Remove internal resolve buffer from Timestamp compute shader

In timestamp compute shader, we will create an internal buffer for
resolving QuerySet and use it as input buffer in compute shader,
the user-provided resolve buffer is used as output buffer.

This will cause the buffer zero initialization to be called twice,
one is the internal buffer is zero initialized in ResolveQuerySet,
antoher is the user-provided buffer is tracked as pass resource
and need to be initialized. But for ResolveQuerySet(), we expect
there is only once.

We have no special requirements to have an internal buffer. It is
possible to directly use the user-provided buffer for read and
write becuase it will get STORAGE_INTERNAL usage.

Bug: dawn:434
Change-Id: Ia8c8ac6e9ba23fea31468a6d9b4580eece189be2
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/36201
Commit-Queue: Hao Li <hao.x.li@intel.com>
Reviewed-by: Corentin Wallez <cwallez@chromium.org>
This commit is contained in:
Hao Li 2021-01-05 04:49:08 +00:00 committed by Commit Bot service account
parent cdbd295cc6
commit c120b02dbe
3 changed files with 103 additions and 118 deletions

View File

@ -14,8 +14,6 @@
#include "dawn_native/QueryHelper.h"
#include <cmath>
#include "dawn_native/BindGroup.h"
#include "dawn_native/BindGroupLayout.h"
#include "dawn_native/Buffer.h"
@ -30,10 +28,9 @@ namespace dawn_native {
namespace {
// Assert the offsets in dawn_native::TimestampParams are same with the ones in the shader
static_assert(offsetof(dawn_native::TimestampParams, inputByteOffset) == 0, "");
static_assert(offsetof(dawn_native::TimestampParams, outputByteOffset) == 4, "");
static_assert(offsetof(dawn_native::TimestampParams, count) == 8, "");
static_assert(offsetof(dawn_native::TimestampParams, period) == 12, "");
static_assert(offsetof(dawn_native::TimestampParams, count) == 0, "");
static_assert(offsetof(dawn_native::TimestampParams, offset) == 4, "");
static_assert(offsetof(dawn_native::TimestampParams, period) == 8, "");
static const char sConvertTimestampsToNanoseconds[] = R"(
struct Timestamp {
@ -50,19 +47,16 @@ namespace dawn_native {
};
[[block]] struct TimestampParams {
[[offset(0)]] inputByteOffset : u32;
[[offset(4)]] outputByteOffset : u32;
[[offset(8)]] count : u32;
[[offset(12)]] period : f32;
[[offset(0)]] count : u32;
[[offset(4)]] offset : u32;
[[offset(8)]] period : f32;
};
[[set(0), binding(0)]]
var<storage_buffer> input : [[access(read)]] TimestampArr;
var<storage_buffer> timestamps : [[access(read_write)]] TimestampArr;
[[set(0), binding(1)]]
var<storage_buffer> availability : [[access(read)]] AvailabilityArr;
[[set(0), binding(2)]]
var<storage_buffer> output : [[access(read_write)]] TimestampArr;
[[set(0), binding(3)]] var<uniform> params : TimestampParams;
[[set(0), binding(2)]] var<uniform> params : TimestampParams;
[[builtin(global_invocation_id)]] var<in> GlobalInvocationID : vec3<u32>;
@ -72,21 +66,18 @@ namespace dawn_native {
fn main() -> void {
if (GlobalInvocationID.x >= params.count) { return; }
var inputIndex : u32 = GlobalInvocationID.x +
params.inputByteOffset / sizeofTimestamp;
var outputIndex : u32 = GlobalInvocationID.x +
params.outputByteOffset / sizeofTimestamp;
var index : u32 = GlobalInvocationID.x + params.offset / sizeofTimestamp;
var timestamp : Timestamp = input.t[inputIndex];
