[spirv-reader] Label control flow constructs

Label basic blocks with:
- their nearest enclosing structured control flow constructs.
- their nearest enclosing continue construct, if any
- their nearest enclosing loop construct, if any

A construct consists of a span of blocks in the computed block order.
It knows its parent construct, if any, and its nesting depth.

Bug: tint:3
Change-Id: Ia945706e8ea2435d6c40fb4e36dc2daeeb9780d0
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/20421
Reviewed-by: dan sinclair <dsinclair@google.com>
This commit is contained in:
David Neto 2020-04-27 20:14:08 +00:00
parent 195e4fe575
commit a92c114c1a
7 changed files with 1201 additions and 0 deletions

View File

@ -377,6 +377,8 @@ source_set("libtint_core_src") {
source_set("libtint_spv_reader_src") { source_set("libtint_spv_reader_src") {
sources = [ sources = [
"src/reader/spirv/construct.h",
"src/reader/spirv/construct.cc",
"src/reader/spirv/enum_converter.cc", "src/reader/spirv/enum_converter.cc",
"src/reader/spirv/enum_converter.h", "src/reader/spirv/enum_converter.h",
"src/reader/spirv/fail_stream.h", "src/reader/spirv/fail_stream.h",

View File

@ -199,6 +199,8 @@ set(TINT_LIB_SRCS
if(${TINT_BUILD_SPV_READER}) if(${TINT_BUILD_SPV_READER})
list(APPEND TINT_LIB_SRCS list(APPEND TINT_LIB_SRCS
reader/spirv/construct.h
reader/spirv/construct.cc
reader/spirv/enum_converter.h reader/spirv/enum_converter.h
reader/spirv/enum_converter.cc reader/spirv/enum_converter.cc
reader/spirv/fail_stream.h reader/spirv/fail_stream.h

View File

@ -0,0 +1,50 @@
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/reader/spirv/construct.h"
namespace tint {
namespace reader {
namespace spirv {
Construct::Construct(const Construct* the_parent,
int the_depth,
Kind the_kind,
uint32_t the_begin_id,
uint32_t the_end_id,
uint32_t the_begin_pos,
uint32_t the_end_pos)
: parent(the_parent),
enclosing_continue(
// Compute the enclosing continue construct. Doing this in the
// constructor member list lets us make the member const.
the_kind == kContinue
? this
: (parent ? parent->enclosing_continue : nullptr)),
enclosing_loop_or_continue(
// Compute the enclosing loop or continue construct. Doing this
// in the constructor member list lets us make the member const.
(the_kind == kLoop || the_kind == kContinue)
? this
: (parent ? parent->enclosing_loop_or_continue : nullptr)),
depth(the_depth),
kind(the_kind),
begin_id(the_begin_id),
end_id(the_end_id),
begin_pos(the_begin_pos),
end_pos(the_end_pos) {}
} // namespace spirv
} // namespace reader
} // namespace tint

