mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-12-10 14:08:04 +00:00
Add support for increment/decrement statements
Refactor the ExpandCompoundAssignment transform to handle these statements, which delivers support for all of the non-WGSL backends. Fixed: tint:1488 Change-Id: I96cdc31851c61f6d92d296447d0b0637907d5fe5 Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/86004 Reviewed-by: Ben Clayton <bclayton@google.com>
This commit is contained in:
@@ -17,6 +17,7 @@
|
||||
#include <utility>
|
||||
|
||||
#include "src/tint/ast/compound_assignment_statement.h"
|
||||
#include "src/tint/ast/increment_decrement_statement.h"
|
||||
#include "src/tint/program_builder.h"
|
||||
#include "src/tint/sem/block_statement.h"
|
||||
#include "src/tint/sem/expression.h"
|
||||
@@ -36,113 +37,159 @@ ExpandCompoundAssignment::~ExpandCompoundAssignment() = default;
|
||||
bool ExpandCompoundAssignment::ShouldRun(const Program* program,
|
||||
const DataMap&) const {
|
||||
for (auto* node : program->ASTNodes().Objects()) {
|
||||
if (node->Is<ast::CompoundAssignmentStatement>()) {
|
||||
if (node->IsAnyOf<ast::CompoundAssignmentStatement,
|
||||
ast::IncrementDecrementStatement>()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Internal class used to collect statement expansions during the transform.
|
||||
class State {
|
||||
private:
|
||||
/// The clone context.
|
||||
CloneContext& ctx;
|
||||
|
||||
/// The program builder.
|
||||
ProgramBuilder& b;
|
||||
|
||||
/// The HoistToDeclBefore helper instance.
|
||||
HoistToDeclBefore hoist_to_decl_before;
|
||||
|
||||
public:
|
||||
/// Constructor
|
||||
/// @param context the clone context
|
||||
explicit State(CloneContext& context)
|
||||
: ctx(context), b(*ctx.dst), hoist_to_decl_before(ctx) {}
|
||||
|
||||
/// Replace `stmt` with a regular assignment statement of the form:
|
||||
/// lhs = lhs op rhs
|
||||
/// The LHS expression will only be evaluated once, and any side effects will
|
||||
/// be hoisted to `let` declarations above the assignment statement.
|
||||
/// @param stmt the statement to replace
|
||||
/// @param lhs the lhs expression from the source statement
|
||||
/// @param rhs the rhs expression in the destination module
|
||||
/// @param op the binary operator
|
||||
void Expand(const ast::Statement* stmt,
|
||||
const ast::Expression* lhs,
|
||||
const ast::Expression* rhs,
|
||||
ast::BinaryOp op) {
|
||||
// Helper function to create the new LHS expression. This will be called
|
||||
// twice when building the non-compound assignment statement, so must
|
||||
// not produce expressions that cause side effects.
|
||||
std::function<const ast::Expression*()> new_lhs;
|
||||
|
||||
// Helper function to create a variable that is a pointer to `expr`.
|
||||
auto hoist_pointer_to = [&](const ast::Expression* expr) {
|
||||
auto name = b.Sym();
|
||||
auto* ptr = b.AddressOf(ctx.Clone(expr));
|
||||
auto* decl = b.Decl(b.Const(name, nullptr, ptr));
|
||||
hoist_to_decl_before.InsertBefore(ctx.src->Sem().Get(stmt), decl);
|
||||
return name;
|
||||
};
|
||||
|
||||
// Helper function to hoist `expr` to a let declaration.
|
||||
auto hoist_expr_to_let = [&](const ast::Expression* expr) {
|
||||
auto name = b.Sym();
|
||||
auto* decl = b.Decl(b.Const(name, nullptr, ctx.Clone(expr)));
|
||||
hoist_to_decl_before.InsertBefore(ctx.src->Sem().Get(stmt), decl);
|
||||
return name;
|
||||
};
|
||||
|
||||
// Helper function that returns `true` if the type of `expr` is a vector.