var timestamp : Timestamp = timestamps.t[index];
# Return 0 for the unavailable value.
if (availability.v[inputIndex] == 0u) {
output.t[outputIndex].low = 0u;
output.t[outputIndex].high = 0u;
if (availability.v[index] == 0u) {
timestamps.t[index].low = 0u;
timestamps.t[index].high = 0u;
return;
}
# Multiply input values by the period and store into output.
# Multiply the values in timestamps buffer by the period.
var period : f32 = params.period;
var w : u32 = 0u;
@ -94,7 +85,7 @@ namespace dawn_native {
# directly do the multiplication, otherwise, use two u32 to represent the high
# 16-bits and low 16-bits of this u32, then multiply them by the period separately.
if (timestamp.low <= u32(f32(0xFFFFFFFFu) / period)) {
output.t[outputIndex].low = u32(round(f32(timestamp.low) * period));
timestamps.t[index].low = u32(round(f32(timestamp.low) * period));
} else {
var lo : u32 = timestamp.low & 0xFFFF;
var hi : u32 = timestamp.low >> 16;
@ -105,12 +96,12 @@ namespace dawn_native {
var result : u32 = t1 << 16;
result = result | (t0 & 0xFFFF);
output.t[outputIndex].low = result;
timestamps.t[index].low = result;
}
# Get the nearest integer to the float result. For high 32-bits, the round
# function will greatly help reduce the accuracy loss of the final result.
output.t[outputIndex].high = u32(round(f32(timestamp.high) * period)) + w;
timestamps.t[index].high = u32(round(f32(timestamp.high) * period)) + w;
}
)";
@ -145,9 +136,8 @@ namespace dawn_native {
} // anonymous namespace
void EncodeConvertTimestampsToNanoseconds(CommandEncoder* encoder,
BufferBase* input,
BufferBase* timestamps,
BufferBase* availability,
BufferBase* output,
BufferBase* params) {
DeviceBase* device = encoder->GetDevice();
@ -157,25 +147,22 @@ namespace dawn_native {
Ref<BindGroupLayoutBase> layout = AcquireRef(pipeline->GetBindGroupLayout(0));
// Prepare bind group descriptor
std::array<BindGroupEntry, 4> bindGroupEntries = {};
std::array<BindGroupEntry, 3> bindGroupEntries = {};
BindGroupDescriptor bgDesc = {};
bgDesc.layout = layout.Get();
bgDesc.entryCount = 4;
bgDesc.entryCount = 3;
bgDesc.entries = bindGroupEntries.data();
// Set bind group entries.
bindGroupEntries[0].binding = 0;
bindGroupEntries[0].buffer = input;
bindGroupEntries[0].size = input->GetSize();
bindGroupEntries[0].buffer = timestamps;
bindGroupEntries[0].size = timestamps->GetSize();
bindGroupEntries[1].binding = 1;
bindGroupEntries[1].buffer = availability;
bindGroupEntries[1].size = availability->GetSize();
bindGroupEntries[2].binding = 2;
bindGroupEntries[2].buffer = output;
bindGroupEntries[2].size = output->GetSize();
bindGroupEntries[3].binding = 3;
bindGroupEntries[3].buffer = params;
bindGroupEntries[3].size = params->GetSize();
bindGroupEntries[2].buffer = params;
bindGroupEntries[2].size = params->GetSize();
// Create bind group after all binding entries are set.
Ref<BindGroupBase> bindGroup = AcquireRef(device->CreateBindGroup(&bgDesc));
@ -185,7 +172,7 @@ namespace dawn_native {
Ref<ComputePassEncoder> pass = AcquireRef(encoder->BeginComputePass(&passDesc));
pass->SetPipeline(pipeline);
pass->SetBindGroup(0, bindGroup.Get());
pass->Dispatch(static_cast<uint32_t>(ceil((input->GetSize() / sizeof(uint64_t) + 7) / 8)));
pass->Dispatch(static_cast<uint32_t>((timestamps->GetSize() / sizeof(uint64_t) + 7) / 8));
pass->EndPass();
}

