tint: clean up const eval test framework

- Remove Types variant, and replace with a type-erasing Value class
  instead. This is not only better for compile times, but makes the code
  much easier to understand.
- Value wraps an internal shared_ptr to a const detail::ValueBase,
  allowing it to be used as a value-type (i.e. copyable), while behaving
  polymorphically.
- Add static_asserts to Val, Vec, and Mat creation helpers to emit a
  more useful error message when the wrong type is passed in.

Bug: tint:1581
Change-Id: Icd0d08522bedb3eab12c44efa0d1555ed6e96458
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/111700
Commit-Queue: Antonio Maiorano <amaiorano@google.com>
Reviewed-by: Dan Sinclair <dsinclair@chromium.org>
Kokoro: Kokoro <noreply+kokoro@google.com>
This commit is contained in:
Antonio Maiorano 2022-11-25 05:47:42 +00:00 committed by Dawn LUCI CQ
parent 8392a82a40
commit d4908670e1
6 changed files with 147 additions and 215 deletions

View File

@ -22,30 +22,26 @@ using ::testing::HasSubstr;
namespace tint::resolver {
namespace {
// Bring in std::ostream& operator<<(std::ostream& o, const Types& types)
using resolver::operator<<;
struct Case {
struct Success {
Types value;
Value value;
};
struct Failure {
std::string error;
};
Types lhs;
Types rhs;
Value lhs;
Value rhs;
utils::Result<Success, Failure> expected;
};
struct ErrorCase {
Types lhs;
Types rhs;
Value lhs;
Value rhs;
};
/// Creates a Case with Values of any type
template <typename T, typename U, typename V>
Case C(Value<T> lhs, Value<U> rhs, Value<V> expected) {
Case C(Value lhs, Value rhs, Value expected) {
return Case{std::move(lhs), std::move(rhs), Case::Success{std::move(expected)}};
}
@ -56,8 +52,7 @@ Case C(T lhs, U rhs, V expected) {
}
/// Creates an failure Case with Values of any type
template <typename T, typename U>
Case E(Value<T> lhs, Value<U> rhs, std::string error) {
Case E(Value lhs, Value rhs, std::string error) {
return Case{std::move(lhs), std::move(rhs), Case::Failure{std::move(error)}};
}
@ -71,7 +66,7 @@ Case E(T lhs, U rhs, std::string error) {
static std::ostream& operator<<(std::ostream& o, const Case& c) {
o << "lhs: " << c.lhs << ", rhs: " << c.rhs << ", expected: ";
if (c.expected) {
auto s = c.expected.Get();
auto& s = c.expected.Get();
o << s.value;
} else {
o << "[ERROR: " << c.expected.Failure().error << "]";
@ -91,15 +86,16 @@ TEST_P(ResolverConstEvalBinaryOpTest, Test) {
auto op = std::get<0>(GetParam());
auto& c = std::get<1>(GetParam());
auto* lhs_expr = ToValueBase(c.lhs)->Expr(*this);
auto* rhs_expr = ToValueBase(c.rhs)->Expr(*this);
auto* lhs_expr = c.lhs.Expr(*this);
auto* rhs_expr = c.rhs.Expr(*this);
auto* expr = create<ast::BinaryExpression>(Source{{12, 34}}, op, lhs_expr, rhs_expr);
GlobalConst("C", expr);
if (c.expected) {
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto expected_case = c.expected.Get();
auto* expected = ToValueBase(expected_case.value);
auto& expected = expected_case.value;
auto* sem = Sem().Get(expr);
const sem::Constant* value = sem->ConstantValue();
@ -707,7 +703,6 @@ INSTANTIATE_TEST_SUITE_P(Or,
OpOrIntCases<u32>()))));
TEST_F(ResolverConstEvalTest, NotAndOrOfVecs) {
// const C = !((vec2(true, true) & vec2(true, false)) | vec2(false, true));
auto v1 = Vec(true, true).Expr(*this);
auto v2 = Vec(true, false).Expr(*this);
auto v3 = Vec(false, true).Expr(*this);
@ -978,8 +973,8 @@ TEST_F(ResolverConstEvalTest, BinaryAbstractShiftLeftRemainsAbstract) {
// i32/u32 left shift by >= 32 -> error
using ResolverConstEvalShiftLeftConcreteGeqBitWidthError = ResolverTestWithParam<ErrorCase>;
TEST_P(ResolverConstEvalShiftLeftConcreteGeqBitWidthError, Test) {
auto* lhs_expr = ToValueBase(GetParam().lhs)->Expr(*this);
auto* rhs_expr = ToValueBase(GetParam().rhs)->Expr(*this);
auto* lhs_expr = GetParam().lhs.Expr(*this);
auto* rhs_expr = GetParam().rhs.Expr(*this);
GlobalConst("c", Shl(Source{{1, 1}}, lhs_expr, rhs_expr));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(
@ -1024,8 +1019,8 @@ INSTANTIATE_TEST_SUITE_P(Test,
// AInt left shift results in sign change error
using ResolverConstEvalShiftLeftSignChangeError = ResolverTestWithParam<ErrorCase>;
TEST_P(ResolverConstEvalShiftLeftSignChangeError, Test) {
auto* lhs_expr = ToValueBase(GetParam().lhs)->Expr(*this);
auto* rhs_expr = ToValueBase(GetParam().rhs)->Expr(*this);
auto* lhs_expr = GetParam().lhs.Expr(*this);
auto* rhs_expr = GetParam().rhs.Expr(*this);
GlobalConst("c", Shl(Source{{1, 1}}, lhs_expr, rhs_expr));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "1:1 error: shift left operation results in sign change");

