Add vendored dependencies & cleanup script

This commit is contained in:
2022-02-11 14:01:25 -05:00
parent ea5ad06289
commit f55d064a0d
4315 changed files with 1296565 additions and 18 deletions

View File

@@ -0,0 +1,488 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// POSIX spec:
// http://pubs.opengroup.org/onlinepubs/009695399/functions/fprintf.html
//
#include "absl/strings/internal/str_format/arg.h"
#include <cassert>
#include <cerrno>
#include <cstdlib>
#include <string>
#include <type_traits>
#include "absl/base/port.h"
#include "absl/strings/internal/str_format/float_conversion.h"
#include "absl/strings/numbers.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
// Reduce *capacity by s.size(), clipped to a 0 minimum.
void ReducePadding(string_view s, size_t *capacity) {
*capacity = Excess(s.size(), *capacity);
}
// Reduce *capacity by n, clipped to a 0 minimum.
void ReducePadding(size_t n, size_t *capacity) {
*capacity = Excess(n, *capacity);
}
template <typename T>
struct MakeUnsigned : std::make_unsigned<T> {};
template <>
struct MakeUnsigned<absl::int128> {
using type = absl::uint128;
};
template <>
struct MakeUnsigned<absl::uint128> {
using type = absl::uint128;
};
template <typename T>
struct IsSigned : std::is_signed<T> {};
template <>
struct IsSigned<absl::int128> : std::true_type {};
template <>
struct IsSigned<absl::uint128> : std::false_type {};
// Integral digit printer.
// Call one of the PrintAs* routines after construction once.
// Use with_neg_and_zero/without_neg_or_zero/is_negative to access the results.
class IntDigits {
public:
// Print the unsigned integer as octal.
// Supports unsigned integral types and uint128.
template <typename T>
void PrintAsOct(T v) {
static_assert(!IsSigned<T>::value, "");
char *p = storage_ + sizeof(storage_);
do {
*--p = static_cast<char>('0' + (static_cast<size_t>(v) & 7));
v >>= 3;
} while (v);
start_ = p;
size_ = storage_ + sizeof(storage_) - p;
}
// Print the signed or unsigned integer as decimal.
// Supports all integral types.
template <typename T>
void PrintAsDec(T v) {
static_assert(std::is_integral<T>::value, "");
start_ = storage_;
size_ = numbers_internal::FastIntToBuffer(v, storage_) - storage_;
}
void PrintAsDec(int128 v) {
auto u = static_cast<uint128>(v);
bool add_neg = false;
if (v < 0) {
add_neg = true;
u = uint128{} - u;
}
PrintAsDec(u, add_neg);
}
void PrintAsDec(uint128 v, bool add_neg = false) {
// This function can be sped up if needed. We can call FastIntToBuffer
// twice, or fix FastIntToBuffer to support uint128.
char *p = storage_ + sizeof(storage_);
do {
p -= 2;
numbers_internal::PutTwoDigits(static_cast<size_t>(v % 100), p);
v /= 100;
} while (v);
if (p[0] == '0') {
// We printed one too many hexits.
++p;
}
if (add_neg) {
*--p = '-';
}
size_ = storage_ + sizeof(storage_) - p;
start_ = p;
}
// Print the unsigned integer as hex using lowercase.
// Supports unsigned integral types and uint128.
template <typename T>
void PrintAsHexLower(T v) {
static_assert(!IsSigned<T>::value, "");
char *p = storage_ + sizeof(storage_);
do {
p -= 2;
constexpr const char* table = numbers_internal::kHexTable;
std::memcpy(p, table + 2 * (static_cast<size_t>(v) & 0xFF), 2);
if (sizeof(T) == 1) break;
v >>= 8;
} while (v);
if (p[0] == '0') {
// We printed one too many digits.
++p;
}
start_ = p;
size_ = storage_ + sizeof(storage_) - p;
}
// Print the unsigned integer as hex using uppercase.
// Supports unsigned integral types and uint128.
template <typename T>
void PrintAsHexUpper(T v) {
static_assert(!IsSigned<T>::value, "");
char *p = storage_ + sizeof(storage_);
// kHexTable is only lowercase, so do it manually for uppercase.
do {
*--p = "0123456789ABCDEF"[static_cast<size_t>(v) & 15];
v >>= 4;
} while (v);
start_ = p;
size_ = storage_ + sizeof(storage_) - p;
}
// The printed value including the '-' sign if available.