View File

@ -0,0 +1,194 @@
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_READER_SPIRV_CONSTRUCT_H_
#define SRC_READER_SPIRV_CONSTRUCT_H_
#include <cstdint>
#include <memory>
#include <ostream>
#include <sstream>
#include <vector>
namespace tint {
namespace reader {
namespace spirv {
/// A structured construct, consisting of a set of basic blocks.
/// A construct is a span of blocks in the computed block order,
/// and will appear contiguously in the WGSL source.
struct Construct {
/// Enumeration for the kinds of structured constructs.
enum Kind {
kFunction, // The whole function.
kSelection, // A SPIR-V selection construct
kLoop, // A SPIR-V loop construct
kContinue, // A SPIR-V continue construct
};
/// Constructor
/// @param the_parent parent construct
/// @param the_depth construct nesting depth
/// @param the_kind construct kind
/// @param the_begin_id block id of the first block in the construct
/// @param the_end_id block id of the first block after the construct, or 0
/// @param the_begin_pos block order position of the_begin_id
/// @param the_end_pos block order position of the_end_id or a too-large value
Construct(const Construct* the_parent,
int the_depth,
Kind the_kind,
uint32_t the_begin_id,
uint32_t the_end_id,
uint32_t the_begin_pos,
uint32_t the_end_pos);
/// @param pos a block position
/// @returns true if the given block position is inside this construct.
bool ContainsPos(uint32_t pos) const {
return begin_pos <= pos && pos < end_pos;
}
/// The nearest enclosing construct (other than itself), or nullptr if
/// this construct represents the entire function.
const Construct* const parent = nullptr;
/// The nearest continue construct, if one exists. A construct encloses
/// itself.
const Construct* const enclosing_continue = nullptr;
/// The nearest enclosing loop or continue construct, if one exists.
/// A construct encloses itself.
const Construct* const enclosing_loop_or_continue = nullptr;
/// Control flow nesting depth. The entry block is at nesting depth 0.
const int depth = 0;
/// The construct kind
const Kind kind = kFunction;
/// The id of the first block in this structure.
const uint32_t begin_id = 0;
/// 0 for kFunction, or the id of the block immediately after this construct
/// in the computed block order.
const uint32_t end_id = 0;
/// The position of block |begin_id| in the computed block order.
const uint32_t begin_pos = 0;
/// The position of block |end_id| in the block order, or the number of
/// block order elements if |end_id| is 0.
const uint32_t end_pos = 0;
};
using ConstructList = std::vector<std::unique_ptr<Construct>>;
/// Converts a construct kind to a string.
/// @param kind the construct kind to convert
/// @returns the string representation
inline std::string ToString(Construct::Kind kind) {
switch (kind) {
case Construct::kFunction:
return "Function";
case Construct::kSelection:
return "Selection";
case Construct::kLoop:
return "Loop";
case Construct::kContinue:
return "Continue";
}
return "NONE";
}
/// Converts a construct into a short summary string.
/// @param c the construct, which can be null
/// @returns a short summary string
inline std::string ToStringBrief(const Construct* c) {
if (c) {
std::stringstream ss;
ss << ToString(c->kind) << "@" << c->begin_id;
return ss.str();
}
return "null";
}
/// Emits a construct to a stream.
/// @param o the stream
/// @param c the structured construct
/// @returns the stream
inline std::ostream& operator<<(std::ostream& o, const Construct& c) {
o << "Construct{ " << ToString(c.kind) << " [" << c.begin_pos << ","
<< c.end_pos << ")"
<< " begin_id:" << c.begin_id << " end_id:" << c.end_id
<< " depth:" << c.depth;
o << " parent:" << ToStringBrief(c.parent);
if (c.enclosing_continue) {
o << " in-c:" << ToStringBrief(c.enclosing_continue);
}
if (c.enclosing_loop_or_continue != c.enclosing_continue) {
o << " in-c-l:" << ToStringBrief(c.enclosing_loop_or_continue);
}
o << " }";
return o;
}
/// Emits a construct to a stream.
/// @param o the stream
/// @param c the structured construct
/// @returns the stream
inline std::ostream& operator<<(std::ostream& o,
const std::unique_ptr<Construct>& c) {
return o << *(c.get());
}
/// Converts a construct to a string.
/// @param c the construct
/// @returns the string representation
inline std::string ToString(const Construct& c) {
std::stringstream ss;
ss << c;
return ss.str();
}
/// Converts a unique pointer to a construct to a string.
/// @param c the construct
/// @returns the string representation
inline std::string ToString(const std::unique_ptr<Construct>& c) {
return ToString(*(c.get()));
}
/// Emits a construct list to a stream.
/// @param o the stream
/// @param cl the construct list
/// @returns the stream
inline std::ostream& operator<<(std::ostream& o, const ConstructList& cl) {
o << "ConstructList{\n";
for (const auto& c : cl) {
o << " " << c << "\n";
}
o << "}";
return o;
}
/// Converts a construct list to a string.
/// @param cl the construct list
/// @returns the string representation
inline std::string ToString(const ConstructList& cl) {
std::stringstream ss;
ss << cl;
return ss.str();
}
} // namespace spirv
} // namespace reader
} // namespace tint
#endif // SRC_READER_SPIRV_CONSTRUCT_H_