View File

@ -22,15 +22,12 @@ using ::testing::HasSubstr;
namespace tint::resolver {
namespace {
// Bring in std::ostream& operator<<(std::ostream& o, const Types& types)
using resolver::operator<<;
struct Case {
Case(utils::VectorRef<Types> in_args, utils::VectorRef<Types> expected_values)
Case(utils::VectorRef<Value> in_args, utils::VectorRef<Value> expected_values)
: args(std::move(in_args)),
expected(Success{std::move(expected_values), CheckConstantFlags{}}) {}
Case(utils::VectorRef<Types> in_args, std::string expected_err)
Case(utils::VectorRef<Value> in_args, std::string expected_err)
: args(std::move(in_args)), expected(Failure{std::move(expected_err)}) {}
/// Expected value may be positive or negative
@ -52,14 +49,14 @@ struct Case {
}
struct Success {
utils::Vector<Types, 2> values;
utils::Vector<Value, 2> values;
CheckConstantFlags flags;
};
struct Failure {
std::string error;
};
utils::Vector<Types, 8> args;
utils::Vector<Value, 8> args;
utils::Result<Success, Failure> expected;
};
@ -94,34 +91,34 @@ static std::ostream& operator<<(std::ostream& o, const Case& c) {
using ScalarTypes = std::variant<AInt, AFloat, u32, i32, f32, f16>;
/// Creates a Case with Values for args and result
static Case C(std::initializer_list<Types> args, Types result) {
return Case{utils::Vector<Types, 8>{args}, utils::Vector<Types, 2>{std::move(result)}};
static Case C(std::initializer_list<Value> args, Value result) {
return Case{utils::Vector<Value, 8>{args}, utils::Vector<Value, 2>{std::move(result)}};
}
/// Creates a Case with Values for args and result
static Case C(std::initializer_list<Types> args, std::initializer_list<Types> results) {
return Case{utils::Vector<Types, 8>{args}, utils::Vector<Types, 2>{results}};
static Case C(std::initializer_list<Value> args, std::initializer_list<Value> results) {
return Case{utils::Vector<Value, 8>{args}, utils::Vector<Value, 2>{results}};
}
/// Convenience overload that creates a Case with just scalars
static Case C(std::initializer_list<ScalarTypes> sargs, ScalarTypes sresult) {
utils::Vector<Types, 8> args;
utils::Vector<Value, 8> args;
for (auto& sa : sargs) {
std::visit([&](auto&& v) { return args.Push(Val(v)); }, sa);
}
Types result = Val(0_a);
Value result = Val(0_a);
std::visit([&](auto&& v) { result = Val(v); }, sresult);
return Case{std::move(args), utils::Vector<Types, 2>{std::move(result)}};
return Case{std::move(args), utils::Vector<Value, 2>{std::move(result)}};
}
/// Creates a Case with Values for args and result
static Case C(std::initializer_list<ScalarTypes> sargs,
std::initializer_list<ScalarTypes> sresults) {
utils::Vector<Types, 8> args;
utils::Vector<Value, 8> args;
for (auto& sa : sargs) {
std::visit([&](auto&& v) { return args.Push(Val(v)); }, sa);
}
utils::Vector<Types, 2> results;
utils::Vector<Value, 2> results;
for (auto& sa : sresults) {
std::visit([&](auto&& v) { return results.Push(Val(v)); }, sa);
}
@ -129,13 +126,13 @@ static Case C(std::initializer_list<ScalarTypes> sargs,
}
/// Creates a Case with Values for args and expected error
static Case E(std::initializer_list<Types> args, std::string err) {
return Case{utils::Vector<Types, 8>{args}, std::move(err)};
static Case E(std::initializer_list<Value> args, std::string err) {
