Enabling alphaToCoverage

Added the alphaToCoverage functionality with some
end2end tests. There is no validation for disabling alphaToCoverage
mode if SV_Coverage is statically used by the shader yet.

Bug: dawn:494
Change-Id: I9df15b35697ea05a064b092edae9d5d20f73c4d8
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/25761
Commit-Queue: Tomek Ponitka <tommek@google.com>
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
This commit is contained in:
Tomek Ponitka 2020-07-29 11:44:41 +00:00 committed by Commit Bot service account
parent 9ecb99344f
commit ab04da48f4
9 changed files with 331 additions and 46 deletions

View File

@ -366,8 +366,8 @@ namespace dawn_native {
DAWN_TRY(ValidateDepthStencilStateDescriptor(device, descriptor->depthStencilState));
}
if (descriptor->alphaToCoverageEnabled) {
return DAWN_VALIDATION_ERROR("alphaToCoverageEnabled isn't supported (yet)");
if (descriptor->alphaToCoverageEnabled && descriptor->sampleCount <= 1) {
return DAWN_VALIDATION_ERROR("Enabling alphaToCoverage requires sampleCount > 1");
}
return {};
@ -572,6 +572,11 @@ namespace dawn_native {
return mSampleMask;
}
bool RenderPipelineBase::IsAlphaToCoverageEnabled() const {
ASSERT(!IsError());
return mAlphaToCoverageEnabled;
}
const AttachmentState* RenderPipelineBase::GetAttachmentState() const {
ASSERT(!IsError());

View File

@ -77,6 +77,7 @@ namespace dawn_native {
wgpu::TextureFormat GetDepthStencilFormat() const;
uint32_t GetSampleCount() const;
uint32_t GetSampleMask() const;
bool IsAlphaToCoverageEnabled() const;
const AttachmentState* GetAttachmentState() const;

View File

@ -383,7 +383,7 @@ namespace dawn_native { namespace d3d12 {
}
descriptorD3D12.NumRenderTargets = static_cast<uint32_t>(GetColorAttachmentsMask().count());
descriptorD3D12.BlendState.AlphaToCoverageEnable = FALSE;
descriptorD3D12.BlendState.AlphaToCoverageEnable = descriptor->alphaToCoverageEnabled;
descriptorD3D12.BlendState.IndependentBlendEnable = TRUE;
descriptorD3D12.DepthStencilState =

View File

@ -383,6 +383,7 @@ namespace dawn_native { namespace metal {
[vertexDesc release];
descriptorMTL.sampleCount = GetSampleCount();
descriptorMTL.alphaToCoverageEnabled = descriptor->alphaToCoverageEnabled;
{
NSError* error = nil;

View File

@ -258,6 +258,11 @@ namespace dawn_native { namespace opengl {
ApplyDepthStencilState(gl, GetDepthStencilStateDescriptor(), &persistentPipelineState);
gl.SampleMaski(0, GetSampleMask());
if (IsAlphaToCoverageEnabled()) {
gl.Enable(GL_SAMPLE_ALPHA_TO_COVERAGE);
} else {
gl.Disable(GL_SAMPLE_ALPHA_TO_COVERAGE);
}
for (uint32_t attachmentSlot : IterateBitSet(GetColorAttachmentsMask())) {
ApplyColorState(gl, attachmentSlot, GetColorStateDescriptor(attachmentSlot));

View File

@ -874,10 +874,10 @@ namespace dawn_native { namespace vulkan {
ASSERT(mCommandsInFlight.Empty());
for (const CommandPoolAndBuffer& commands : mUnusedCommands) {
// The VkCommandBuffer memory should be wholly owned by the pool and freed when it is
// destroyed, but that's not the case in some drivers and the leak memory.
// So we call FreeCommandBuffers before DestroyCommandPool to be safe.
// TODO(enga): Only do this on a known list of bad drivers.
// The VkCommandBuffer memory should be wholly owned by the pool and freed when it is
// destroyed, but that's not the case in some drivers and the leak memory.
// So we call FreeCommandBuffers before DestroyCommandPool to be safe.
// TODO(enga): Only do this on a known list of bad drivers.
fn.FreeCommandBuffers(mVkDevice, commands.pool, 1, &commands.commandBuffer);
fn.DestroyCommandPool(mVkDevice, commands.pool, nullptr);
}

