Implement Default Struct Layout

Implements https://github.com/gpuweb/gpuweb/pull/1447

SPIR-V Reader is still TODO, but continues to function as the offset
decoration is still supported.

Bug: tint:626
Bug: tint:629
Change-Id: Id574eb3a5c6729559382812de37b23f0c68fd406
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/43640
Commit-Queue: Ben Clayton <bclayton@chromium.org>
Reviewed-by: David Neto <dneto@google.com>
This commit is contained in:
Ben Clayton
2021-03-15 10:43:11 +00:00
committed by Commit Bot service account
parent 717fbbf183
commit d614dd5d12
107 changed files with 2401 additions and 2038 deletions

View File

@@ -0,0 +1,137 @@
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/resolver/resolver.h"
#include "gmock/gmock.h"
#include "src/resolver/resolver_test_helper.h"
namespace tint {
namespace resolver {
namespace {
using ResolverIsStorableTest = ResolverTest;
TEST_F(ResolverIsStorableTest, Void) {
auto* void_ty = ty.void_();
EXPECT_FALSE(r()->IsStorable(void_ty));
}
TEST_F(ResolverIsStorableTest, Scalar) {
auto* bool_ = ty.bool_();
auto* i32 = ty.i32();
auto* u32 = ty.u32();
auto* f32 = ty.f32();
EXPECT_TRUE(r()->IsStorable(bool_));
EXPECT_TRUE(r()->IsStorable(i32));
EXPECT_TRUE(r()->IsStorable(u32));
EXPECT_TRUE(r()->IsStorable(f32));
}
TEST_F(ResolverIsStorableTest, Vector) {
auto* vec2_i32 = ty.vec2<int>();
auto* vec3_i32 = ty.vec3<int>();
auto* vec4_i32 = ty.vec4<int>();
auto* vec2_u32 = ty.vec2<unsigned>();
auto* vec3_u32 = ty.vec3<unsigned>();
auto* vec4_u32 = ty.vec4<unsigned>();
auto* vec2_f32 = ty.vec2<float>();
auto* vec3_f32 = ty.vec3<float>();
auto* vec4_f32 = ty.vec4<float>();
EXPECT_TRUE(r()->IsStorable(vec2_i32));
EXPECT_TRUE(r()->IsStorable(vec3_i32));
EXPECT_TRUE(r()->IsStorable(vec4_i32));
EXPECT_TRUE(r()->IsStorable(vec2_u32));
EXPECT_TRUE(r()->IsStorable(vec3_u32));
EXPECT_TRUE(r()->IsStorable(vec4_u32));
EXPECT_TRUE(r()->IsStorable(vec2_f32));
EXPECT_TRUE(r()->IsStorable(vec3_f32));
EXPECT_TRUE(r()->IsStorable(vec4_f32));
}
TEST_F(ResolverIsStorableTest, Matrix) {
auto* mat2x2 = ty.mat2x2<float>();
auto* mat2x3 = ty.mat2x3<float>();
auto* mat2x4 = ty.mat2x4<float>();
auto* mat3x2 = ty.mat3x2<float>();
auto* mat3x3 = ty.mat3x3<float>();
auto* mat3x4 = ty.mat3x4<float>();
auto* mat4x2 = ty.mat4x2<float>();
auto* mat4x3 = ty.mat4x3<float>();
auto* mat4x4 = ty.mat4x4<float>();
EXPECT_TRUE(r()->IsStorable(mat2x2));
EXPECT_TRUE(r()->IsStorable(mat2x3));
EXPECT_TRUE(r()->IsStorable(mat2x4));
EXPECT_TRUE(r()->IsStorable(mat3x2));
EXPECT_TRUE(r()->IsStorable(mat3x3));
EXPECT_TRUE(r()->IsStorable(mat3x4));
EXPECT_TRUE(r()->IsStorable(mat4x2));
EXPECT_TRUE(r()->IsStorable(mat4x3));
EXPECT_TRUE(r()->IsStorable(mat4x4));
}
TEST_F(ResolverIsStorableTest, Pointer) {
auto* ptr_ty = ty.pointer<int>(ast::StorageClass::kPrivate);
EXPECT_FALSE(r()->IsStorable(ptr_ty));
}
TEST_F(ResolverIsStorableTest, AliasVoid) {
auto* alias = ty.alias("myalias", ty.void_());
EXPECT_FALSE(r()->IsStorable(alias));
}
TEST_F(ResolverIsStorableTest, AliasI32) {
auto* alias = ty.alias("myalias", ty.i32());
EXPECT_TRUE(r()->IsStorable(alias));
}
TEST_F(ResolverIsStorableTest, ArraySizedOfStorable) {
auto* arr = ty.array(ty.i32(), 5);
EXPECT_TRUE(r()->IsStorable(arr));
}
TEST_F(ResolverIsStorableTest, ArrayUnsizedOfStorable) {
auto* arr = ty.array<int>();
EXPECT_TRUE(r()->IsStorable(arr));
}
TEST_F(ResolverIsStorableTest, Struct_AllMembersStorable) {
ast::StructMemberList members{Member("a", ty.i32()), Member("b", ty.f32())};
auto* s = create<ast::Struct>(Source{}, members, ast::DecorationList{});
auto* s_ty = ty.struct_("mystruct", s);
EXPECT_TRUE(r()->IsStorable(s_ty));
}
TEST_F(ResolverIsStorableTest, Struct_SomeMembersNonStorable) {
auto* ptr_ty = ty.pointer<int>(ast::StorageClass::kPrivate);
ast::StructMemberList members{Member("a", ty.i32()), Member("b", ptr_ty)};
auto* s = create<ast::Struct>(Source{}, members, ast::DecorationList{});
auto* s_ty = ty.struct_("mystruct", s);
EXPECT_FALSE(r()->IsStorable(s_ty));
}
} // namespace
} // namespace resolver
} // namespace tint