// For inputs of value `0`, this will return "0"
string_view with_neg_and_zero() const { return {start_, size_}; }
// The printed value not including the '-' sign.
// For inputs of value `0`, this will return "".
string_view without_neg_or_zero() const {
static_assert('-' < '0', "The check below verifies both.");
size_t advance = start_[0] <= '0' ? 1 : 0;
return {start_ + advance, size_ - advance};
}
bool is_negative() const { return start_[0] == '-'; }
private:
const char *start_;
size_t size_;
// Max size: 128 bit value as octal -> 43 digits, plus sign char
char storage_[128 / 3 + 1 + 1];
};
// Note: 'o' conversions do not have a base indicator, it's just that
// the '#' flag is specified to modify the precision for 'o' conversions.
string_view BaseIndicator(const IntDigits &as_digits,
const FormatConversionSpecImpl conv) {
// always show 0x for %p.
bool alt = conv.has_alt_flag() ||
conv.conversion_char() == FormatConversionCharInternal::p;
bool hex = (conv.conversion_char() == FormatConversionCharInternal::x ||
conv.conversion_char() == FormatConversionCharInternal::X ||
conv.conversion_char() == FormatConversionCharInternal::p);
// From the POSIX description of '#' flag:
// "For x or X conversion specifiers, a non-zero result shall have
// 0x (or 0X) prefixed to it."
if (alt && hex && !as_digits.without_neg_or_zero().empty()) {
return conv.conversion_char() == FormatConversionCharInternal::X ? "0X"
: "0x";
}
return {};
}
string_view SignColumn(bool neg, const FormatConversionSpecImpl conv) {
if (conv.conversion_char() == FormatConversionCharInternal::d ||
conv.conversion_char() == FormatConversionCharInternal::i) {
if (neg) return "-";
if (conv.has_show_pos_flag()) return "+";
if (conv.has_sign_col_flag()) return " ";
}
return {};
}
bool ConvertCharImpl(unsigned char v, const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
size_t fill = 0;
if (conv.width() >= 0) fill = conv.width();
ReducePadding(1, &fill);
if (!conv.has_left_flag()) sink->Append(fill, ' ');
sink->Append(1, v);
if (conv.has_left_flag()) sink->Append(fill, ' ');
return true;
}
bool ConvertIntImplInnerSlow(const IntDigits &as_digits,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
// Print as a sequence of Substrings:
// [left_spaces][sign][base_indicator][zeroes][formatted][right_spaces]
size_t fill = 0;
if (conv.width() >= 0) fill = conv.width();
string_view formatted = as_digits.without_neg_or_zero();
ReducePadding(formatted, &fill);
string_view sign = SignColumn(as_digits.is_negative(), conv);
ReducePadding(sign, &fill);
string_view base_indicator = BaseIndicator(as_digits, conv);
ReducePadding(base_indicator, &fill);
int precision = conv.precision();
bool precision_specified = precision >= 0;
if (!precision_specified)
precision = 1;
if (conv.has_alt_flag() &&
conv.conversion_char() == FormatConversionCharInternal::o) {
// From POSIX description of the '#' (alt) flag:
// "For o conversion, it increases the precision (if necessary) to
// force the first digit of the result to be zero."
if (formatted.empty() || *formatted.begin() != '0') {
int needed = static_cast<int>(formatted.size()) + 1;
precision = std::max(precision, needed);
}
}
size_t num_zeroes = Excess(formatted.size(), precision);
ReducePadding(num_zeroes, &fill);
size_t num_left_spaces = !conv.has_left_flag() ? fill : 0;
size_t num_right_spaces = conv.has_left_flag() ? fill : 0;
// From POSIX description of the '0' (zero) flag:
// "For d, i, o, u, x, and X conversion specifiers, if a precision
// is specified, the '0' flag is ignored."
if (!precision_specified && conv.has_zero_flag()) {
num_zeroes += num_left_spaces;
num_left_spaces = 0;
}
sink->Append(num_left_spaces, ' ');
sink->Append(sign);
sink->Append(base_indicator);
sink->Append(num_zeroes, '0');
sink->Append(formatted);
sink->Append(num_right_spaces, ' ');
return true;
}
template <typename T>
bool ConvertIntArg(T v, const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
using U = typename MakeUnsigned<T>::type;
IntDigits as_digits;
// This odd casting is due to a bug in -Wswitch behavior in gcc49 which causes
// it to complain about a switch/case type mismatch, even though both are
// FormatConverionChar. Likely this is because at this point
// FormatConversionChar is declared, but not defined.