View File

@ -416,7 +416,7 @@ namespace dawn_native { namespace vulkan {
ASSERT(multisample.rasterizationSamples <= 32);
VkSampleMask sampleMask = GetSampleMask();
multisample.pSampleMask = &sampleMask;
multisample.alphaToCoverageEnable = VK_FALSE;
multisample.alphaToCoverageEnable = descriptor->alphaToCoverageEnabled;
multisample.alphaToOneEnable = VK_FALSE;
VkPipelineDepthStencilStateCreateInfo depthStencilState =

View File

@ -38,7 +38,9 @@ class MultisampledRenderingTest : public DawnTest {
wgpu::RenderPipeline CreateRenderPipelineWithOneOutputForTest(
bool testDepth,
uint32_t sampleMask = 0xFFFFFFFF) {
uint32_t sampleMask = 0xFFFFFFFF,
bool alphaToCoverageEnabled = false,
bool flipTriangle = false) {
const char* kFsOneOutputWithDepth =
R"(#version 450
layout(location = 0) out vec4 fragColor;
@ -63,11 +65,13 @@ class MultisampledRenderingTest : public DawnTest {
const char* fs = testDepth ? kFsOneOutputWithDepth : kFsOneOutputWithoutDepth;
return CreateRenderPipelineForTest(fs, 1, testDepth, sampleMask);
return CreateRenderPipelineForTest(fs, 1, testDepth, sampleMask, alphaToCoverageEnabled,
flipTriangle);
}
wgpu::RenderPipeline CreateRenderPipelineWithTwoOutputsForTest(
uint32_t sampleMask = 0xFFFFFFFF) {
uint32_t sampleMask = 0xFFFFFFFF,
bool alphaToCoverageEnabled = false) {
const char* kFsTwoOutputs =
R"(#version 450
layout(location = 0) out vec4 fragColor1;
@ -81,7 +85,8 @@ class MultisampledRenderingTest : public DawnTest {
fragColor2 = color2;
})";
return CreateRenderPipelineForTest(kFsTwoOutputs, 2, false, sampleMask);
return CreateRenderPipelineForTest(kFsTwoOutputs, 2, false, sampleMask,
alphaToCoverageEnabled);
}
wgpu::Texture CreateTextureForOutputAttachment(wgpu::TextureFormat format,
@ -117,6 +122,13 @@ class MultisampledRenderingTest : public DawnTest {
renderPassEncoder.EndPass();
}
void EncodeRenderPassForTest(wgpu::CommandEncoder commandEncoder,
const wgpu::RenderPassDescriptor& renderPass,
const wgpu::RenderPipeline& pipeline,
const wgpu::Color& color) {
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &color.r, sizeof(color));
}
utils::ComboRenderPassDescriptor CreateComboRenderPassDescriptorForTest(
std::initializer_list<wgpu::TextureView> colorViews,
std::initializer_list<wgpu::TextureView> resolveTargetViews,
@ -152,17 +164,12 @@ class MultisampledRenderingTest : public DawnTest {
wgpu::Texture resolveTexture,
uint32_t mipmapLevel = 0,
uint32_t arrayLayer = 0,
const float MSAACoverage = 0.5f) {
const float msaaCoverage = 0.5f) {
// In this test we only check the pixel in the middle of the texture.
constexpr uint32_t kMiddleX = (kWidth - 1) / 2;
constexpr uint32_t kMiddleY = (kHeight - 1) / 2;
RGBA8 expectedColor;
expectedColor.r = static_cast<uint8_t>(0xFF * inputColor.r * MSAACoverage);
expectedColor.g = static_cast<uint8_t>(0xFF * inputColor.g * MSAACoverage);
expectedColor.b = static_cast<uint8_t>(0xFF * inputColor.b * MSAACoverage);
expectedColor.a = static_cast<uint8_t>(0xFF * inputColor.a * MSAACoverage);
RGBA8 expectedColor = ExpectedMSAAColor(inputColor, msaaCoverage);
EXPECT_TEXTURE_RGBA8_EQ(&expectedColor, resolveTexture, kMiddleX, kMiddleY, 1, 1,
mipmapLevel, arrayLayer);
}
@ -189,7 +196,9 @@ class MultisampledRenderingTest : public DawnTest {
wgpu::RenderPipeline CreateRenderPipelineForTest(const char* fs,
uint32_t numColorAttachments,
bool hasDepthStencilAttachment,
uint32_t sampleMask = 0xFFFFFFFF) {
uint32_t sampleMask = 0xFFFFFFFF,
bool alphaToCoverageEnabled = false,
bool flipTriangle = false) {