View File

@@ -30,11 +30,14 @@
#include "src/ast/switch_statement.h"
#include "src/ast/unary_op_expression.h"
#include "src/ast/variable_decl_statement.h"
#include "src/semantic/array.h"
#include "src/semantic/call.h"
#include "src/semantic/function.h"
#include "src/semantic/member_accessor_expression.h"
#include "src/semantic/statement.h"
#include "src/semantic/struct.h"
#include "src/semantic/variable.h"
#include "src/type/access_control_type.h"
namespace tint {
namespace resolver {
@@ -59,6 +62,20 @@ class ScopedAssignment {
T old_value_;
};
/// Rounds `value` to the next multiple of `alignment`
/// Assumes `alignment` is positive.
template <typename T>
T RoundUp(T alignment, T value) {
return ((value + alignment - 1) / alignment) * alignment;
}
/// Returns true if `value` is a power-of-two.
/// Assumes `alignment` is positive.
template <typename T>
bool IsPowerOfTwo(T value) {
return (value & (value - 1)) == 0;
}
} // namespace
Resolver::Resolver(ProgramBuilder* builder)
@@ -98,7 +115,47 @@ bool Resolver::Resolve() {
return result;
}
bool Resolver::IsStorable(type::Type* type) {
if (type == nullptr) {
return false;
}
if (type->is_scalar() || type->Is<type::Vector>() ||
type->Is<type::Matrix>()) {
return true;
}
if (type::Array* array_type = type->As<type::Array>()) {
return IsStorable(array_type->type());
}
if (type::Struct* struct_type = type->As<type::Struct>()) {
for (const auto* member : struct_type->impl()->members()) {
if (!IsStorable(member->type())) {
return false;
}
}
return true;
}
if (type::Alias* alias_type = type->As<type::Alias>()) {
return IsStorable(alias_type->type());
}
return false;
}
bool Resolver::ResolveInternal() {
for (auto* ty : builder_->Types()) {
if (auto* str = ty->As<type::Struct>()) {
if (!Structure(str)) {
return false;
}
continue;
}
if (auto* arr = ty->As<type::Array>()) {
if (!Array(arr)) {
return false;
}
continue;
}
}
for (auto* var : builder_->AST().GlobalVariables()) {
variable_stack_.set_global(var->symbol(), CreateVariableInfo(var));
@@ -962,6 +1019,204 @@ void Resolver::CreateSemanticNodes() const {
}
}
bool Resolver::DefaultAlignAndSize(type::Type* ty,
uint32_t& align,
uint32_t& size) {
static constexpr uint32_t vector_size[] = {
/* padding */ 0,
/* padding */ 0,
/*vec2*/ 8,
/*vec3*/ 12,
/*vec4*/ 16,
};
static constexpr uint32_t vector_align[] = {
/* padding */ 0,
/* padding */ 0,
/*vec2*/ 8,
/*vec3*/ 16,
/*vec4*/ 16,
};
ty = ty->UnwrapAliasIfNeeded();
if (ty->is_scalar()) {
// Note: Also captures booleans, but these are not host-sharable.
align = 4;
size = 4;
return true;
} else if (auto* vec = ty->As<type::Vector>()) {
if (vec->size() < 2 || vec->size() > 4) {
TINT_UNREACHABLE(diagnostics_)
<< "Invalid vector size: vec" << vec->size();
return false;
}
align = vector_align[vec->size()];
size = vector_size[vec->size()];
return true;
} else if (auto* mat = ty->As<type::Matrix>()) {
if (mat->columns() < 2 || mat->columns() > 4 || mat->rows() < 2 ||
mat->rows() > 4) {
TINT_UNREACHABLE(diagnostics_)
<< "Invalid matrix size: mat" << mat->columns() << "x" << mat->rows();
return false;
}
align = vector_align[mat->rows()];
size = vector_align[mat->rows()] * mat->columns();
return true;
} else if (auto* s = ty->As<type::Struct>()) {
if (auto* sem = Structure(s)) {
align = sem->Align();
size = sem->Size();
return true;
}
return false;
} else if (auto* arr = ty->As<type::Array>()) {
if (auto* sem = Array(arr)) {
align = sem->Align();
size = sem->Size();
return true;
}
return false;
}
TINT_UNREACHABLE(diagnostics_) << "Invalid type " << ty->TypeInfo().name;
return false;
}
const semantic::Array* Resolver::Array(type::Array* arr) {
if (auto* sem = builder_->Sem().Get(arr)) {
// Semantic info already constructed for this array type
return sem;
}
// First check the element type is legal
auto* el_ty = arr->type();
if (!IsStorable(el_ty)) {