return Case{utils::Vector<Value, 8>{args}, std::move(err)};
}
/// Convenience overload that creates an expected-error Case with just scalars
static Case E(std::initializer_list<ScalarTypes> sargs, std::string err) {
utils::Vector<Types, 8> args;
utils::Vector<Value, 8> args;
for (auto& sa : sargs) {
std::visit([&](auto&& v) { return args.Push(Val(v)); }, sa);
}
@ -152,7 +149,7 @@ TEST_P(ResolverConstEvalBuiltinTest, Test) {
utils::Vector<const ast::Expression*, 8> args;
for (auto& a : c.args) {
std::visit([&](auto&& v) { args.Push(v.Expr(*this)); }, a);
args.Push(a.Expr(*this));
}
auto* expr = Call(Source{{12, 34}}, sem::str(builtin), std::move(args));
@ -173,14 +170,13 @@ TEST_P(ResolverConstEvalBuiltinTest, Test) {
// The result type of the constant-evaluated expression is a structure.
// Compare each of the fields individually.
for (size_t i = 0; i < expected_case.values.Length(); i++) {
CheckConstant(value->Index(i), ToValueBase(expected_case.values[i]),
expected_case.flags);
CheckConstant(value->Index(i), expected_case.values[i], expected_case.flags);
}
} else {
// Return type is not a structure. Just compare the single value
ASSERT_EQ(expected_case.values.Length(), 1u)
<< "const-eval returned non-struct, but Case expected multiple values";
CheckConstant(value, ToValueBase(expected_case.values[0]), expected_case.flags);
CheckConstant(value, expected_case.values[0], expected_case.flags);
}
} else {
EXPECT_FALSE(r()->Resolve());

View File

@ -19,19 +19,6 @@ using namespace tint::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
using Scalar = std::variant< //
builder::Value<AInt>,
builder::Value<AFloat>,
builder::Value<u32>,
builder::Value<i32>,
builder::Value<f32>,
builder::Value<f16>,
builder::Value<bool>>;
static std::ostream& operator<<(std::ostream& o, const Scalar& scalar) {
return ToValueBase(scalar)->Print(o);
}
enum class Kind {
kScalar,
kVector,
@ -48,8 +35,8 @@ static std::ostream& operator<<(std::ostream& o, const Kind& k) {
}
struct Case {
Scalar input;
Scalar expected;
Value input;
Value expected;
builder::CreatePtrs type;
bool unrepresentable = false;
};
@ -65,7 +52,7 @@ static std::ostream& operator<<(std::ostream& o, const Case& c) {
template <typename TO, typename FROM>
Case Success(FROM input, TO expected) {
return {builder::Val(input), builder::Val(expected), builder::CreatePtrsFor<TO>()};
return {Val(input), Val(expected), builder::CreatePtrsFor<TO>()};
}
template <typename TO, typename FROM>
@ -83,7 +70,7 @@ TEST_P(ResolverConstEvalConvTest, Test) {
const auto& type = std::get<1>(GetParam()).type;
const auto unrepresentable = std::get<1>(GetParam()).unrepresentable;
auto* input_val = ToValueBase(input)->Expr(*this);
auto* input_val = input.Expr(*this);
auto* expr = Construct(type.ast(*this), input_val);
if (kind == Kind::kVector) {
expr = Construct(ty.vec(nullptr, 3), expr);
@ -107,7 +94,7 @@ TEST_P(ResolverConstEvalConvTest, Test) {
ASSERT_NE(sem->ConstantValue(), nullptr);
EXPECT_TYPE(sem->ConstantValue()->Type(), target_sem_ty);
auto expected_values = ToValueBase(expected)->Args();
auto expected_values = expected.Args();
if (kind == Kind::kVector) {
expected_values.values.Push(expected_values.values[0]);
expected_values.values.Push(expected_values.values[0]);