utils::ComboRenderPipelineDescriptor pipelineDescriptor(device);
// Draw a bottom-right triangle. In standard 4xMSAA pattern, for the pixels on diagonal,
@ -200,8 +209,22 @@ class MultisampledRenderingTest : public DawnTest {
void main() {
gl_Position = vec4(pos[gl_VertexIndex], 0.0, 1.0);
})";
pipelineDescriptor.vertexStage.module =
utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, vs);
// Draw a bottom-left triangle.
const char* vsFlipped =
R"(#version 450
const vec2 pos[3] = vec2[3](vec2(-1.f, 1.f), vec2(1.f, 1.f), vec2(-1.f, -1.f));
void main() {
gl_Position = vec4(pos[gl_VertexIndex], 0.0, 1.0);
})";
if (flipTriangle) {
pipelineDescriptor.vertexStage.module =
utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, vsFlipped);
} else {
pipelineDescriptor.vertexStage.module =
utils::CreateShaderModule(device, utils::SingleShaderStage::Vertex, vs);
}
pipelineDescriptor.cFragmentStage.module =
utils::CreateShaderModule(device, utils::SingleShaderStage::Fragment, fs);
@ -215,6 +238,7 @@ class MultisampledRenderingTest : public DawnTest {
pipelineDescriptor.sampleCount = kSampleCount;
pipelineDescriptor.sampleMask = sampleMask;
pipelineDescriptor.alphaToCoverageEnabled = alphaToCoverageEnabled;
pipelineDescriptor.colorStateCount = numColorAttachments;
for (uint32_t i = 0; i < numColorAttachments; ++i) {
@ -224,6 +248,15 @@ class MultisampledRenderingTest : public DawnTest {
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&pipelineDescriptor);
return pipeline;
}
RGBA8 ExpectedMSAAColor(const wgpu::Color color, const float msaaCoverage) {
RGBA8 result;
result.r = static_cast<uint8_t>(std::min(255.0f, 256 * color.r * msaaCoverage));
result.g = static_cast<uint8_t>(std::min(255.0f, 256 * color.g * msaaCoverage));
result.b = static_cast<uint8_t>(std::min(255.0f, 256 * color.b * msaaCoverage));
result.a = static_cast<uint8_t>(std::min(255.0f, 256 * color.a * msaaCoverage));
return result;
}
};
// Test using one multisampled color attachment with resolve target can render correctly.
@ -233,7 +266,6 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTexture) {
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(kTestDepth);
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
// Draw a green triangle.
{
@ -241,7 +273,7 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTexture) {
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
@ -257,7 +289,6 @@ TEST_P(MultisampledRenderingTest, ResolveFromSingleLayerArrayInto2DTexture) {
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(kTestDepth);
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
// Draw a green triangle.
{
@ -269,7 +300,7 @@ TEST_P(MultisampledRenderingTest, ResolveFromSingleLayerArrayInto2DTexture) {
{mMultisampledColorTexture.CreateView(&desc)}, {mResolveView}, wgpu::LoadOp::Clear,
wgpu::LoadOp::Clear, kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
@ -306,7 +337,7 @@ TEST_P(MultisampledRenderingTest, MultisampledRenderingWithDepthTest) {
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Load, wgpu::LoadOp::Load,
kTestDepth);
std::array<float, 8> kUniformData = {kRed.r, kRed.g, kRed.b, kRed.a, // color
std::array<float, 5> kUniformData = {kRed.r, kRed.g, kRed.b, kRed.a, // color
0.5f}; // depth
constexpr uint32_t kSize = sizeof(kUniformData);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kUniformData.data(), kSize);
@ -328,7 +359,6 @@ TEST_P(MultisampledRenderingTest, ResolveInAnotherRenderPass) {
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(kTestDepth);