builder_->Diagnostics().add_error(
std::string(el_ty->FriendlyName(builder_->Symbols())) +
" cannot be used as an element type of an array");
return nullptr;
}
auto create_semantic = [&](uint32_t stride) -> semantic::Array* {
uint32_t el_align = 0;
uint32_t el_size = 0;
if (!DefaultAlignAndSize(arr->type(), el_align, el_size)) {
return nullptr;
}
auto align = el_align;
// WebGPU requires runtime arrays have at least one element, but the AST
// records an element count of 0 for it.
auto size = std::max<uint32_t>(arr->size(), 1) * stride;
auto* sem = builder_->create<semantic::Array>(arr, align, size, stride);
builder_->Sem().Add(arr, sem);
return sem;
};
// Look for explicit stride via [[stride(n)]] decoration
for (auto* deco : arr->decorations()) {
if (auto* stride = deco->As<ast::StrideDecoration>()) {
return create_semantic(stride->stride());
}
}
// Calculate implicit stride
uint32_t el_align = 0;
uint32_t el_size = 0;
if (!DefaultAlignAndSize(el_ty, el_align, el_size)) {
return nullptr;
}
return create_semantic(RoundUp(el_align, el_size));
}
const semantic::Struct* Resolver::Structure(type::Struct* str) {
if (auto* sem = builder_->Sem().Get(str)) {
// Semantic info already constructed for this structure type
return sem;
}
semantic::StructMemberList sem_members;
sem_members.reserve(str->impl()->members().size());
// Calculate the effective size and alignment of each field, and the overall
// size of the structure.
// For size, use the size attribute if provided, otherwise use the default
// size for the type.
// For alignment, use the alignment attribute if provided, otherwise use the
// default alignment for the member type.
// Diagnostic errors are raised if a basic rule is violated.
// Validation of storage-class rules requires analysing the actual variable
// usage of the structure, and so is performed as part of the variable
// validation.
// TODO(crbug.com/tint/628): Actually implement storage-class validation.
uint32_t struct_size = 0;
uint32_t struct_align = 1;
for (auto* member : str->impl()->members()) {
// First check the member type is legal
if (!IsStorable(member->type())) {
builder_->Diagnostics().add_error(
std::string(member->type()->FriendlyName(builder_->Symbols())) +
" cannot be used as the type of a structure member");
return nullptr;
}
uint32_t offset = struct_size;
uint32_t align = 0;
uint32_t size = 0;
if (!DefaultAlignAndSize(member->type(), align, size)) {
return nullptr;
}
for (auto* deco : member->decorations()) {
if (auto* o = deco->As<ast::StructMemberOffsetDecoration>()) {
// [DEPRECATED]
if (o->offset() < struct_size) {
diagnostics_.add_error("offsets must be in ascending order",
o->source());
return nullptr;
}
offset = o->offset();
align = 1;
} else if (auto* a = deco->As<ast::StructMemberAlignDecoration>()) {
if (a->align() <= 0 || !IsPowerOfTwo(a->align())) {
diagnostics_.add_error(
"align value must be a positive, power-of-two integer",
a->source());
return nullptr;
}
align = a->align();
} else if (auto* s = deco->As<ast::StructMemberSizeDecoration>()) {
if (s->size() < size) {
diagnostics_.add_error(
"size must be at least as big as the type's size (" +
std::to_string(size) + ")",
s->source());
return nullptr;
}
size = s->size();
}
}
offset = RoundUp(align, offset);
auto* sem_member =
builder_->create<semantic::StructMember>(member, offset, size);
builder_->Sem().Add(member, sem_member);
sem_members.emplace_back(sem_member);
struct_size = offset + size;
struct_align = std::max(struct_align, align);
}
struct_size = RoundUp(struct_align, struct_size);
auto* sem = builder_->create<semantic::Struct>(str, std::move(sem_members),
struct_align, struct_size);
builder_->Sem().Add(str, sem);
return sem;
}
template <typename F>
bool Resolver::BlockScope(BlockInfo::Type type, F&& callback) {
BlockInfo block_info(type, current_block_);