View File

@ -437,6 +437,9 @@ bool FunctionEmitter::EmitBody() {
if (!VerifyHeaderContinueMergeOrder()) { if (!VerifyHeaderContinueMergeOrder()) {
return false; return false;
} }
if (!LabelControlFlowConstructs()) {
return false;
}
if (!EmitFunctionVariables()) { if (!EmitFunctionVariables()) {
return false; return false;
@ -660,6 +663,149 @@ bool FunctionEmitter::VerifyHeaderContinueMergeOrder() {
return success(); return success();
} }
bool FunctionEmitter::LabelControlFlowConstructs() {
// Label each block in the block order with its nearest enclosing structured
// control flow construct. Populates the |construct| member of BlockInfo.
// Keep a stack of enclosing structured control flow constructs. Start
// with the synthetic construct representing the entire function.
//
// Scan from left to right in the block order, and check conditions
// on each block in the following order:
//
// a. When you reach a merge block, the top of the stack should
// be the associated header. Pop it off.
// b. When you reach a header, push it on the stack.
// c. When you reach a continue target, push it on the stack.
// (A block can be both a header and a continue target, in the case
// of a single-block loop, in which case it should also be its
// own backedge block.)
// c. When you reach a block with an edge branching backward (in the
// structured order) to block T:
// T should be a loop header, and the top of the stack should be a
// continue target associated with T.
// This is the end of the continue construct. Pop the continue
// target off the stack.
// (Note: We pop the merge off first because a merge block that marks
// the end of one construct can be a single-block loop. So that block
// is a merge, a header, a continue target, and a backedge block.
// But we want to finish processing of the merge before dealing with
// the loop.)
//
// In the same scan, mark each basic block with the nearest enclosing
// header: the most recent header for which we haven't reached its merge
// block. Also mark the the most recent continue target for which we
// haven't reached the backedge block.
assert(block_order_.size() > 0);
constructs_.clear();
const auto entry_id = block_order_[0];
// The stack of enclosing constructs.
std::vector<Construct*> enclosing;
// Creates a control flow construct and pushes it onto the stack.
// Its parent is the top of the stack, or nullptr if the stack is empty.
// Returns the newly created construct.
auto push_construct = [this, &enclosing](size_t depth, Construct::Kind k,
uint32_t begin_id,
uint32_t end_id) -> Construct* {
const auto begin_pos = GetBlockInfo(begin_id)->pos;
const auto end_pos =
end_id == 0 ? uint32_t(block_order_.size()) : GetBlockInfo(end_id)->pos;
const auto* parent = enclosing.empty() ? nullptr : enclosing.back();
// A loop construct is added right after its associated continue construct.
// In that case, adjust the parent up.
if (k == Construct::kLoop) {
assert(parent);
assert(parent->kind == Construct::kContinue);
parent = parent->parent;
}
constructs_.push_back(std::make_unique<Construct>(
parent, int(depth), k, begin_id, end_id, begin_pos, end_pos));
Construct* result = constructs_.back().get();
enclosing.push_back(result);
return result;
};
// Make a synthetic kFunction construct to enclose all blocks in the function.
push_construct(0, Construct::kFunction, entry_id, 0);
// The entry block can be a selection construct, so be sure to process
// it anyway.
for (uint32_t i = 0; i < block_order_.size(); ++i) {
const auto block_id = block_order_[i];
assert(block_id > 0);
auto* block_info = GetBlockInfo(block_id);
assert(block_info);
if (enclosing.empty()) {
return Fail() << "internal error: too many merge blocks before block "
<< block_id;
}
const Construct* top = enclosing.back();
while (block_id == top->end_id) {
// We've reached a predeclared end of the construct. Pop it off the
// stack.
enclosing.pop_back();
if (enclosing.empty()) {
return Fail() << "internal error: too many merge blocks before block "
<< block_id;
}
top = enclosing.back();
}
const auto merge = block_info->merge_for_header;
if (merge != 0) {
// The current block is a header.
const auto header = block_id;
const auto* header_info = block_info;
const auto depth = 1 + top->depth;
const auto ct = header_info->continue_for_header;
if (ct != 0) {
// The current block is a loop header.
// We should see the continue construct after the loop construct, so
// push the loop construct last.
// From the interval rule, the continue construct consists of blocks
// in the block order, starting at the continue target, until just
// before the merge block.
top = push_construct(depth, Construct::kContinue, ct, merge);
// A single block loop has an empty loop construct.
if (!header_info->is_single_block_loop) {
// From the interval rule, the loop construct consists of blocks
// in the block order, starting at the header, until just
// before the continue target.
top = push_construct(depth, Construct::kLoop, header, ct);
}
} else {
// From the interval rule, the selection construct consists of blocks
// in the block order, starting at the header, until just before the
// merge block.
top = push_construct(depth, Construct::kSelection, header, merge);
}
}
assert(top);
block_info->construct = top;
}
// At the end of the block list, we should only have the kFunction construct
// left.
if (enclosing.size() != 1) {
return Fail() << "internal error: unbalanced structured constructs when "
"labeling structured constructs: ended with "
<< enclosing.size() - 1 << " unterminated constructs";
}
const auto* top = enclosing[0];
if (top->kind != Construct::kFunction || top->depth != 0) {
return Fail() << "internal error: outermost construct is not a function?!";
}
return success();
}
bool FunctionEmitter::EmitFunctionVariables() { bool FunctionEmitter::EmitFunctionVariables() {
if (failed()) { if (failed()) {
return false; return false;