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
// In first render pass we draw a green triangle and do not set the resolve target.
{
@ -336,7 +366,7 @@ TEST_P(MultisampledRenderingTest, ResolveInAnotherRenderPass) {
{mMultisampledColorView}, {nullptr}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
// In second render pass we ony do MSAA resolve with no draw call.
@ -398,7 +428,6 @@ TEST_P(MultisampledRenderingTest, ResolveOneMultisampledTextureTwice) {
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(kTestDepth);
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
wgpu::Texture resolveTexture2 = CreateTextureForOutputAttachment(kColorFormat, 1);
@ -408,7 +437,7 @@ TEST_P(MultisampledRenderingTest, ResolveOneMultisampledTextureTwice) {
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
// In second render pass we do MSAA resolve into resolveTexture2.
@ -450,7 +479,6 @@ TEST_P(MultisampledRenderingTest, ResolveIntoOneMipmapLevelOf2DTexture) {
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
constexpr bool kTestDepth = false;
// Draw a green triangle and do MSAA resolve.
@ -460,7 +488,7 @@ TEST_P(MultisampledRenderingTest, ResolveIntoOneMipmapLevelOf2DTexture) {
kTestDepth);
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
@ -544,7 +572,6 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithSampleMask) {
CreateRenderPipelineWithOneOutputForTest(kTestDepth, kSampleMask);
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
// Draw a green triangle.
{
@ -552,7 +579,7 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithSampleMask) {
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
@ -574,7 +601,6 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithEmptyFinalSampleMask)
CreateRenderPipelineWithOneOutputForTest(kTestDepth, kSampleMask);
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
// Draw a green triangle.
{
@ -582,7 +608,7 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithEmptyFinalSampleMask)
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
@ -673,7 +699,7 @@ TEST_P(MultisampledRenderingTest, MultisampledRenderingWithDepthTestAndSampleMas
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Load, wgpu::LoadOp::Load,
kTestDepth);
std::array<float, 8> kUniformData = {kRed.r, kRed.g, kRed.b, kRed.a, // color
std::array<float, 5> kUniformData = {kRed.r, kRed.g, kRed.b, kRed.a, // color
0.5f}; // depth
constexpr uint32_t kSize = sizeof(kUniformData);
EncodeRenderPassForTest(commandEncoder, renderPass, pipelineRed, kUniformData.data(),
@ -718,7 +744,6 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithSampleMaskAndShaderOut
wgpu::RenderPipeline pipeline = CreateRenderPipelineForTest(fs, 1, false, kSampleMask);
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.8f};
constexpr uint32_t kSize = sizeof(kGreen);
// Draw a green triangle.
{
@ -726,18 +751,13 @@ TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithSampleMaskAndShaderOut
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kGreen.r, kSize);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
queue.Submit(1, &commandBuffer);
RGBA8 expectedColor;
expectedColor.r = static_cast<uint8_t>(0xFF * kGreen.r * kMSAACoverage);
expectedColor.g = static_cast<uint8_t>(0xFF * kGreen.g * kMSAACoverage);
expectedColor.b = static_cast<uint8_t>(0xFF * kGreen.b * kMSAACoverage);
expectedColor.a = static_cast<uint8_t>(0xFF * kGreen.a * kMSAACoverage);
RGBA8 expectedColor = ExpectedMSAAColor(kGreen, kMSAACoverage);