View File

@@ -42,8 +42,12 @@ class UnaryOpExpression;
class Variable;
} // namespace ast
namespace semantic {
class Array;
class Statement;
} // namespace semantic
namespace type {
class Struct;
} // namespace type
namespace resolver {
@@ -63,6 +67,10 @@ class Resolver {
/// @returns true if the resolver was successful
bool Resolve();
/// @param type the given type
/// @returns true if the given type is storable.
static bool IsStorable(type::Type* type);
private:
/// Structure holding semantic information about a variable.
/// Used to build the semantic::Variable nodes at the end of resolving.
@@ -141,41 +149,6 @@ class Resolver {
/// @returns true on success, false on error
bool ResolveInternal();
/// Resolves functions
/// @param funcs the functions to check
/// @returns true on success, false on error
bool Functions(const ast::FunctionList& funcs);
/// Resolves a function. Requires all dependency
/// (callee) functions to have DetermineFunction() called on them first.
/// @param func the function to check
/// @returns true on success, false on error
bool Function(ast::Function* func);
/// Resolves a block statement
/// @param stmt the block statement
/// @returns true if determination was successful
bool BlockStatement(const ast::BlockStatement* stmt);
/// Resolves the list of statements
/// @param stmts the statements to resolve
/// @returns true on success, false on error
bool Statements(const ast::StatementList& stmts);
/// Resolves a statement
/// @param stmt the statement to check
/// @returns true on success, false on error
bool Statement(ast::Statement* stmt);
/// Resolves an expression list
/// @param list the expression list to check
/// @returns true on success, false on error
bool Expressions(const ast::ExpressionList& list);
/// Resolves an expression
/// @param expr the expression to check
/// @returns true on success, false on error
bool Expression(ast::Expression* expr);
/// Resolves the storage class for variables. This assumes that it is only
/// called for things in function scope, not module scope.
/// @param stmt the statement to check
/// @returns false on error
bool VariableStorageClass(ast::Statement* stmt);
/// Creates the nodes and adds them to the semantic::Info mappings of the
/// ProgramBuilder.
void CreateSemanticNodes() const;
@@ -195,20 +168,43 @@ class Resolver {
void set_referenced_from_function_if_needed(VariableInfo* var, bool local);
bool ArrayAccessor(ast::ArrayAccessorExpression* expr);
bool Binary(ast::BinaryExpression* expr);
bool Bitcast(ast::BitcastExpression* expr);
bool Call(ast::CallExpression* expr);
bool CaseStatement(ast::CaseStatement* stmt);
bool Constructor(ast::ConstructorExpression* expr);
bool Identifier(ast::IdentifierExpression* expr);
bool IfStatement(ast::IfStatement* stmt);
bool IntrinsicCall(ast::CallExpression* call,
semantic::IntrinsicType intrinsic_type);
bool MemberAccessor(ast::MemberAccessorExpression* expr);
bool UnaryOp(ast::UnaryOpExpression* expr);
// AST and Type traversal methods
// Each return true on success, false on failure.
bool ArrayAccessor(ast::ArrayAccessorExpression*);
bool Binary(ast::BinaryExpression*);
bool Bitcast(ast::BitcastExpression*);
bool BlockStatement(const ast::BlockStatement*);
bool Call(ast::CallExpression*);
bool CaseStatement(ast::CaseStatement*);
bool Constructor(ast::ConstructorExpression*);
bool Expression(ast::Expression*);
bool Expressions(const ast::ExpressionList&);
bool Function(ast::Function*);
bool Functions(const ast::FunctionList&);
bool Identifier(ast::IdentifierExpression*);
bool IfStatement(ast::IfStatement*);
bool IntrinsicCall(ast::CallExpression*, semantic::IntrinsicType);
bool MemberAccessor(ast::MemberAccessorExpression*);
bool Statement(ast::Statement*);
bool Statements(const ast::StatementList&);
bool UnaryOp(ast::UnaryOpExpression*);
bool VariableDeclStatement(const ast::VariableDeclStatement*);
bool VariableStorageClass(ast::Statement*);
bool VariableDeclStatement(const ast::VariableDeclStatement* stmt);
/// @returns the semantic information for the array `arr`, building it if it
/// hasn't been constructed already. If an error is raised, nullptr is
/// returned.
const semantic::Array* Array(type::Array*);
/// @returns the semantic information for the structure `str`, building it if
/// it hasn't been constructed already. If an error is raised, nullptr is
/// returned.
const semantic::Struct* Structure(type::Struct* str);
/// @param align the output default alignment in bytes for the type `ty`
/// @param size the output default size in bytes for the type `ty`
/// @returns true on success, false on error
bool DefaultAlignAndSize(type::Type* ty, uint32_t& align, uint32_t& size);
VariableInfo* CreateVariableInfo(ast::Variable*);