View File

@ -29,6 +29,7 @@
#include "source/opt/type_manager.h" #include "source/opt/type_manager.h"
#include "src/ast/expression.h" #include "src/ast/expression.h"
#include "src/ast/module.h" #include "src/ast/module.h"
#include "src/reader/spirv/construct.h"
#include "src/reader/spirv/fail_stream.h" #include "src/reader/spirv/fail_stream.h"
#include "src/reader/spirv/namer.h" #include "src/reader/spirv/namer.h"
#include "src/reader/spirv/parser_impl.h" #include "src/reader/spirv/parser_impl.h"
@ -66,6 +67,9 @@ struct BlockInfo {
/// Is this block a single-block loop: A loop header that declares itself /// Is this block a single-block loop: A loop header that declares itself
/// as its own continue target, and has branch to itself. /// as its own continue target, and has branch to itself.
bool is_single_block_loop = false; bool is_single_block_loop = false;
/// The immediately enclosing structured construct.
const Construct* construct = nullptr;
}; };
inline std::ostream& operator<<(std::ostream& o, const BlockInfo& bi) { inline std::ostream& operator<<(std::ostream& o, const BlockInfo& bi) {
@ -147,6 +151,17 @@ class FunctionEmitter {
/// @returns false if invalid nesting was detected /// @returns false if invalid nesting was detected
bool VerifyHeaderContinueMergeOrder(); bool VerifyHeaderContinueMergeOrder();
/// Labels each basic block with its nearest enclosing structured construct.
/// Populates the |construct| member of BlockInfo, and the |constructs_| list.
/// Assumes terminators are sane and merges have been registered, block
/// order has been computed, and each block is labeled with its position.
/// Checks nesting of structured control flow constructs.
/// @returns false if bad nesting has been detected
bool LabelControlFlowConstructs();
/// @returns the structured constructs
const ConstructList& constructs() const { return constructs_; }
/// Emits declarations of function variables. /// Emits declarations of function variables.
/// @returns false if emission failed. /// @returns false if emission failed.
bool EmitFunctionVariables(); bool EmitFunctionVariables();
@ -227,6 +242,9 @@ class FunctionEmitter {
// Mapping from block ID to its bookkeeping info. // Mapping from block ID to its bookkeeping info.
std::unordered_map<uint32_t, std::unique_ptr<BlockInfo>> block_info_; std::unordered_map<uint32_t, std::unique_ptr<BlockInfo>> block_info_;
// Structured constructs, where enclosing constructs precede their children.
ConstructList constructs_;
}; };
} // namespace spirv } // namespace spirv