View File

@ -24,16 +24,14 @@ namespace dawn_native {
class CommandEncoder;
struct TimestampParams {
uint32_t inputByteOffset;
uint32_t outputByteOffset;
uint32_t count;
uint32_t offset;
float period;
};
void EncodeConvertTimestampsToNanoseconds(CommandEncoder* encoder,
BufferBase* input,
BufferBase* timestamps,
BufferBase* availability,
BufferBase* output,
BufferBase* params);
} // namespace dawn_native

View File

@ -22,15 +22,13 @@
namespace {
void EncodeConvertTimestampsToNanoseconds(wgpu::CommandEncoder encoder,
wgpu::Buffer input,
wgpu::Buffer timestamps,
wgpu::Buffer availability,
wgpu::Buffer output,
wgpu::Buffer params) {
dawn_native::EncodeConvertTimestampsToNanoseconds(
reinterpret_cast<dawn_native::CommandEncoder*>(encoder.Get()),
reinterpret_cast<dawn_native::BufferBase*>(input.Get()),
reinterpret_cast<dawn_native::BufferBase*>(timestamps.Get()),
reinterpret_cast<dawn_native::BufferBase*>(availability.Get()),
reinterpret_cast<dawn_native::BufferBase*>(output.Get()),
reinterpret_cast<dawn_native::BufferBase*>(params.Get()));
}
@ -78,14 +76,14 @@ class QueryInternalShaderTests : public DawnTest {};
// Test the accuracy of timestamp compute shader which uses unsigned 32-bit integers to simulate
// unsigned 64-bit integers (timestamps) multiplied by float (period).
// The arguments pass to timestamp internal pipeline:
// - The input buffer passes the original timestamps resolved from query set (created by manual
//  here).
// - The availability buffer passes the data of which slot in input buffer is an initialized
// - The timestamps buffer contains the original timestamps resolved from query set (created
// manually here), and will be used to store the results processed by the compute shader.
// Expect 0 for unavailable timestamps and nanoseconds for available timestamps in an expected
// error tolerance ratio.
// - The availability buffer passes the data of which slot in timestamps buffer is an initialized
//  timestamp.
// - The output buffer stores the converted results, expect 0 for unavailable timestamps and
//  nanoseconds for available timestamps in an expected error rate.
// - The params buffer passes the offset of input and output buffers, the count of timestamps and
// the timestamp period (here use GPU frequency (HZ) on Intel D3D12 to calculate the period in
// - The params buffer passes the timestamp count, the offset in timestamps buffer and the
// timestamp period (here use GPU frequency (HZ) on Intel D3D12 to calculate the period in
// ns for testing).
TEST_P(QueryInternalShaderTests, TimestampComputeShader) {
DAWN_SKIP_TEST_IF(UsesWire());
@ -100,103 +98,105 @@ TEST_P(QueryInternalShaderTests, TimestampComputeShader) {
constexpr uint64_t kNsPerSecond = 1000000000u;
// Timestamp period in nanoseconds
constexpr float kPeriod = static_cast<float>(kNsPerSecond) / kGPUFrequency;
constexpr uint64_t kOne = 1u;
// Original timestamp values for testing
std::array<uint64_t, kTimestampCount> timestamps;
timestamps[0] = 0; // not written at beginning
timestamps[1] = 10079569507; // t0
timestamps[2] = 10394415012; // t1
timestamps[3] = 0; // not written between timestamps
timestamps[4] = 11713454943; // t2
timestamps[5] = 38912556941; // t3 (big value)
timestamps[6] = 10080295766; // t4 (reset)
timestamps[7] = 12159966783; // t5 (after reset)
timestamps[8] = 12651224612; // t6
timestamps[9] = 39872473956; // t7
std::vector<uint64_t> timestamps = {
1, // garbage data which is not written at beginning
10079569507, // t0
10394415012, // t1
1, // garbage data which is not written between timestamps
11713454943, // t2
38912556941, // t3 (big value)
10080295766, // t4 (reset)
12159966783, // t5 (after reset)
12651224612, // t6
39872473956, // t7
};
// Expected results: Timestamp value * kNsPerSecond / kGPUFrequency
std::array<uint64_t, kTimestampCount> expected;
// The availablility state of each timestamp
std::array<uint32_t, kTimestampCount> availabilities;
// The buffer indicating which values are available timestamps
std::vector<uint32_t> availabilities = {0, 1, 1, 0, 1, 1, 1, 1, 1, 1};
wgpu::Buffer availabilityBuffer =
utils::CreateBufferFromData(device, availabilities.data(),
kTimestampCount * sizeof(uint32_t), wgpu::BufferUsage::Storage);
for (size_t i = 0; i < kTimestampCount; i++) {
if (timestamps[i] == 0) {
// Not a timestamp value, keep original value
expected[i] = 0u;
availabilities[i] = 0u;
} else {
// Maybe the timestamp * 10^9 is larger than the maximum of uint64, so cast the delta
// value to double (higher precision than float)