View File

@@ -0,0 +1,333 @@
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/resolver/resolver.h"
#include "gmock/gmock.h"
#include "src/resolver/resolver_test_helper.h"
#include "src/semantic/struct.h"
namespace tint {
namespace resolver {
namespace {
using ResolverStructLayoutTest = ResolverTest;
TEST_F(ResolverStructLayoutTest, Scalars) {
auto* s = Structure("S", {
Member("a", ty.f32()),
Member("b", ty.u32()),
Member("c", ty.i32()),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 12u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 3u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 4u);
EXPECT_EQ(sem->Members()[1]->Offset(), 4u);
EXPECT_EQ(sem->Members()[1]->Size(), 4u);
EXPECT_EQ(sem->Members()[2]->Offset(), 8u);
EXPECT_EQ(sem->Members()[2]->Size(), 4u);
}
TEST_F(ResolverStructLayoutTest, Alias) {
auto* s = Structure("S", {
Member("a", ty.alias("a", ty.f32())),
Member("b", ty.alias("b", ty.f32())),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 8u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 2u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 4u);
EXPECT_EQ(sem->Members()[1]->Offset(), 4u);
EXPECT_EQ(sem->Members()[1]->Size(), 4u);
}
TEST_F(ResolverStructLayoutTest, ImplicitStrideArrayStaticSize) {
auto* s = Structure("S", {
Member("a", ty.array<i32, 3>()),
Member("b", ty.array<f32, 5>()),
Member("c", ty.array<f32, 1>()),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 36u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 3u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 12u);
EXPECT_EQ(sem->Members()[1]->Offset(), 12u);
EXPECT_EQ(sem->Members()[1]->Size(), 20u);
EXPECT_EQ(sem->Members()[2]->Offset(), 32u);
EXPECT_EQ(sem->Members()[2]->Size(), 4u);
}
TEST_F(ResolverStructLayoutTest, ExplicitStrideArrayStaticSize) {
auto* s = Structure("S", {
Member("a", ty.array<i32, 3>(/*stride*/ 8)),
Member("b", ty.array<f32, 5>(/*stride*/ 16)),
Member("c", ty.array<f32, 1>(/*stride*/ 32)),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 136u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 3u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 24u);
EXPECT_EQ(sem->Members()[1]->Offset(), 24u);
EXPECT_EQ(sem->Members()[1]->Size(), 80u);
EXPECT_EQ(sem->Members()[2]->Offset(), 104u);
EXPECT_EQ(sem->Members()[2]->Size(), 32u);
}
TEST_F(ResolverStructLayoutTest, ImplicitStrideArrayRuntimeSized) {
auto* s = Structure("S", {
Member("c", ty.array<f32>()),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 4u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 1u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 4u);
}
TEST_F(ResolverStructLayoutTest, ExplicitStrideArrayRuntimeSized) {
auto* s = Structure("S", {
Member("c", ty.array<f32>(/*stride*/ 32)),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 32u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 1u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 32u);
}
TEST_F(ResolverStructLayoutTest, ImplicitStrideArrayOfExplicitStrideArray) {
auto* inner = ty.array<i32, 2>(/*stride*/ 16); // size: 32