View File

@ -2751,6 +2751,795 @@ TEST_F(SpvParserTest,
<< Dump(fe.block_order()); << Dump(fe.block_order());
} }
TEST_F(SpvParserTest,
LabelControlFlowConstructs_OuterConstructIsFunction_SingleBlock) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
EXPECT_EQ(fe.constructs().size(), 1u);
auto& c = fe.constructs().front();
EXPECT_THAT(ToString(c), Eq("Construct{ Function [0,1) begin_id:10 end_id:0 "
"depth:0 parent:null }"));
EXPECT_EQ(fe.GetBlockInfo(10)->construct, c.get());
}
TEST_F(SpvParserTest,
LabelControlFlowConstructs_OuterConstructIsFunction_MultiBlock) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %5
%5 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
EXPECT_EQ(fe.constructs().size(), 1u);
auto& c = fe.constructs().front();
EXPECT_THAT(ToString(c), Eq("Construct{ Function [0,2) begin_id:10 end_id:0 "
"depth:0 parent:null }"));
EXPECT_EQ(fe.GetBlockInfo(10)->construct, c.get());
EXPECT_EQ(fe.GetBlockInfo(5)->construct, c.get());
}
TEST_F(SpvParserTest,
LabelControlFlowConstructs_FunctionIsOnlyIfSelectionAndItsMerge) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %30
%20 = OpLabel
OpBranch %99
%30 = OpLabel
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 2u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,4) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,3) begin_id:10 end_id:99 depth:1 parent:Function@10 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(
SpvParserTest,
LabelControlFlowConstructs_PaddingBlocksBeforeAndAfterStructuredConstruct) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%5 = OpLabel
OpBranch %10
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %30
%20 = OpLabel
OpBranch %99
%30 = OpLabel
OpBranch %99
%99 = OpLabel
OpBranch %200
%200 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 2u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,6) begin_id:5 end_id:0 depth:0 parent:null }
Construct{ Selection [1,4) begin_id:10 end_id:99 depth:1 parent:Function@5 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(5)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(200)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_SwitchSelection) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpSwitch %selector %40 20 %20 30 %30
%20 = OpLabel
OpBranch %99
%30 = OpLabel
OpBranch %99
%40 = OpLabel
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 2u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,5) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,4) begin_id:10 end_id:99 depth:1 parent:Function@10 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(40)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_SingleBlockLoop) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
OpLoopMerge %99 %20 None
OpBranchConditional %cond %20 %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 2u);
// A single-block loop consists *only* of a continue target with one block in
// it.
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,3) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Continue [1,2) begin_id:20 end_id:99 depth:1 parent:Function@10 in-c:Continue@20 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_MultiBlockLoop) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
OpLoopMerge %99 %40 None
OpBranchConditional %cond %30 %99
%30 = OpLabel
OpBranch %40
%40 = OpLabel
OpBranch %50
%50 = OpLabel
OpBranch %20
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
// A single-block loop consists *only* of a continue target with one block in
// it.
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,6) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Continue [3,5) begin_id:40 end_id:99 depth:1 parent:Function@10 in-c:Continue@40 }
Construct{ Loop [1,3) begin_id:20 end_id:40 depth:1 parent:Function@10 in-c-l:Loop@20 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(40)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(50)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest,
LabelControlFlowConstructs_MergeBlockIsAlsoSingleBlockLoop) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %50 None
OpBranchConditional %cond %20 %50
%20 = OpLabel
OpBranch %50
; %50 is the merge block for the selection starting at 10,
; and its own continue target.
%50 = OpLabel
OpLoopMerge %99 %50 None
OpBranchConditional %cond %50 %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 3u);
// A single-block loop consists *only* of a continue target with one block in
// it.
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,4) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,2) begin_id:10 end_id:50 depth:1 parent:Function@10 }