EXPECT_TEXTURE_RGBA8_EQ(&expectedColor, mResolveTexture, 1, 0, 1, 1, 0, 0);
}
@ -791,6 +811,235 @@ TEST_P(MultisampledRenderingTest, ResolveIntoMultipleResolveTargetsWithShaderOut
VerifyResolveTarget(kGreen, resolveTexture2, 0, 0, kMSAACoverage);
}
// Test using one multisampled color attachment with resolve target can render correctly
// with alphaToCoverageEnabled.
TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithAlphaToCoverage) {
constexpr bool kTestDepth = false;
constexpr uint32_t kSampleMask = 0xFFFFFFFF;
constexpr bool kAlphaToCoverageEnabled = true;
// Setting alpha <= 0 must result in alpha-to-coverage mask being empty.
// Setting alpha = 0.5f should result in alpha-to-coverage mask including half the samples,
// but this is not guaranteed by the spec. The Metal spec seems to guarantee that this is
// indeed the case.
// Setting alpha >= 1 must result in alpha-to-coverage mask being full.
for (float alpha : {-1.0f, 0.0f, 0.5f, 1.0f, 2.0f}) {
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(
kTestDepth, kSampleMask, kAlphaToCoverageEnabled);
const wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, alpha};
// Draw a green triangle.
{
utils::ComboRenderPassDescriptor renderPass = CreateComboRenderPassDescriptorForTest(
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
queue.Submit(1, &commandBuffer);
// For alpha = {0, 0.5, 1} we expect msaaCoverage to correspond to the value of alpha.
float msaaCoverage = alpha;
if (alpha < 0.0f) {
msaaCoverage = 0.0f;
}
if (alpha > 1.0f) {
msaaCoverage = 1.0f;
}
RGBA8 expectedColor = ExpectedMSAAColor(kGreen, msaaCoverage);
EXPECT_TEXTURE_RGBA8_EQ(&expectedColor, mResolveTexture, 1, 0, 1, 1, 0, 0);
}
}
// Test doing MSAA resolve into multiple resolve targets works correctly with
// alphaToCoverage. The alphaToCoverage mask is computed based on the alpha
// component of the first color output attachment.
TEST_P(MultisampledRenderingTest, ResolveIntoMultipleResolveTargetsWithAlphaToCoverage) {
wgpu::TextureView multisampledColorView2 =
CreateTextureForOutputAttachment(kColorFormat, kSampleCount).CreateView();
wgpu::Texture resolveTexture2 = CreateTextureForOutputAttachment(kColorFormat, 1);
wgpu::TextureView resolveView2 = resolveTexture2.CreateView();
constexpr uint32_t kSampleMask = 0xFFFFFFFF;
constexpr float kMSAACoverage = 0.50f;
constexpr bool kAlphaToCoverageEnabled = true;
// The alpha-to-coverage mask should not depend on the alpha component of the
// second color output attachment.
// We test alpha = 0.51f and 0.99f instead of 0.50f and 1.00f because there are some rounding
// differences on QuadroP400 devices in that case.
for (float alpha : {0.0f, 0.51f, 0.99f}) {
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPipeline pipeline =
CreateRenderPipelineWithTwoOutputsForTest(kSampleMask, kAlphaToCoverageEnabled);
constexpr wgpu::Color kRed = {0.8f, 0.0f, 0.0f, 0.51f};
const wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, alpha};
constexpr bool kTestDepth = false;
// Draw a red triangle to the first color attachment, and a blue triangle to the second
// color attachment, and do MSAA resolve on two render targets in one render pass.
{
utils::ComboRenderPassDescriptor renderPass = CreateComboRenderPassDescriptorForTest(
{mMultisampledColorView, multisampledColorView2}, {mResolveView, resolveView2},
wgpu::LoadOp::Clear, wgpu::LoadOp::Clear, kTestDepth);
std::array<wgpu::Color, 2> kUniformData = {kRed, kGreen};