auto* outer = ty.array(inner, 12); // size: 12 * 32
auto* s = Structure("S", {
Member("c", outer),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 384u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 1u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 384u);
}
TEST_F(ResolverStructLayoutTest, ImplicitStrideArrayOfStructure) {
auto* inner = Structure("Inner", {
Member("a", ty.vec2<i32>()),
Member("b", ty.vec3<i32>()),
Member("c", ty.vec4<i32>()),
}); // size: 48
auto* outer = ty.array(inner, 12); // size: 12 * 48
auto* s = Structure("S", {
Member("c", outer),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 576u);
EXPECT_EQ(sem->Align(), 16u);
ASSERT_EQ(sem->Members().size(), 1u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 576u);
}
TEST_F(ResolverStructLayoutTest, Vector) {
auto* s = Structure("S", {
Member("a", ty.vec2<i32>()),
Member("b", ty.vec3<i32>()),
Member("c", ty.vec4<i32>()),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 48u);
EXPECT_EQ(sem->Align(), 16u);
ASSERT_EQ(sem->Members().size(), 3u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u); // vec2
EXPECT_EQ(sem->Members()[0]->Size(), 8u);
EXPECT_EQ(sem->Members()[1]->Offset(), 16u); // vec3
EXPECT_EQ(sem->Members()[1]->Size(), 12u);
EXPECT_EQ(sem->Members()[2]->Offset(), 32u); // vec4
EXPECT_EQ(sem->Members()[2]->Size(), 16u);
}
TEST_F(ResolverStructLayoutTest, Matrix) {
auto* s = Structure("S", {
Member("a", ty.mat2x2<i32>()),
Member("b", ty.mat2x3<i32>()),
Member("c", ty.mat2x4<i32>()),
Member("d", ty.mat3x2<i32>()),
Member("e", ty.mat3x3<i32>()),
Member("f", ty.mat3x4<i32>()),
Member("g", ty.mat4x2<i32>()),
Member("h", ty.mat4x3<i32>()),
Member("i", ty.mat4x4<i32>()),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 368u);
EXPECT_EQ(sem->Align(), 16u);
ASSERT_EQ(sem->Members().size(), 9u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u); // mat2x2
EXPECT_EQ(sem->Members()[0]->Size(), 16u);
EXPECT_EQ(sem->Members()[1]->Offset(), 16u); // mat2x3
EXPECT_EQ(sem->Members()[1]->Size(), 32u);
EXPECT_EQ(sem->Members()[2]->Offset(), 48u); // mat2x4
EXPECT_EQ(sem->Members()[2]->Size(), 32u);
EXPECT_EQ(sem->Members()[3]->Offset(), 80u); // mat3x2
EXPECT_EQ(sem->Members()[3]->Size(), 24u);
EXPECT_EQ(sem->Members()[4]->Offset(), 112u); // mat3x3
EXPECT_EQ(sem->Members()[4]->Size(), 48u);
EXPECT_EQ(sem->Members()[5]->Offset(), 160u); // mat3x4
EXPECT_EQ(sem->Members()[5]->Size(), 48u);
EXPECT_EQ(sem->Members()[6]->Offset(), 208u); // mat4x2
EXPECT_EQ(sem->Members()[6]->Size(), 32u);
EXPECT_EQ(sem->Members()[7]->Offset(), 240u); // mat4x3
EXPECT_EQ(sem->Members()[7]->Size(), 64u);
EXPECT_EQ(sem->Members()[8]->Offset(), 304u); // mat4x4
EXPECT_EQ(sem->Members()[8]->Size(), 64u);
}
TEST_F(ResolverStructLayoutTest, NestedStruct) {
auto* inner = Structure("Inner", {
Member("a", ty.mat3x3<i32>()),
});
auto* s = Structure("S", {
Member("a", ty.i32()),
Member("b", inner),
Member("c", ty.i32()),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 80u);
EXPECT_EQ(sem->Align(), 16u);
ASSERT_EQ(sem->Members().size(), 3u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 4u);