expected[i] = static_cast<uint64_t>(static_cast<double>(timestamps[i]) * kNsPerSecond /
kGPUFrequency);
availabilities[i] = 1u;
}
}
// The input storage buffer
wgpu::Buffer inputBuffer =
utils::CreateBufferFromData(device, timestamps.data(), sizeof(timestamps),
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
EXPECT_BUFFER_U64_RANGE_EQ(timestamps.data(), inputBuffer, 0, kTimestampCount);
// To indicate which value is available
wgpu::Buffer availabilityBuffer = utils::CreateBufferFromData(
device, availabilities.data(), sizeof(availabilities), wgpu::BufferUsage::Storage);
// The output storage buffer
wgpu::BufferDescriptor outputDesc;
outputDesc.size = kTimestampCount * sizeof(uint64_t);
outputDesc.usage =
// The resolve buffer storing original timestamps and the converted values
wgpu::BufferDescriptor timestampsDesc;
timestampsDesc.size = kTimestampCount * sizeof(uint64_t);
timestampsDesc.usage =
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
wgpu::Buffer outputBuffer = device.CreateBuffer(&outputDesc);
wgpu::Buffer timestampsBuffer = device.CreateBuffer(&timestampsDesc);
std::array<uint64_t, kTimestampCount> ones;
ones.fill(kOne);
auto PrepareExpectedResults = [&](uint32_t offset) -> std::vector<uint64_t> {
ASSERT(offset % sizeof(uint64_t) == 0);
std::vector<uint64_t> expected;
for (size_t i = 0; i < kTimestampCount; i++) {
// The data before offset remains as it is
if (i < offset / sizeof(uint64_t)) {
expected.push_back(timestamps[i]);
continue;
}
// Convert timestamps to output buffer with offset 0
if (availabilities[i] == 0) {
// Not a available timestamp, write 0
expected.push_back(0u);
} else {
// Maybe the timestamp * period is larger than the maximum of uint64, so cast the
// delta value to double (higher precision than float)
expected.push_back(
static_cast<uint64_t>(static_cast<double>(timestamps[i]) * kPeriod));
}
}
return expected;
};
// Convert timestamps in timestamps buffer with offset 0
{
queue.WriteBuffer(outputBuffer, 0, ones.data(), sizeof(ones));
constexpr uint32_t kOffset = 0u;
// Write orignal timestamps to timestamps buffer
queue.WriteBuffer(timestampsBuffer, 0, timestamps.data(),
kTimestampCount * sizeof(uint64_t));
// The params uniform buffer
dawn_native::TimestampParams params = {kOffset, kOffset, kTimestampCount, kPeriod};
dawn_native::TimestampParams params = {kTimestampCount, kOffset, kPeriod};
wgpu::Buffer paramsBuffer = utils::CreateBufferFromData(device, &params, sizeof(params),
wgpu::BufferUsage::Uniform);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
EncodeConvertTimestampsToNanoseconds(encoder, inputBuffer, availabilityBuffer, outputBuffer,
EncodeConvertTimestampsToNanoseconds(encoder, timestampsBuffer, availabilityBuffer,
paramsBuffer);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER(outputBuffer, kOffset, kTimestampCount * sizeof(uint64_t),
// Expected results: Timestamp * period
std::vector<uint64_t> expected = PrepareExpectedResults(kOffset);
EXPECT_BUFFER(timestampsBuffer, 0, kTimestampCount * sizeof(uint64_t),
new InternalShaderExpectation(expected.data(), kTimestampCount));
}
// Convert timestamps to output buffer with offset 8 from input buffer with offset 8
// Convert timestamps in timestamps buffer with offset 8
{
queue.WriteBuffer(outputBuffer, 0, ones.data(), sizeof(ones));
constexpr uint32_t kOffset = 8u;
// Write orignal timestamps to timestamps buffer
queue.WriteBuffer(timestampsBuffer, 0, timestamps.data(),
kTimestampCount * sizeof(uint64_t));
// The params uniform buffer
dawn_native::TimestampParams params = {kOffset, kOffset, kTimestampCount, kPeriod};
dawn_native::TimestampParams params = {kTimestampCount, kOffset, kPeriod};
wgpu::Buffer paramsBuffer = utils::CreateBufferFromData(device, &params, sizeof(params),
wgpu::BufferUsage::Uniform);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
EncodeConvertTimestampsToNanoseconds(encoder, inputBuffer, availabilityBuffer, outputBuffer,
EncodeConvertTimestampsToNanoseconds(encoder, timestampsBuffer, availabilityBuffer,
paramsBuffer);
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_BUFFER_U64_RANGE_EQ(&kOne, outputBuffer, 0, 1);
EXPECT_BUFFER(outputBuffer, kOffset, (kTimestampCount - 1) * sizeof(uint64_t),
new InternalShaderExpectation(expected.data() + 1, kTimestampCount - 1));
// Expected results: Timestamp * period
std::vector<uint64_t> expected = PrepareExpectedResults(kOffset);
EXPECT_BUFFER(timestampsBuffer, 0, kTimestampCount * sizeof(uint64_t),
new InternalShaderExpectation(expected.data(), kTimestampCount));
}
}