|
||||
auto is_vec = [&](const ast::Expression* expr) {
|
||||
return ctx.src->Sem().Get(expr)->Type()->UnwrapRef()->Is<sem::Vector>();
|
||||
};
|
||||
|
||||
// Hoist the LHS expression subtree into local constants to produce a new
|
||||
// LHS that we can evaluate twice.
|
||||
// We need to special case compound assignments to vector components since
|
||||
// we cannot take the address of a vector component.
|
||||
auto* index_accessor = lhs->As<ast::IndexAccessorExpression>();
|
||||
auto* member_accessor = lhs->As<ast::MemberAccessorExpression>();
|
||||
if (lhs->Is<ast::IdentifierExpression>() ||
|
||||
(member_accessor &&
|
||||
member_accessor->structure->Is<ast::IdentifierExpression>())) {
|
||||
// This is the simple case with no side effects, so we can just use the
|
||||
// original LHS expression directly.
|
||||
// Before:
|
||||
// foo.bar += rhs;
|
||||
// After:
|
||||
// foo.bar = foo.bar + rhs;
|
||||
new_lhs = [&]() { return ctx.Clone(lhs); };
|
||||
} else if (index_accessor && is_vec(index_accessor->object)) {
|
||||
// This is the case for vector component via an array accessor. We need
|
||||
// to capture a pointer to the vector and also the index value.
|
||||
// Before:
|
||||
// v[idx()] += rhs;
|
||||
// After:
|
||||
// let vec_ptr = &v;
|
||||
// let index = idx();
|
||||
// (*vec_ptr)[index] = (*vec_ptr)[index] + rhs;
|
||||
auto lhs_ptr = hoist_pointer_to(index_accessor->object);
|
||||
auto index = hoist_expr_to_let(index_accessor->index);
|
||||
new_lhs = [&, lhs_ptr, index]() {
|
||||
return b.IndexAccessor(b.Deref(lhs_ptr), index);
|
||||
};
|
||||
} else if (member_accessor && is_vec(member_accessor->structure)) {
|
||||
// This is the case for vector component via a member accessor. We just
|
||||
// need to capture a pointer to the vector.
|
||||
// Before:
|
||||
// a[idx()].y += rhs;
|
||||
// After:
|
||||
// let vec_ptr = &a[idx()];
|
||||
// (*vec_ptr).y = (*vec_ptr).y + rhs;
|
||||
auto lhs_ptr = hoist_pointer_to(member_accessor->structure);
|
||||
new_lhs = [&, lhs_ptr]() {
|
||||
return b.MemberAccessor(b.Deref(lhs_ptr),
|
||||
ctx.Clone(member_accessor->member));
|
||||
};
|
||||
} else {
|
||||
// For all other statements that may have side-effecting expressions, we
|
||||
// just need to capture a pointer to the whole LHS.
|
||||
// Before:
|
||||
// a[idx()] += rhs;
|
||||
// After:
|
||||
// let lhs_ptr = &a[idx()];
|
||||
// (*lhs_ptr) = (*lhs_ptr) + rhs;
|
||||
auto lhs_ptr = hoist_pointer_to(lhs);
|
||||
new_lhs = [&, lhs_ptr]() { return b.Deref(lhs_ptr); };
|
||||
}
|
||||
|
||||
// Replace the statement with a regular assignment statement.
|
||||
auto* value = b.create<ast::BinaryExpression>(op, new_lhs(), rhs);
|
||||
ctx.Replace(stmt, b.Assign(new_lhs(), value));
|
||||
}
|
||||
|
||||
/// Finalize the transformation and clone the module.
|
||||
void Finalize() {
|
||||
hoist_to_decl_before.Apply();
|
||||
ctx.Clone();
|
||||
}
|
||||
};
|
||||
|
||||
void ExpandCompoundAssignment::Run(CloneContext& ctx,
|
||||
const DataMap&,
|
||||
DataMap&) const {
|
||||
HoistToDeclBefore hoist_to_decl_before(ctx);
|
||||
|
||||
State state(ctx);
|
||||
for (auto* node : ctx.src->ASTNodes().Objects()) {
|
||||
if (auto* assign = node->As<ast::CompoundAssignmentStatement>()) {
|
||||
auto* sem_assign = ctx.src->Sem().Get(assign);
|
||||
|
||||
// Helper function to create the LHS expression. This will be called twice
|
||||
// when building the non-compound assignment statement, so must not
|
||||
// produce expressions that cause side effects.
