[spirv-reader] Add OpCompositeExtract

Bug: tint:3
Change-Id: I9d8c1cf2545e28ef0ddf89e55ce45ec19c50022a
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/23161
Reviewed-by: dan sinclair <dsinclair@google.com>
This commit is contained in:
David Neto 2020-06-16 01:02:21 +00:00 committed by dan sinclair
parent 6941c5354c
commit b2b0dfefa9
3 changed files with 397 additions and 1 deletions

View File

@ -45,6 +45,7 @@
#include "src/ast/sint_literal.h"
#include "src/ast/storage_class.h"
#include "src/ast/switch_statement.h"
#include "src/ast/type/u32_type.h"
#include "src/ast/type_constructor_expression.h"
#include "src/ast/uint_literal.h"
#include "src/ast/unary_op.h"
@ -2400,6 +2401,10 @@ TypedExpression FunctionEmitter::MaybeEmitCombinatorialValue(
ast_type, std::move(operands))};
}
if (opcode == SpvOpCompositeExtract) {
return MakeCompositeExtract(inst);
}
// builtin readonly function
// glsl.std.450 readonly function
@ -2462,7 +2467,7 @@ TypedExpression FunctionEmitter::MakeAccessChain(
// A SPIR-V access chain is a single instruction with multiple indices
// walking down into composites. The Tint AST represents this as
// ever-deeper nested indexing expresions. Start off with an expression
// ever-deeper nested indexing expressions. Start off with an expression
// for the base, and then bury that inside nested indexing expressions.
TypedExpression current_expr(MakeOperand(inst, 0));
@ -2574,6 +2579,113 @@ TypedExpression FunctionEmitter::MakeAccessChain(
return current_expr;
}
TypedExpression FunctionEmitter::MakeCompositeExtract(
const spvtools::opt::Instruction& inst) {
// This is structurally similar to creating an access chain, but
// the SPIR-V instruction has literal indices instead of IDs for indices.
// A SPIR-V composite extract is a single instruction with multiple
// literal indices walking down into composites. The Tint AST represents
// this as ever-deeper nested indexing expressions. Start off with an
// expression for the composite, and then bury that inside nested indexing
// expressions.
TypedExpression current_expr(MakeOperand(inst, 0));
auto make_index = [](uint32_t literal) {
ast::type::U32Type u32;
return std::make_unique<ast::ScalarConstructorExpression>(
std::make_unique<ast::UintLiteral>(&u32, literal));
};
static const char* swizzles[] = {"x", "y", "z", "w"};
const auto composite = inst.GetSingleWordInOperand(0);
const auto composite_type_id = def_use_mgr_->GetDef(composite)->type_id();
const auto* current_type = type_mgr_->GetType(composite_type_id);
const auto num_in_operands = inst.NumInOperands();
for (uint32_t index = 1; index < num_in_operands; ++index) {
const uint32_t index_val = inst.GetSingleWordInOperand(index);
std::unique_ptr<ast::Expression> next_expr;
switch (current_type->kind()) {
case spvtools::opt::analysis::Type::kVector: {
// Try generating a MemberAccessor expression. That result in something
// like "foo.z", which is more idiomatic than "foo[2]".