View File

@ -88,10 +88,10 @@ struct CheckConstantFlags {
/// @param expected_value the expected value for the test
/// @param flags optional flags for controlling the comparisons
inline void CheckConstant(const sem::Constant* got_constant,
const builder::ValueBase* expected_value,
const builder::Value& expected_value,
CheckConstantFlags flags = {}) {
auto values_flat = ScalarArgsFrom(got_constant);
auto expected_values_flat = expected_value->Args();
auto expected_values_flat = expected_value.Args();
ASSERT_EQ(values_flat.values.Length(), expected_values_flat.values.Length());
for (size_t i = 0; i < values_flat.values.Length(); ++i) {
auto& got_scalar = values_flat.values[i];
@ -247,93 +247,8 @@ using builder::IsValue;
using builder::Mat;
using builder::Val;
using builder::Value;
using builder::ValueBase;
using builder::Vec;
using Types = std::variant< //
Value<AInt>,
Value<AFloat>,
Value<u32>,
Value<i32>,
Value<f32>,
Value<f16>,
Value<bool>,
Value<builder::vec2<AInt>>,
Value<builder::vec2<AFloat>>,
Value<builder::vec2<u32>>,
Value<builder::vec2<i32>>,
Value<builder::vec2<f32>>,
Value<builder::vec2<f16>>,
Value<builder::vec2<bool>>,
Value<builder::vec3<AInt>>,
Value<builder::vec3<AFloat>>,
Value<builder::vec3<u32>>,
Value<builder::vec3<i32>>,
Value<builder::vec3<f32>>,
Value<builder::vec3<f16>>,
Value<builder::vec3<bool>>,
Value<builder::vec4<AInt>>,
Value<builder::vec4<AFloat>>,
Value<builder::vec4<u32>>,
Value<builder::vec4<i32>>,
Value<builder::vec4<f32>>,
Value<builder::vec4<f16>>,
Value<builder::vec4<bool>>,
Value<builder::mat2x2<AInt>>,
Value<builder::mat2x2<AFloat>>,
Value<builder::mat2x2<f32>>,
Value<builder::mat2x2<f16>>,
Value<builder::mat3x3<AInt>>,
Value<builder::mat3x3<AFloat>>,
Value<builder::mat3x3<f32>>,
Value<builder::mat3x3<f16>>,
Value<builder::mat4x4<AInt>>,
Value<builder::mat4x4<AFloat>>,
Value<builder::mat4x4<f32>>,
Value<builder::mat4x4<f16>>,
Value<builder::mat2x3<AInt>>,
Value<builder::mat2x3<AFloat>>,
Value<builder::mat2x3<f32>>,
Value<builder::mat2x3<f16>>,
Value<builder::mat3x2<AInt>>,
Value<builder::mat3x2<AFloat>>,
Value<builder::mat3x2<f32>>,
Value<builder::mat3x2<f16>>,
Value<builder::mat2x4<AInt>>,
Value<builder::mat2x4<AFloat>>,
Value<builder::mat2x4<f32>>,
Value<builder::mat2x4<f16>>,
Value<builder::mat4x2<AInt>>,
Value<builder::mat4x2<AFloat>>,
Value<builder::mat4x2<f32>>,
Value<builder::mat4x2<f16>>
//
>;
/// Returns the current Value<T> in the `types` variant as a `ValueBase` pointer to use the
/// polymorphic API. This trades longer compile times using std::variant for longer runtime via
/// virtual function calls.
template <typename ValueVariant>
inline const ValueBase* ToValueBase(const ValueVariant& types) {
return std::visit(
[](auto&& t) -> const ValueBase* { return static_cast<const ValueBase*>(&t); }, types);
}
/// Prints Types to ostream
inline std::ostream& operator<<(std::ostream& o, const Types& types) {
return ToValueBase(types)->Print(o);
}
// Calls `f` on deepest elements of both `a` and `b`. If function returns Action::kStop, it stops
// traversing, and return Action::kStop; if the function returns Action::kContinue, it continues and
// returns Action::kContinue when done.