Construct{ Continue [2,3) begin_id:50 end_id:99 depth:1 parent:Function@10 in-c:Continue@50 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(50)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest,
LabelControlFlowConstructs_MergeBlockIsAlsoMultiBlockLoopHeader) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %50 None
OpBranchConditional %cond %20 %50
%20 = OpLabel
OpBranch %50
; %50 is the merge block for the selection starting at 10,
; and a loop block header but not its own continue target.
%50 = OpLabel
OpLoopMerge %99 %60 None
OpBranchConditional %cond %60 %99
%60 = OpLabel
OpBranch %50
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 4u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,5) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,2) begin_id:10 end_id:50 depth:1 parent:Function@10 }
Construct{ Continue [3,4) begin_id:60 end_id:99 depth:1 parent:Function@10 in-c:Continue@60 }
Construct{ Loop [2,3) begin_id:50 end_id:60 depth:1 parent:Function@10 in-c-l:Loop@50 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(50)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(60)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_If_If) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %50
%20 = OpLabel
OpSelectionMerge %40 None
OpBranchConditional %cond %30 %40 ;; true only
%30 = OpLabel
OpBranch %40
%40 = OpLabel ; merge for first inner "if"
OpBranch %49
%49 = OpLabel ; an extra padding block
OpBranch %99
%50 = OpLabel
OpSelectionMerge %89 None
OpBranchConditional %cond %89 %60 ;; false only
%60 = OpLabel
OpBranch %89
%89 = OpLabel
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 4u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,9) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,8) begin_id:10 end_id:99 depth:1 parent:Function@10 }
Construct{ Selection [1,3) begin_id:20 end_id:40 depth:2 parent:Selection@10 }
Construct{ Selection [5,7) begin_id:50 end_id:89 depth:2 parent:Selection@10 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(40)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(49)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(50)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(60)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(89)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_Switch_If) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpSwitch %selector %99 20 %20 50 %50
%20 = OpLabel ; if-then nested in case 20
OpSelectionMerge %49 None
OpBranchConditional %cond %30 %49
%30 = OpLabel
OpBranch %49
%49 = OpLabel
OpBranch %99
%50 = OpLabel ; unles-then nested in case 50
OpSelectionMerge %89 None
OpBranchConditional %cond %89 %60
%60 = OpLabel
OpBranch %89
%89 = OpLabel
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 4u);
// The ordering among siblings depends on the computed block order.
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,8) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,7) begin_id:10 end_id:99 depth:1 parent:Function@10 }
Construct{ Selection [1,3) begin_id:50 end_id:89 depth:2 parent:Selection@10 }
Construct{ Selection [4,6) begin_id:20 end_id:49 depth:2 parent:Selection@10 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(49)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(50)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(60)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(89)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_If_Switch) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
%20 = OpLabel
OpSelectionMerge %89 None
OpSwitch %selector %89 20 %30
%30 = OpLabel
OpBranch %89
%89 = OpLabel
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 3u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,5) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,4) begin_id:10 end_id:99 depth:1 parent:Function@10 }
Construct{ Selection [1,3) begin_id:20 end_id:89 depth:2 parent:Selection@10 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(89)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_Loop_Loop) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
OpLoopMerge %89 %50 None
OpBranchConditional %cond %30 %99
%30 = OpLabel ; single block loop
OpLoopMerge %40 %30 None
OpBranchConditional %cond2 %30 %40
%40 = OpLabel ; padding block
OpBranch %50
%50 = OpLabel ; outer continue target
OpBranch %60
%60 = OpLabel
OpBranch %20
%89 = OpLabel ; outer merge
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 4u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,8) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Continue [4,6) begin_id:50 end_id:89 depth:1 parent:Function@10 in-c:Continue@50 }
Construct{ Loop [1,4) begin_id:20 end_id:50 depth:1 parent:Function@10 in-c-l:Loop@20 }