if (current_type->AsVector()->element_count() <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value "
<< index_val << " is out of bounds for vector of "
<< current_type->AsVector()->element_count() << " elements";
return {};
}
if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) {
Fail() << "internal error: swizzle index " << index_val
<< " is too big. Max handled index is "
<< ((sizeof(swizzles) / sizeof(swizzles[0])) - 1);
}
auto letter_index =
std::make_unique<ast::IdentifierExpression>(swizzles[index_val]);
next_expr = std::make_unique<ast::MemberAccessorExpression>(
std::move(current_expr.expr), std::move(letter_index));
current_type = current_type->AsVector()->element_type();
break;
}
case spvtools::opt::analysis::Type::kMatrix:
// Check bounds
if (current_type->AsMatrix()->element_count() <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value "
<< index_val << " is out of bounds for matrix of "
<< current_type->AsMatrix()->element_count() << " elements";
return {};
}
if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) {
Fail() << "internal error: swizzle index " << index_val
<< " is too big. Max handled index is "
<< ((sizeof(swizzles) / sizeof(swizzles[0])) - 1);
}
// Use array syntax.
next_expr = std::make_unique<ast::ArrayAccessorExpression>(
std::move(current_expr.expr), make_index(index_val));
current_type = current_type->AsMatrix()->element_type();
break;
case spvtools::opt::analysis::Type::kArray:
// The array size could be a spec constant, and so it's not always
// statically checkable. Instead, rely on a runtime index clamp
// or runtime check to keep this safe.
next_expr = std::make_unique<ast::ArrayAccessorExpression>(
std::move(current_expr.expr), make_index(index_val));
current_type = current_type->AsArray()->element_type();
break;
case spvtools::opt::analysis::Type::kRuntimeArray:
Fail() << "can't do OpCompositeExtract on a runtime array";
return {};
case spvtools::opt::analysis::Type::kStruct: {
if (current_type->AsStruct()->element_types().size() <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value "
<< index_val << " is out of bounds for structure %"
<< type_mgr_->GetId(current_type) << " having "
<< current_type->AsStruct()->element_types().size()
<< " elements";
return {};
}
auto member_access =
std::make_unique<ast::IdentifierExpression>(namer_.GetMemberName(
type_mgr_->GetId(current_type), uint32_t(index_val)));
next_expr = std::make_unique<ast::MemberAccessorExpression>(
std::move(current_expr.expr), std::move(member_access));
current_type = current_type->AsStruct()->element_types()[index_val];
break;
}
default:
Fail() << "CompositeExtract with bad type %"
<< type_mgr_->GetId(current_type) << " " << current_type->str();
return {};
}
current_expr.reset(TypedExpression(
parser_impl_.ConvertType(type_mgr_->GetId(current_type)),
std::move(next_expr)));
}
return current_expr;
}
} // namespace spirv
} // namespace reader
} // namespace tint