View File

@ -19,22 +19,17 @@ using namespace tint::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
// Bring in std::ostream& operator<<(std::ostream& o, const Types& types)
using resolver::operator<<;
struct Case {
Types input;
Types expected;
Value input;
Value expected;
};
static std::ostream& operator<<(std::ostream& o, const Case& c) {
o << "input: " << c.input << ", expected: " << c.expected;
return o;
}
/// Creates a Case with Values of any type
template <typename T, typename U>
Case C(Value<T> input, Value<U> expected) {
// Creates a Case with Values of any type
Case C(Value input, Value expected) {
return Case{std::move(input), std::move(expected)};
}
@ -52,10 +47,10 @@ TEST_P(ResolverConstEvalUnaryOpTest, Test) {
auto op = std::get<0>(GetParam());
auto& c = std::get<1>(GetParam());
auto* expected = ToValueBase(c.expected);
auto* input = ToValueBase(c.input);
auto& expected = c.expected;
auto& input = c.input;
auto* input_expr = input->Expr(*this);
auto* input_expr = input.Expr(*this);
auto* expr = create<ast::UnaryOpExpression>(op, input_expr);
GlobalConst("C", expr);
@ -67,13 +62,13 @@ TEST_P(ResolverConstEvalUnaryOpTest, Test) {
EXPECT_TYPE(value->Type(), sem->Type());
auto values_flat = ScalarArgsFrom(value);
auto expected_values_flat = expected->Args();
auto expected_values_flat = expected.Args();
ASSERT_EQ(values_flat.values.Length(), expected_values_flat.values.Length());
for (size_t i = 0; i < values_flat.values.Length(); ++i) {
auto& a = values_flat.values[i];
auto& b = expected_values_flat.values[i];
EXPECT_EQ(a, b);
if (expected->IsIntegral()) {
if (expected.IsIntegral()) {
// Check that the constant's integer doesn't contain unexpected
// data in the MSBs that are outside of the bit-width of T.
EXPECT_EQ(builder::As<AInt>(a), builder::As<AInt>(b));