|
||||
std::function<const ast::Expression*()> lhs;
|
||||
|
||||
// Helper function to create a variable that is a pointer to `expr`.
|
||||
auto hoist_pointer_to = [&](const ast::Expression* expr) {
|
||||
auto name = ctx.dst->Sym();
|
||||
auto* ptr = ctx.dst->AddressOf(ctx.Clone(expr));
|
||||
auto* decl = ctx.dst->Decl(ctx.dst->Const(name, nullptr, ptr));
|
||||
hoist_to_decl_before.InsertBefore(sem_assign, decl);
|
||||
return name;
|
||||
};
|
||||
|
||||
// Helper function to hoist `expr` to a let declaration.
|
||||
auto hoist_expr_to_let = [&](const ast::Expression* expr) {
|
||||
auto name = ctx.dst->Sym();
|
||||
auto* decl =
|
||||
ctx.dst->Decl(ctx.dst->Const(name, nullptr, ctx.Clone(expr)));
|
||||
hoist_to_decl_before.InsertBefore(sem_assign, decl);
|
||||
return name;
|
||||
};
|
||||
|
||||
// Helper function that returns `true` if the type of `expr` is a vector.
|
||||
auto is_vec = [&](const ast::Expression* expr) {
|
||||
return ctx.src->Sem().Get(expr)->Type()->UnwrapRef()->Is<sem::Vector>();
|
||||
};
|
||||
|
||||
// Hoist the LHS expression subtree into local constants to produce a new
|
||||
// LHS that we can evaluate twice.
|
||||
// We need to special case compound assignments to vector components since
|
||||
// we cannot take the address of a vector component.
|
||||
auto* index_accessor = assign->lhs->As<ast::IndexAccessorExpression>();
|
||||
auto* member_accessor = assign->lhs->As<ast::MemberAccessorExpression>();
|
||||
if (assign->lhs->Is<ast::IdentifierExpression>() ||
|
||||
(member_accessor &&
|
||||
member_accessor->structure->Is<ast::IdentifierExpression>())) {
|
||||
// This is the simple case with no side effects, so we can just use the
|
||||
// original LHS expression directly.
|
||||
// Before:
|
||||
// foo.bar += rhs;
|
||||
// After:
|
||||
// foo.bar = foo.bar + rhs;
|
||||
lhs = [&]() { return ctx.Clone(assign->lhs); };
|
||||
} else if (index_accessor && is_vec(index_accessor->object)) {
|
||||
// This is the case for vector component via an array accessor. We need
|
||||
// to capture a pointer to the vector and also the index value.
|
||||
// Before:
|
||||
// v[idx()] += rhs;
|
||||
// After:
|
||||
// let vec_ptr = &v;
|
||||
// let index = idx();
|
||||
// (*vec_ptr)[index] = (*vec_ptr)[index] + rhs;
|
||||
auto lhs_ptr = hoist_pointer_to(index_accessor->object);
|
||||
auto index = hoist_expr_to_let(index_accessor->index);
|
||||
lhs = [&, lhs_ptr, index]() {
|
||||
return ctx.dst->IndexAccessor(ctx.dst->Deref(lhs_ptr), index);
|
||||
};
|
||||
} else if (member_accessor && is_vec(member_accessor->structure)) {
|
||||
// This is the case for vector component via a member accessor. We just
|
||||
// need to capture a pointer to the vector.
|
||||
// Before:
|
||||
// a[idx()].y += rhs;
|
||||
// After:
|
||||
// let vec_ptr = &a[idx()];
|
||||
// (*vec_ptr).y = (*vec_ptr).y + rhs;
|
||||
auto lhs_ptr = hoist_pointer_to(member_accessor->structure);
|
||||
lhs = [&, lhs_ptr]() {
|
||||
return ctx.dst->MemberAccessor(ctx.dst->Deref(lhs_ptr),
|
||||
ctx.Clone(member_accessor->member));
|
||||
};
|
||||
} else {
|
||||
// For all other statements that may have side-effecting expressions, we
|
||||
// just need to capture a pointer to the whole LHS.