View File

@ -433,6 +433,11 @@ class FunctionEmitter {
/// @returns an AST expression for the instruction, or nullptr.
TypedExpression EmitGlslStd450ExtInst(const spvtools::opt::Instruction& inst);
/// Creates an expression for OpCompositeExtract
/// @param inst an OpCompositeExtract instruction.
/// @returns an AST expression for the instruction, or nullptr.
TypedExpression MakeCompositeExtract(const spvtools::opt::Instruction& inst);
/// Gets the block info for a block ID, if any exists
/// @param id the SPIR-V ID of the OpLabel instruction starting the block
/// @returns the block info for the given ID, if it exists, or nullptr

View File

@ -27,6 +27,7 @@ namespace reader {
namespace spirv {
namespace {
using ::testing::Eq;
using ::testing::HasSubstr;
std::string Preamble() {
@ -54,6 +55,7 @@ std::string Preamble() {
%v2float = OpTypeVector %float 2
%m3v2float = OpTypeMatrix %v2float 3
%m3v2float_0 = OpConstantNull %m3v2float
%s_v2f_u_i = OpTypeStruct %v2float %uint %int
%a_u_5 = OpTypeArray %uint %uint_5
@ -229,6 +231,283 @@ TEST_F(SpvParserTest_Composite_Construct, Struct) {
<< ToString(fe.ast_body());
}
using SpvParserTest_CompositeExtract = SpvParserTest;
TEST_F(SpvParserTest_CompositeExtract, Vector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCompositeExtract %float %v2float_50_60 1
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_1
none
__f32
{
MemberAccessor{
TypeConstructor{
__vec_2__f32
ScalarConstructor{50.000000}
ScalarConstructor{60.000000}
}
Identifier{y}
}
}
})")) << ToString(fe.ast_body());
}
TEST_F(SpvParserTest_CompositeExtract, Vector_IndexTooBigError) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCompositeExtract %float %v2float_50_60 900
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_FALSE(fe.EmitBody());
EXPECT_THAT(p->error(), Eq("CompositeExtract %1 index value 900 is out of "
"bounds for vector of 2 elements"));
}
TEST_F(SpvParserTest_CompositeExtract, Matrix) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %m3v2float %var
%2 = OpCompositeExtract %v2float %1 2
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_2
none
__vec_2__f32
{
ArrayAccessor{
Identifier{x_1}
ScalarConstructor{2}
}
}
})"))
<< ToString(fe.ast_body());
}
TEST_F(SpvParserTest_CompositeExtract, Matrix_IndexTooBigError) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %m3v2float %var
%2 = OpCompositeExtract %v2float %1 3
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_FALSE(fe.EmitBody()) << p->error();
EXPECT_THAT(p->error(), Eq("CompositeExtract %2 index value 3 is out of "
"bounds for matrix of 3 elements"));
}
TEST_F(SpvParserTest_CompositeExtract, Matrix_Vector) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %m3v2float
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %m3v2float %var
%2 = OpCompositeExtract %float %1 2 1
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_2
none
__f32
{
MemberAccessor{
ArrayAccessor{
Identifier{x_1}
ScalarConstructor{2}
}
Identifier{y}
}
}
})"))
<< ToString(fe.ast_body());
}
TEST_F(SpvParserTest_CompositeExtract, Array) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %a_u_5
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %a_u_5 %var
%2 = OpCompositeExtract %uint %1 3
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_2
none
__u32
{
ArrayAccessor{
Identifier{x_1}
ScalarConstructor{3}
}
}
})"))
<< ToString(fe.ast_body());
}
TEST_F(SpvParserTest_CompositeExtract, RuntimeArray_IsError) {
const auto assembly = Preamble() + R"(
%rtarr = OpTypeRuntimeArray %uint
%ptr = OpTypePointer Function %rtarr
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %rtarr %var
%2 = OpCompositeExtract %uint %1 3
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_FALSE(fe.EmitBody()) << p->error();
EXPECT_THAT(p->error(), Eq("can't do OpCompositeExtract on a runtime array"));
}
TEST_F(SpvParserTest_CompositeExtract, Struct) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %s_v2f_u_i
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %s_v2f_u_i %var
%2 = OpCompositeExtract %int %1 2
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_2
none
__i32
{
MemberAccessor{
Identifier{x_1}
Identifier{field2}
}
}
})"))
<< ToString(fe.ast_body());
}
TEST_F(SpvParserTest_CompositeExtract, Struct_IndexTooBigError) {
const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %s_v2f_u_i
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %s_v2f_u_i %var
%2 = OpCompositeExtract %int %1 40
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_FALSE(fe.EmitBody());
EXPECT_THAT(p->error(), Eq("CompositeExtract %2 index value 40 is out of "
"bounds for structure %23 having 3 elements"));
}
TEST_F(SpvParserTest_CompositeExtract, Struct_Array_Matrix_Vector) {
const auto assembly = Preamble() + R"(
%a_mat = OpTypeArray %m3v2float %uint_3
%s = OpTypeStruct %uint %a_mat
%ptr = OpTypePointer Function %s
%var = OpVariable %ptr Function
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpLoad %s %var
%2 = OpCompositeExtract %float %1 1 2 0 1
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_2
none
__f32
{
MemberAccessor{
ArrayAccessor{
ArrayAccessor{
MemberAccessor{
Identifier{x_1}
Identifier{field1}
}
ScalarConstructor{2}
}
ScalarConstructor{0}
}
Identifier{y}
}
}
})"))
<< ToString(fe.ast_body());
}
} // namespace
} // namespace spirv
} // namespace reader