.
/// @returns the semantic Array information, or nullptr if an error is /// @returns the semantic Array information, or nullptr if an error is raised.
/// raised.
/// @param arr the Array to get semantic information for /// @param arr the Array to get semantic information for
sem::Array* Array(const ast::Array* arr); sem::Array* Array(const ast::Array* arr);
/// Resolves and validates the expression used as the count parameter of an array.
/// @param count_expr the expression used as the second template parameter to an array<>.
/// @returns the number of elements in the array.
utils::Result<uint32_t> ArrayCount(const ast::Expression* count_expr);
/// Resolves and validates the attributes on an array.
/// @param attributes the attributes on the array type.
/// @param el_ty the element type of the array.
/// @param explicit_stride assigned the specified stride of the array in bytes.
/// @returns true on success, false on failure
bool ArrayAttributes(const ast::AttributeList& attributes,
const sem::Type* el_ty,
uint32_t& explicit_stride);
/// Builds and returns the semantic information for an array.
/// @returns the semantic Array information, or nullptr if an error is raised.
/// @param source the source of the array declaration
/// @param el_ty the Array element type
/// @param el_count the number of elements in the array. Zero means runtime-sized.
/// @param explicit_stride the explicit byte stride of the array. Zero means implicit stride.
sem::Array* Array(const Source& source,
const sem::Type* el_ty,
uint32_t el_count,
uint32_t explicit_stride);
/// Builds and returns the semantic information for the alias `alias`. /// Builds and returns the semantic information for the alias `alias`.
/// This method does not mark the ast::Alias node, nor attach the generated /// This method does not mark the ast::Alias node, nor attach the generated
/// semantic information to the AST node. /// semantic information to the AST node.

View File

@ -527,9 +527,7 @@ TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_type_Mismat
WrapInFunction(tc); WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(r()->error(), R"(12:34 error: 'f32' cannot be used to construct an array of 'u32')");
"12:34 error: type in array constructor does not match array type: "
"expected 'u32', found 'f32'");
} }
TEST_F(ResolverTypeConstructorValidationTest, TEST_F(ResolverTypeConstructorValidationTest,
@ -539,9 +537,7 @@ TEST_F(ResolverTypeConstructorValidationTest,
WrapInFunction(tc); WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(r()->error(), R"(12:34 error: 'i32' cannot be used to construct an array of 'f32')");
"12:34 error: type in array constructor does not match array type: "
"expected 'f32', found 'i32'");
} }
TEST_F(ResolverTypeConstructorValidationTest, TEST_F(ResolverTypeConstructorValidationTest,
@ -552,9 +548,7 @@ TEST_F(ResolverTypeConstructorValidationTest,
WrapInFunction(tc); WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(r()->error(), R"(12:34 error: 'i32' cannot be used to construct an array of 'u32')");
"12:34 error: type in array constructor does not match array type: "
"expected 'u32', found 'i32'");
} }
TEST_F(ResolverTypeConstructorValidationTest, TEST_F(ResolverTypeConstructorValidationTest,
@ -564,8 +558,7 @@ TEST_F(ResolverTypeConstructorValidationTest,
WrapInFunction(tc); WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: " R"(12:34 error: 'vec2<i32>' cannot be used to construct an array of 'i32')");
"expected 'i32', found 'vec2<i32>'");
} }
TEST_F(ResolverTypeConstructorValidationTest, TEST_F(ResolverTypeConstructorValidationTest,
@ -579,8 +572,7 @@ TEST_F(ResolverTypeConstructorValidationTest,
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: " R"(12:34 error: 'vec3<u32>' cannot be used to construct an array of 'vec3<i32>')");
"expected 'vec3<i32>', found 'vec3<u32>'");
} }
TEST_F(ResolverTypeConstructorValidationTest, TEST_F(ResolverTypeConstructorValidationTest,
@ -594,8 +586,7 @@ TEST_F(ResolverTypeConstructorValidationTest,
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(r()->error(),
"12:34 error: type in array constructor does not match array type: " R"(12:34 error: 'vec3<bool>' cannot be used to construct an array of 'vec3<i32>')");
"expected 'vec3<i32>', found 'vec3<bool>'");
} }
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubElemSizeMismatch) { TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubElemSizeMismatch) {
@ -607,9 +598,9 @@ TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubE
WrapInFunction(t); WrapInFunction(t);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(
"12:34 error: type in array constructor does not match array type: " r()->error(),
"expected 'array<i32, 2>', found 'array<i32, 3>'"); R"(12:34 error: 'array<i32, 3>' cannot be used to construct an array of 'array<i32, 2>')");
} }
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubElemTypeMismatch) { TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubElemTypeMismatch) {
@ -621,9 +612,9 @@ TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_ArrayOfArray_SubE
WrapInFunction(t); WrapInFunction(t);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), EXPECT_EQ(
"12:34 error: type in array constructor does not match array type: " r()->error(),
"expected 'array<i32, 2>', found 'array<u32, 2>'"); R"(12:34 error: 'array<u32, 2>' cannot be used to construct an array of 'array<i32, 2>')");
} }
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_TooFewElements) { TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_TooFewElements) {
@ -656,7 +647,7 @@ TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_Runtime) {
WrapInFunction(tc); WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "error: cannot init a runtime-sized array"); EXPECT_EQ(r()->error(), "error: cannot construct a runtime-sized array");
} }
TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_RuntimeZeroValue) { TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_RuntimeZeroValue) {
@ -665,7 +656,7 @@ TEST_F(ResolverTypeConstructorValidationTest, Expr_Constructor_Array_RuntimeZero
WrapInFunction(tc); WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve()); EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "error: cannot init a runtime-sized array"); EXPECT_EQ(r()->error(), "error: cannot construct a runtime-sized array");
} }
} // namespace ArrayConstructor } // namespace ArrayConstructor