|
||||
// Before:
|
||||
// a[idx()] += rhs;
|
||||
// After:
|
||||
// let lhs_ptr = &a[idx()];
|
||||
// (*lhs_ptr) = (*lhs_ptr) + rhs;
|
||||
auto lhs_ptr = hoist_pointer_to(assign->lhs);
|
||||
lhs = [&, lhs_ptr]() { return ctx.dst->Deref(lhs_ptr); };
|
||||
}
|
||||
|
||||
// Replace the compound assignment with a regular assignment.
|
||||
auto* rhs = ctx.dst->create<ast::BinaryExpression>(
|
||||
assign->op, lhs(), ctx.Clone(assign->rhs));
|
||||
ctx.Replace(assign, ctx.dst->Assign(lhs(), rhs));
|
||||
state.Expand(assign, assign->lhs, ctx.Clone(assign->rhs), assign->op);
|
||||
} else if (auto* inc_dec = node->As<ast::IncrementDecrementStatement>()) {
|
||||
// For increment/decrement statements, `i++` becomes `i = i + 1`.
|
||||
// TODO(jrprice): Simplify this when we have untyped literals.
|
||||
auto* sem_lhs = ctx.src->Sem().Get(inc_dec->lhs);
|
||||
const ast::IntLiteralExpression* one =
|
||||
sem_lhs->Type()->UnwrapRef()->is_signed_integer_scalar()
|
||||
? ctx.dst->Expr(1)->As<ast::IntLiteralExpression>()
|
||||
: ctx.dst->Expr(1u)->As<ast::IntLiteralExpression>();
|
||||
auto op =
|
||||
inc_dec->increment ? ast::BinaryOp::kAdd : ast::BinaryOp::kSubtract;
|
||||
state.Expand(inc_dec, inc_dec->lhs, one, op);
|
||||
}
|
||||
}
|
||||
hoist_to_decl_before.Apply();
|
||||
ctx.Clone();
|
||||
state.Finalize();
|
||||
}
|
||||
|
||||
} // namespace transform
|
||||
|
||||
@@ -36,6 +36,9 @@ namespace transform {
|
||||
/// let _idx = bar();
|
||||
/// (*_vec)[_idx] = (*_vec)[_idx] * 2.0;
|
||||
/// ```
|
||||
///
|
||||
/// This transform also handles increment and decrement statements in the same
|
||||
/// manner, by replacing `i++` with `i = i + 1`.
|
||||
class ExpandCompoundAssignment
|
||||
: public Castable<ExpandCompoundAssignment, Transform> {
|
||||
public:
|
||||
|
||||
@@ -41,6 +41,17 @@ fn foo() {
|
||||
EXPECT_TRUE(ShouldRun<ExpandCompoundAssignment>(src));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, ShouldRunHasIncrementDecrement) {
|
||||
auto* src = R"(
|
||||
fn foo() {
|
||||
var v : i32;
|
||||
v++;
|
||||
}
|
||||
)";
|
||||
|
||||
EXPECT_TRUE(ShouldRun<ExpandCompoundAssignment>(src));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Basic) {
|
||||
auto* src = R"(
|
||||
fn main() {
|
||||
@@ -452,6 +463,284 @@ fn main() {
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Increment_I32) {
|
||||
auto* src = R"(
|
||||
fn main() {
|
||||
var v : i32;
|
||||
v++;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
fn main() {
|
||||
var v : i32;
|
||||
v = (v + 1);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Increment_U32) {
|
||||
auto* src = R"(
|
||||
fn main() {
|
||||
var v : u32;
|
||||
v++;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
fn main() {
|
||||
var v : u32;
|
||||
v = (v + 1u);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Decrement_I32) {
|
||||
auto* src = R"(
|
||||
fn main() {
|
||||
var v : i32;
|
||||
v--;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
fn main() {
|
||||
var v : i32;
|
||||
v = (v - 1);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Decrement_U32) {
|
||||
auto* src = R"(
|
||||
fn main() {
|
||||
var v : u32;
|
||||
v--;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
fn main() {
|
||||
var v : u32;
|
||||
v = (v - 1u);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Increment_LhsPointer) {
|
||||
auto* src = R"(
|
||||