constexpr uint32_t kSize = sizeof(kUniformData);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, &kUniformData[0].r,
kSize);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
queue.Submit(1, &commandBuffer);
// Alpha to coverage affects both the color outputs, but the mask is computed
// using only the first one.
RGBA8 expectedRed = ExpectedMSAAColor(kRed, kMSAACoverage);
RGBA8 expectedGreen = ExpectedMSAAColor(kGreen, kMSAACoverage);
EXPECT_TEXTURE_RGBA8_EQ(&expectedRed, mResolveTexture, 1, 0, 1, 1, 0, 0);
EXPECT_TEXTURE_RGBA8_EQ(&expectedGreen, resolveTexture2, 1, 0, 1, 1, 0, 0);
}
}
// Test multisampled rendering with depth test works correctly with alphaToCoverage.
TEST_P(MultisampledRenderingTest, MultisampledRenderingWithDepthTestAndAlphaToCoverage) {
constexpr bool kTestDepth = true;
constexpr uint32_t kSampleMask = 0xFFFFFFFF;
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPipeline pipelineGreen =
CreateRenderPipelineWithOneOutputForTest(kTestDepth, kSampleMask, true);
wgpu::RenderPipeline pipelineRed =
CreateRenderPipelineWithOneOutputForTest(kTestDepth, kSampleMask, false);
// We test alpha = 0.51f and 0.81f instead of 0.50f and 0.80f because there are some
// rounding differences on QuadroP400 devices in that case.
constexpr wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, 0.51f};
constexpr wgpu::Color kRed = {0.8f, 0.0f, 0.0f, 0.81f};
// In first render pass we draw a green triangle with depth value == 0.2f.
// We will only write to half the samples since the alphaToCoverage mode
// is enabled for that render pass.
{
utils::ComboRenderPassDescriptor renderPass = CreateComboRenderPassDescriptorForTest(
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
std::array<float, 5> kUniformData = {kGreen.r, kGreen.g, kGreen.b, kGreen.a, // Color
0.2f}; // depth
constexpr uint32_t kSize = sizeof(kUniformData);
EncodeRenderPassForTest(commandEncoder, renderPass, pipelineGreen, kUniformData.data(),
kSize);
}
// In second render pass we draw a red triangle with depth value == 0.5f.
// We will write to all the samples since the alphaToCoverageMode is diabled for
// that render pass.
{
utils::ComboRenderPassDescriptor renderPass = CreateComboRenderPassDescriptorForTest(
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Load, wgpu::LoadOp::Load,
kTestDepth);
std::array<float, 5> kUniformData = {kRed.r, kRed.g, kRed.b, kRed.a, // color
0.5f}; // depth
constexpr uint32_t kSize = sizeof(kUniformData);
EncodeRenderPassForTest(commandEncoder, renderPass, pipelineRed, kUniformData.data(),
kSize);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
queue.Submit(1, &commandBuffer);
constexpr wgpu::Color kHalfGreenHalfRed = {(kGreen.r + kRed.r) / 2.0, (kGreen.g + kRed.g) / 2.0,
(kGreen.b + kRed.b) / 2.0,
(kGreen.a + kRed.a) / 2.0};
RGBA8 expectedColor = ExpectedMSAAColor(kHalfGreenHalfRed, 1.0f);
EXPECT_TEXTURE_RGBA8_EQ(&expectedColor, mResolveTexture, 1, 0, 1, 1, 0, 0);
}
// Test using one multisampled color attachment with resolve target can render correctly
// with alphaToCoverageEnabled and a sample mask.
TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithAlphaToCoverageAndSampleMask) {
// TODO(dawn:491): This doesn't work on Metal, because we're using both the shader-output
// mask (emulting the sampleMask from RenderPipeline) and alpha-to-coverage at the same
// time. See the issue: https://github.com/gpuweb/gpuweb/issues/959.
DAWN_SKIP_TEST_IF(IsMetal());
constexpr bool kTestDepth = false;
constexpr float kMSAACoverage = 0.50f;