View File

@ -1875,17 +1875,16 @@ bool Validator::ArrayConstructor(const ast::CallExpression* ctor,
for (auto* value : values) { for (auto* value : values) {
auto* value_ty = sem_.TypeOf(value)->UnwrapRef(); auto* value_ty = sem_.TypeOf(value)->UnwrapRef();
if (value_ty != elem_ty) { if (value_ty != elem_ty) {
AddError( AddError("'" + sem_.TypeNameOf(value_ty) +
"type in array constructor does not match array type: " "' cannot be used to construct an array of '" + sem_.TypeNameOf(elem_ty) +
"expected '" + "'",
sem_.TypeNameOf(elem_ty) + "', found '" + sem_.TypeNameOf(value_ty) + "'",
value->source); value->source);
return false; return false;
} }
} }
if (array_type->IsRuntimeSized()) { if (array_type->IsRuntimeSized()) {
AddError("cannot init a runtime-sized array", ctor->source); AddError("cannot construct a runtime-sized array", ctor->source);
return false; return false;
} else if (!elem_ty->IsConstructible()) { } else if (!elem_ty->IsConstructible()) {
AddError("array constructor has non-constructible element type", ctor->source); AddError("array constructor has non-constructible element type", ctor->source);
@ -2011,6 +2010,11 @@ bool Validator::PipelineStages(const std::vector<sem::Function*>& entry_points)
bool Validator::Array(const sem::Array* arr, const Source& source) const { bool Validator::Array(const sem::Array* arr, const Source& source) const {
auto* el_ty = arr->ElemType(); auto* el_ty = arr->ElemType();
if (!IsPlain(el_ty)) {
AddError(sem_.TypeNameOf(el_ty) + " cannot be used as an element type of an array", source);
return false;
}
if (!IsFixedFootprint(el_ty)) { if (!IsFixedFootprint(el_ty)) {
AddError("an array element type cannot contain a runtime-sized array", source); AddError("an array element type cannot contain a runtime-sized array", source);
return false; return false;
@ -2020,8 +2024,7 @@ bool Validator::Array(const sem::Array* arr, const Source& source) const {
bool Validator::ArrayStrideAttribute(const ast::StrideAttribute* attr, bool Validator::ArrayStrideAttribute(const ast::StrideAttribute* attr,
uint32_t el_size, uint32_t el_size,
uint32_t el_align, uint32_t el_align) const {
const Source& source) const {
auto stride = attr->stride; auto stride = attr->stride;
bool is_valid_stride = (stride >= el_size) && (stride >= el_align) && (stride % el_align == 0); bool is_valid_stride = (stride >= el_size) && (stride >= el_align) && (stride % el_align == 0);
if (!is_valid_stride) { if (!is_valid_stride) {
@ -2032,8 +2035,8 @@ bool Validator::ArrayStrideAttribute(const ast::StrideAttribute* attr,
AddError( AddError(
"arrays decorated with the stride attribute must have a stride " "arrays decorated with the stride attribute must have a stride "
"that is at least the size of the element type, and be a multiple " "that is at least the size of the element type, and be a multiple "
"of the element type's alignment value.", "of the element type's alignment value",
source); attr->source);
return false; return false;
} }
return true; return true;

View File

@ -131,12 +131,10 @@ class Validator {
/// @param attr the stride attribute to validate /// @param attr the stride attribute to validate
/// @param el_size the element size /// @param el_size the element size
/// @param el_align the element alignment /// @param el_align the element alignment
/// @param source the source of the attribute
/// @returns true on success, false otherwise /// @returns true on success, false otherwise
bool ArrayStrideAttribute(const ast::StrideAttribute* attr, bool ArrayStrideAttribute(const ast::StrideAttribute* attr,
uint32_t el_size, uint32_t el_size,
uint32_t el_align, uint32_t el_align) const;
const Source& source) const;
/// Validates an atomic /// Validates an atomic
/// @param a the atomic ast node to validate /// @param a the atomic ast node to validate