fn main() {
|
||||
var v : i32;
|
||||
let p = &v;
|
||||
*p++;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
fn main() {
|
||||
var v : i32;
|
||||
let p = &(v);
|
||||
let tint_symbol = &(*(p));
|
||||
*(tint_symbol) = (*(tint_symbol) + 1);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Increment_LhsStructMember) {
|
||||
auto* src = R"(
|
||||
struct S {
|
||||
m : i32,
|
||||
}
|
||||
|
||||
fn main() {
|
||||
var s : S;
|
||||
s.m++;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
struct S {
|
||||
m : i32,
|
||||
}
|
||||
|
||||
fn main() {
|
||||
var s : S;
|
||||
s.m = (s.m + 1);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Increment_LhsArrayElement) {
|
||||
auto* src = R"(
|
||||
var<private> a : array<i32, 4>;
|
||||
|
||||
fn idx() -> i32 {
|
||||
a[1] = 42;
|
||||
return 1;
|
||||
}
|
||||
|
||||
fn main() {
|
||||
a[idx()]++;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
var<private> a : array<i32, 4>;
|
||||
|
||||
fn idx() -> i32 {
|
||||
a[1] = 42;
|
||||
return 1;
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let tint_symbol = &(a[idx()]);
|
||||
*(tint_symbol) = (*(tint_symbol) + 1);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest,
|
||||
Increment_LhsVectorComponent_ArrayAccessor) {
|
||||
auto* src = R"(
|
||||
var<private> v : vec4<i32>;
|
||||
|
||||
fn idx() -> i32 {
|
||||
v.y = 42;
|
||||
return 1;
|
||||
}
|
||||
|
||||
fn main() {
|
||||
v[idx()]++;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
var<private> v : vec4<i32>;
|
||||
|
||||
fn idx() -> i32 {
|
||||
v.y = 42;
|
||||
return 1;
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let tint_symbol = &(v);
|
||||
let tint_symbol_1 = idx();
|
||||
(*(tint_symbol))[tint_symbol_1] = ((*(tint_symbol))[tint_symbol_1] + 1);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest,
|
||||
Increment_LhsVectorComponent_MemberAccessor) {
|
||||
auto* src = R"(
|
||||
fn main() {
|
||||
var v : vec4<i32>;
|
||||
v.y++;
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
fn main() {
|
||||
var v : vec4<i32>;
|
||||
v.y = (v.y + 1);
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
TEST_F(ExpandCompoundAssignmentTest, Increment_ForLoopCont) {
|
||||
auto* src = R"(
|
||||
var<private> a : array<vec4<i32>, 4>;
|
||||
|
||||
var<private> p : i32;
|
||||
|
||||
fn idx1() -> i32 {
|
||||
p = (p + 1);
|
||||
return 3;
|
||||
}
|
||||
|
||||
fn idx2() -> i32 {
|
||||
p = (p * 3);
|
||||
return 2;
|
||||
}
|
||||
|
||||
fn main() {
|
||||
for (; ; a[idx1()][idx2()]++) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
)";
|
||||
|
||||
auto* expect = R"(
|
||||
var<private> a : array<vec4<i32>, 4>;
|
||||
|
||||
var<private> p : i32;
|
||||
|
||||
fn idx1() -> i32 {
|
||||
p = (p + 1);
|
||||
return 3;
|
||||
}
|
||||
|
||||
fn idx2() -> i32 {
|
||||
p = (p * 3);
|
||||
return 2;
|
||||
}
|
||||
|
||||
fn main() {
|
||||
loop {
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
continuing {
|
||||
let tint_symbol = &(a[idx1()]);
|
||||
let tint_symbol_1 = idx2();
|
||||
(*(tint_symbol))[tint_symbol_1] = ((*(tint_symbol))[tint_symbol_1] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
)";
|
||||
|
||||
auto got = Run<ExpandCompoundAssignment>(src);
|
||||
|
||||
EXPECT_EQ(expect, str(got));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace transform
|
||||
} // namespace tint
|
||||
|
||||
Reference in New Issue
Block a user