constexpr uint32_t kSampleMask = kFirstSampleMaskBit | kThirdSampleMaskBit;
constexpr bool kAlphaToCoverageEnabled = true;
// For those values of alpha we expect the proportion of samples to be covered
// to correspond to the value of alpha.
// We're assuming in the case of alpha = 0.50f that the implementation
// dependendent algorithm will choose exactly one of the first and third samples.
for (float alpha : {0.0f, 0.50f, 1.00f}) {
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(
kTestDepth, kSampleMask, kAlphaToCoverageEnabled);
const wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, alpha - 0.01f};
// Draw a green triangle.
{
utils::ComboRenderPassDescriptor renderPass = CreateComboRenderPassDescriptorForTest(
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
queue.Submit(1, &commandBuffer);
RGBA8 expectedColor = ExpectedMSAAColor(kGreen, kMSAACoverage * alpha);
EXPECT_TEXTURE_RGBA8_EQ(&expectedColor, mResolveTexture, 1, 0, 1, 1, 0, 0);
}
}
// Test using one multisampled color attachment with resolve target can render correctly
// with alphaToCoverageEnabled and a rasterization mask.
TEST_P(MultisampledRenderingTest, ResolveInto2DTextureWithAlphaToCoverageAndRasterizationMask) {
constexpr bool kTestDepth = false;
constexpr float kMSAACoverage = 0.50f;
constexpr uint32_t kSampleMask = 0xFFFFFFFF;
constexpr bool kAlphaToCoverageEnabled = true;
constexpr bool kFlipTriangle = true;
// For those values of alpha we expect the proportion of samples to be covered
// to correspond to the value of alpha.
// We're assuming in the case of alpha = 0.50f that the implementation
// dependendent algorithm will choose exactly one of the samples covered by the
// triangle.
for (float alpha : {0.0f, 0.50f, 1.00f}) {
wgpu::CommandEncoder commandEncoder = device.CreateCommandEncoder();
wgpu::RenderPipeline pipeline = CreateRenderPipelineWithOneOutputForTest(
kTestDepth, kSampleMask, kAlphaToCoverageEnabled, kFlipTriangle);
const wgpu::Color kGreen = {0.0f, 0.8f, 0.0f, alpha - 0.01f};
// Draw a green triangle.
{
utils::ComboRenderPassDescriptor renderPass = CreateComboRenderPassDescriptorForTest(
{mMultisampledColorView}, {mResolveView}, wgpu::LoadOp::Clear, wgpu::LoadOp::Clear,
kTestDepth);
EncodeRenderPassForTest(commandEncoder, renderPass, pipeline, kGreen);
}
wgpu::CommandBuffer commandBuffer = commandEncoder.Finish();
queue.Submit(1, &commandBuffer);
VerifyResolveTarget(kGreen, mResolveTexture, 0, 0, kMSAACoverage * alpha);
}
}
DAWN_INSTANTIATE_TEST(MultisampledRenderingTest,
D3D12Backend(),
D3D12Backend({}, {"use_d3d12_resource_heap_tier2"}),

View File

@ -367,6 +367,30 @@ TEST_F(RenderPipelineValidationTest, SampleCountCompatibilityWithRenderPass) {
}
}
// Tests that the sample count of the render pipeline must be valid
// when the alphaToCoverage mode is enabled.
TEST_F(RenderPipelineValidationTest, AlphaToCoverageAndSampleCount) {
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.sampleCount = 4;
descriptor.alphaToCoverageEnabled = true;
device.CreateRenderPipeline(&descriptor);
}
{
utils::ComboRenderPipelineDescriptor descriptor(device);
descriptor.vertexStage.module = vsModule;
descriptor.cFragmentStage.module = fsModule;
descriptor.sampleCount = 1;
descriptor.alphaToCoverageEnabled = true;
ASSERT_DEVICE_ERROR(device.CreateRenderPipeline(&descriptor));
}
}
// Tests that the texture component type in shader must match the bind group layout.
TEST_F(RenderPipelineValidationTest, TextureComponentTypeCompatibility) {
constexpr uint32_t kNumTextureComponentType = 3u;