Construct{ Continue [2,3) begin_id:30 end_id:40 depth:2 parent:Loop@20 in-c:Continue@30 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(40)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(50)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(60)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(89)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_Loop_If) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
OpLoopMerge %99 %80 None
OpBranchConditional %cond %30 %99
%30 = OpLabel ; If, nested in the loop construct
OpSelectionMerge %49 None
OpBranchConditional %cond2 %40 %49
%40 = OpLabel
OpBranch %49
%49 = OpLabel ; merge for inner if
OpBranch %80
%80 = OpLabel ; continue target
OpBranch %20
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 4u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,7) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Continue [5,6) begin_id:80 end_id:99 depth:1 parent:Function@10 in-c:Continue@80 }
Construct{ Loop [1,5) begin_id:20 end_id:80 depth:1 parent:Function@10 in-c-l:Loop@20 }
Construct{ Selection [2,4) begin_id:30 end_id:49 depth:2 parent:Loop@20 in-c-l:Loop@20 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(40)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(49)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(80)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_LoopContinue_If) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpBranch %20
%20 = OpLabel
OpLoopMerge %99 %30 None
OpBranchConditional %cond %30 %99
%30 = OpLabel ; If, nested at the top of the continue construct head
OpSelectionMerge %49 None
OpBranchConditional %cond2 %40 %49
%40 = OpLabel
OpBranch %49
%49 = OpLabel ; merge for inner if, backedge
OpBranch %20
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 4u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,6) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Continue [2,5) begin_id:30 end_id:99 depth:1 parent:Function@10 in-c:Continue@30 }
Construct{ Loop [1,2) begin_id:20 end_id:30 depth:1 parent:Function@10 in-c-l:Loop@20 }
Construct{ Selection [2,4) begin_id:30 end_id:49 depth:2 parent:Continue@30 in-c:Continue@30 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[0].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(40)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(49)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_If_SingleBlockLoop) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
%20 = OpLabel
OpLoopMerge %89 %20 None
OpBranchConditional %cond %20 %99
%89 = OpLabel
OpBranch %99
%99 = OpLabel
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 3u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,4) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,3) begin_id:10 end_id:99 depth:1 parent:Function@10 }
Construct{ Continue [1,2) begin_id:20 end_id:89 depth:2 parent:Selection@10 in-c:Continue@20 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
TEST_F(SpvParserTest, LabelControlFlowConstructs_Nest_If_MultiBlockLoop) {
auto assembly = CommonTypes() + R"(
%100 = OpFunction %void None %voidfn
%10 = OpLabel
OpSelectionMerge %99 None
OpBranchConditional %cond %20 %99
%20 = OpLabel ; start loop body
OpLoopMerge %89 %40 None
OpBranchConditional %cond %30 %89
%30 = OpLabel ; body block
OpBranch %40
%40 = OpLabel ; continue target
OpBranch %50
%50 = OpLabel ; backedge block
OpBranch %20
%89 = OpLabel ; merge for the loop
OpBranch %20
%99 = OpLabel ; merge for the if
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error();
FunctionEmitter fe(p, *spirv_function(100));
fe.RegisterBasicBlocks();
fe.ComputeBlockOrderAndPositions();
fe.RegisterMerges();
EXPECT_TRUE(fe.LabelControlFlowConstructs());
const auto& constructs = fe.constructs();
EXPECT_EQ(constructs.size(), 4u);
EXPECT_THAT(ToString(constructs), Eq(R"(ConstructList{
Construct{ Function [0,7) begin_id:10 end_id:0 depth:0 parent:null }
Construct{ Selection [0,6) begin_id:10 end_id:99 depth:1 parent:Function@10 }
Construct{ Continue [3,5) begin_id:40 end_id:89 depth:2 parent:Selection@10 in-c:Continue@40 }
Construct{ Loop [1,3) begin_id:20 end_id:40 depth:2 parent:Selection@10 in-c-l:Loop@20 }
})")) << constructs;
// The block records the nearest enclosing construct.
EXPECT_EQ(fe.GetBlockInfo(10)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(20)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(30)->construct, constructs[3].get());
EXPECT_EQ(fe.GetBlockInfo(40)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(50)->construct, constructs[2].get());
EXPECT_EQ(fe.GetBlockInfo(89)->construct, constructs[1].get());
EXPECT_EQ(fe.GetBlockInfo(99)->construct, constructs[0].get());
}
} // namespace } // namespace
} // namespace spirv } // namespace spirv
} // namespace reader } // namespace reader