EXPECT_EQ(sem->Members()[1]->Offset(), 16u);
EXPECT_EQ(sem->Members()[1]->Size(), 48u);
EXPECT_EQ(sem->Members()[2]->Offset(), 64u);
EXPECT_EQ(sem->Members()[2]->Size(), 4u);
}
TEST_F(ResolverStructLayoutTest, SizeDecorations) {
auto* inner = Structure("Inner", {
Member("a", ty.f32(), {MemberSize(8)}),
Member("b", ty.f32(), {MemberSize(16)}),
Member("c", ty.f32(), {MemberSize(8)}),
});
auto* s = Structure("S", {
Member("a", ty.f32(), {MemberSize(4)}),
Member("b", ty.u32(), {MemberSize(8)}),
Member("c", inner),
Member("d", ty.i32(), {MemberSize(32)}),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 76u);
EXPECT_EQ(sem->Align(), 4u);
ASSERT_EQ(sem->Members().size(), 4u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 4u);
EXPECT_EQ(sem->Members()[1]->Offset(), 4u);
EXPECT_EQ(sem->Members()[1]->Size(), 8u);
EXPECT_EQ(sem->Members()[2]->Offset(), 12u);
EXPECT_EQ(sem->Members()[2]->Size(), 32u);
EXPECT_EQ(sem->Members()[3]->Offset(), 44u);
EXPECT_EQ(sem->Members()[3]->Size(), 32u);
}
TEST_F(ResolverStructLayoutTest, AlignDecorations) {
auto* inner = Structure("Inner", {
Member("a", ty.f32(), {MemberAlign(8)}),
Member("b", ty.f32(), {MemberAlign(16)}),
Member("c", ty.f32(), {MemberAlign(4)}),
});
auto* s = Structure("S", {
Member("a", ty.f32(), {MemberAlign(4)}),
Member("b", ty.u32(), {MemberAlign(8)}),
Member("c", inner),
Member("d", ty.i32(), {MemberAlign(32)}),
});
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* sem = Sem().Get(s);
ASSERT_NE(sem, nullptr);
EXPECT_EQ(sem->Size(), 96u);
EXPECT_EQ(sem->Align(), 32u);
ASSERT_EQ(sem->Members().size(), 4u);
EXPECT_EQ(sem->Members()[0]->Offset(), 0u);
EXPECT_EQ(sem->Members()[0]->Size(), 4u);
EXPECT_EQ(sem->Members()[1]->Offset(), 8u);
EXPECT_EQ(sem->Members()[1]->Size(), 4u);
EXPECT_EQ(sem->Members()[2]->Offset(), 16u);
EXPECT_EQ(sem->Members()[2]->Size(), 32u);
EXPECT_EQ(sem->Members()[3]->Offset(), 64u);
EXPECT_EQ(sem->Members()[3]->Size(), 4u);
}
} // namespace
} // namespace resolver
} // namespace tint

View File

@@ -556,6 +556,38 @@ TEST_F(ResolverValidationTest, Stmt_BreakNotInLoopOrSwitch) {
"12:34 error: break statement must be in a loop or switch case");
}
TEST_F(ResolverValidationTest, NonPOTStructMemberAlignDecoration) {
Structure("S", {
Member("a", ty.f32(), {MemberAlign(Source{{12, 34}}, 3)}),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(
r()->error(),
"12:34 error: align value must be a positive, power-of-two integer");
}
TEST_F(ResolverValidationTest, ZeroStructMemberAlignDecoration) {
Structure("S", {
Member("a", ty.f32(), {MemberAlign(Source{{12, 34}}, 0)}),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(
r()->error(),
"12:34 error: align value must be a positive, power-of-two integer");
}
TEST_F(ResolverValidationTest, ZeroStructMemberSizeDecoration) {
Structure("S", {
Member("a", ty.f32(), {MemberSize(Source{{12, 34}}, 0)}),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: size must be at least as big as the type's size (4)");
}
} // namespace
} // namespace resolver
} // namespace tint