View File

@ -241,12 +241,21 @@ using ast_expr_from_double_func_ptr = const ast::Expression* (*)(ProgramBuilder&
using sem_type_func_ptr = const sem::Type* (*)(ProgramBuilder& b);
using type_name_func_ptr = std::string (*)();
struct UnspecializedElementType {};
/// Base template for DataType, specialized below.
template <typename T>
struct DataType {};
struct DataType {
/// The element type
using ElementType = UnspecializedElementType;
};
/// Helper that represents no-type. Returns nullptr for all static methods.
template <>
struct DataType<void> {
/// The element type
using ElementType = void;
/// @return nullptr
static inline const ast::Type* AST(ProgramBuilder&) { return nullptr; }
/// @return nullptr
@ -762,7 +771,13 @@ constexpr CreatePtrs CreatePtrsFor() {
DataType<T>::Name};
}
/// Base class for Value<T>
/// True if DataType<T> is specialized for T, false otherwise.
template <typename T>
const bool IsDataTypeSpecializedFor =
!std::is_same_v<typename DataType<T>::ElementType, UnspecializedElementType>;
namespace detail {
/// ValueBase is a base class of ConcreteValue<T>
struct ValueBase {
/// Constructor
ValueBase() = default;
@ -793,13 +808,12 @@ struct ValueBase {
virtual std::ostream& Print(std::ostream& o) const = 0;
};
/// Value<T> is an instance of a value of type DataType<T>. Useful for storing values to create
/// expressions with.
/// ConcreteValue<T> is used to create Values of type DataType<T> with a ScalarArgs initializer.
template <typename T>
struct Value : ValueBase {
struct ConcreteValue : ValueBase {
/// Constructor
/// @param a the scalar args
explicit Value(ScalarArgs a) : args(std::move(a)) {}
/// @param args the scalar args
explicit ConcreteValue(ScalarArgs args) : args_(std::move(args)) {}
/// Alias to T
using Type = T;
@ -808,21 +822,16 @@ struct Value : ValueBase {
/// Alias to DataType::ElementType
using ElementType = typename DataType::ElementType;
/// Creates a Value<T> with `args`
/// @param args the args that will be passed to the expression
/// @returns a Value<T>
static Value Create(ScalarArgs args) { return Value{std::move(args)}; }
/// Creates an `ast::Expression` for the type T passing in previously stored args
/// @param b the ProgramBuilder
/// @returns an expression node
const ast::Expression* Expr(ProgramBuilder& b) const override {
auto create = CreatePtrsFor<T>();
return (*create.expr)(b, args);
return (*create.expr)(b, args_);
}
/// @returns args used to create expression via `Expr`
const ScalarArgs& Args() const override { return args; }
const ScalarArgs& Args() const override { return args_; }
/// @returns true if element type is abstract
bool IsAbstract() const override { return tint::IsAbstract<ElementType>; }
@ -838,9 +847,9 @@ struct Value : ValueBase {
/// @returns input argument `o`
std::ostream& Print(std::ostream& o) const override {
o << TypeName() << "(";
for (auto& a : args.values) {
for (auto& a : args_.values) {
o << std::get<ElementType>(a);
if (&a != &args.values.Back()) {
if (&a != &args_.values.Back()) {
o << ", ";
}
}
@ -848,60 +857,95 @@ struct Value : ValueBase {
return o;
}
private:
/// args to create expression with
ScalarArgs args;
ScalarArgs args_;
};
namespace detail {
/// Base template for IsValue
template <typename T>
struct IsValue : std::false_type {};
/// Specialization for IsValue
template <typename T>
struct IsValue<Value<T>> : std::true_type {};
} // namespace detail
/// True if T is of type Value
template <typename T>
constexpr bool IsValue = detail::IsValue<T>::value;
/// A Value represents a value of type DataType<T> created with ScalarArgs. Useful for storing
/// values for unit tests.
class Value {
public:
/// Creates a Value for type T initialized with `args`
/// @param args the scalar args
/// @returns Value
template <typename T>
static Value Create(ScalarArgs args) {
static_assert(IsDataTypeSpecializedFor<T>, "No DataType<T> specialization exists");
return Value{std::make_shared<detail::ConcreteValue<T>>(std::move(args))};
}
/// Returns the friendly name of ValueT
template <typename ValueT, typename = traits::EnableIf<IsValue<ValueT>>>
const char* FriendlyName() {
return tint::FriendlyName<typename ValueT::ElementType>();
/// Creates an `ast::Expression` for the type T passing in previously stored args
/// @param b the ProgramBuilder
/// @returns an expression node
const ast::Expression* Expr(ProgramBuilder& b) const { return value_->Expr(b); }
/// @returns args used to create expression via `Expr`
const ScalarArgs& Args() const { return value_->Args(); }
/// @returns true if element type is abstract
bool IsAbstract() const { return value_->IsAbstract(); }
/// @returns true if element type is an integral
bool IsIntegral() const { return value_->IsIntegral(); }
/// @returns element type name
std::string TypeName() const { return value_->TypeName(); }
/// Prints this value to the output stream
/// @param o the output stream
/// @returns input argument `o`
std::ostream& Print(std::ostream& o) const { return value_->Print(o); }
private:
/// Private constructor
explicit Value(std::shared_ptr<const detail::ValueBase> value) : value_(std::move(value)) {}
/// Shared pointer to an immutable value. This type-erasure pattern allows Value to wrap a
/// polymorphic type, while being used like a value-type (i.e. copyable).
std::shared_ptr<const detail::ValueBase> value_;
};
/// Prints Value to ostream
inline std::ostream& operator<<(std::ostream& o, const Value& value) {
return value.Print(o);
}
/// Creates a `Value<T>` from a scalar `v`
/// True if T is Value, false otherwise
template <typename T>
auto Val(T v) {
return Value<T>::Create(ScalarArgs{v});
constexpr bool IsValue = std::is_same_v<T, Value>;
/// Creates a Value of DataType<T> from a scalar `v`
template <typename T>
Value Val(T v) {
return Value::Create<T>(ScalarArgs{v});
}
/// Creates a `Value<vec<N, T>>` from N scalar `args`
/// Creates a Value of DataType<vec<N, T>> from N scalar `args`
template <typename... T>
auto Vec(T... args) {
constexpr size_t N = sizeof...(args);
Value Vec(T... args) {
using FirstT = std::tuple_element_t<0, std::tuple<T...>>;
constexpr size_t N = sizeof...(args);
utils::Vector v{args...};
using VT = vec<N, FirstT>;
return Value<VT>::Create(utils::VectorRef<FirstT>{v});
return Value::Create<vec<N, FirstT>>(utils::VectorRef<FirstT>{v});
}
/// Creates a `Value<mat<C,R,T>` from C*R scalar `args`
/// Creates a Value of DataType<mat<C,R,T> from C*R scalar `args`
template <size_t C, size_t R, typename T>
auto Mat(const T (&m_in)[C][R]) {
Value Mat(const T (&m_in)[C][R]) {
utils::Vector<T, C * R> m;
for (uint32_t i = 0; i < C; ++i) {
for (size_t j = 0; j < R; ++j) {
m.Push(m_in[i][j]);
}
}
return Value<mat<C, R, T>>::Create(utils::VectorRef<T>{m});
return Value::Create<mat<C, R, T>>(utils::VectorRef<T>{m});
}
/// Creates a `Value<mat<2,R,T>` from column vectors `c0` and `c1`
/// Creates a Value of DataType<mat<2,R,T> from column vectors `c0` and `c1`
template <typename T, size_t R>
auto Mat(const T (&c0)[R], const T (&c1)[R]) {
Value Mat(const T (&c0)[R], const T (&c1)[R]) {
constexpr size_t C = 2;
utils::Vector<T, C * R> m;
for (auto v : c0) {
@ -910,12 +954,12 @@ auto Mat(const T (&c0)[R], const T (&c1)[R]) {
for (auto v : c1) {
m.Push(v);
}
return Value<mat<C, R, T>>::Create(utils::VectorRef<T>{m});
return Value::Create<mat<C, R, T>>(utils::VectorRef<T>{m});
}
/// Creates a `Value<mat<3,R,T>` from column vectors `c0`, `c1`, and `c2`
/// Creates a Value of DataType<mat<3,R,T> from column vectors `c0`, `c1`, and `c2`
template <typename T, size_t R>
auto Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R]) {
Value Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R]) {
constexpr size_t C = 3;
utils::Vector<T, C * R> m;
for (auto v : c0) {
@ -927,12 +971,12 @@ auto Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R]) {
for (auto v : c2) {
m.Push(v);
}
return Value<mat<C, R, T>>::Create(utils::VectorRef<T>{m});
return Value::Create<mat<C, R, T>>(utils::VectorRef<T>{m});
}
/// Creates a `Value<mat<4,R,T>` from column vectors `c0`, `c1`, `c2`, and `c3`
/// Creates a Value of DataType<mat<4,R,T> from column vectors `c0`, `c1`, `c2`, and `c3`
template <typename T, size_t R>
auto Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R], const T (&c3)[R]) {
Value Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R], const T (&c3)[R]) {
constexpr size_t C = 4;
utils::Vector<T, C * R> m;
for (auto v : c0) {
@ -947,7 +991,7 @@ auto Mat(const T (&c0)[R], const T (&c1)[R], const T (&c2)[R], const T (&c3)[R])
for (auto v : c3) {
m.Push(v);
}
return Value<mat<C, R, T>>::Create(utils::VectorRef<T>{m});
return Value::Create<mat<C, R, T>>(utils::VectorRef<T>{m});
}
} // namespace builder