switch (static_cast<uint8_t>(conv.conversion_char())) {
case static_cast<uint8_t>(FormatConversionCharInternal::c):
return ConvertCharImpl(static_cast<unsigned char>(v), conv, sink);
case static_cast<uint8_t>(FormatConversionCharInternal::o):
as_digits.PrintAsOct(static_cast<U>(v));
break;
case static_cast<uint8_t>(FormatConversionCharInternal::x):
as_digits.PrintAsHexLower(static_cast<U>(v));
break;
case static_cast<uint8_t>(FormatConversionCharInternal::X):
as_digits.PrintAsHexUpper(static_cast<U>(v));
break;
case static_cast<uint8_t>(FormatConversionCharInternal::u):
as_digits.PrintAsDec(static_cast<U>(v));
break;
case static_cast<uint8_t>(FormatConversionCharInternal::d):
case static_cast<uint8_t>(FormatConversionCharInternal::i):
as_digits.PrintAsDec(v);
break;
case static_cast<uint8_t>(FormatConversionCharInternal::a):
case static_cast<uint8_t>(FormatConversionCharInternal::e):
case static_cast<uint8_t>(FormatConversionCharInternal::f):
case static_cast<uint8_t>(FormatConversionCharInternal::g):
case static_cast<uint8_t>(FormatConversionCharInternal::A):
case static_cast<uint8_t>(FormatConversionCharInternal::E):
case static_cast<uint8_t>(FormatConversionCharInternal::F):
case static_cast<uint8_t>(FormatConversionCharInternal::G):
return ConvertFloatImpl(static_cast<double>(v), conv, sink);
default:
ABSL_INTERNAL_ASSUME(false);
}
if (conv.is_basic()) {
sink->Append(as_digits.with_neg_and_zero());
return true;
}
return ConvertIntImplInnerSlow(as_digits, conv, sink);
}
template <typename T>
bool ConvertFloatArg(T v, const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return FormatConversionCharIsFloat(conv.conversion_char()) &&
ConvertFloatImpl(v, conv, sink);
}
inline bool ConvertStringArg(string_view v, const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
if (conv.is_basic()) {
sink->Append(v);
return true;
}
return sink->PutPaddedString(v, conv.width(), conv.precision(),
conv.has_left_flag());
}
} // namespace
// ==================== Strings ====================
StringConvertResult FormatConvertImpl(const std::string &v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertStringArg(v, conv, sink)};
}
StringConvertResult FormatConvertImpl(string_view v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertStringArg(v, conv, sink)};
}
ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::s, FormatConversionCharSetInternal::p)>
FormatConvertImpl(const char *v, const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
if (conv.conversion_char() == FormatConversionCharInternal::p)
return {FormatConvertImpl(VoidPtr(v), conv, sink).value};
size_t len;
if (v == nullptr) {
len = 0;
} else if (conv.precision() < 0) {
len = std::strlen(v);
} else {
// If precision is set, we look for the NUL-terminator on the valid range.
len = std::find(v, v + conv.precision(), '\0') - v;
}
return {ConvertStringArg(string_view(v, len), conv, sink)};
}
// ==================== Raw pointers ====================
ArgConvertResult<FormatConversionCharSetInternal::p> FormatConvertImpl(
VoidPtr v, const FormatConversionSpecImpl conv, FormatSinkImpl *sink) {
if (!v.value) {
sink->Append("(nil)");
return {true};
}
IntDigits as_digits;
as_digits.PrintAsHexLower(v.value);
return {ConvertIntImplInnerSlow(as_digits, conv, sink)};
}
// ==================== Floats ====================
FloatingConvertResult FormatConvertImpl(float v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertFloatArg(v, conv, sink)};
}
FloatingConvertResult FormatConvertImpl(double v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertFloatArg(v, conv, sink)};
}
FloatingConvertResult FormatConvertImpl(long double v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertFloatArg(v, conv, sink)};
}
// ==================== Chars ====================
IntegralConvertResult FormatConvertImpl(char v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(signed char v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned char v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
// ==================== Ints ====================
IntegralConvertResult FormatConvertImpl(short v, // NOLINT
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned short v, // NOLINT
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(int v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(long v, // NOLINT
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned long v, // NOLINT
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(long long v, // NOLINT
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(unsigned long long v, // NOLINT
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(absl::int128 v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
IntegralConvertResult FormatConvertImpl(absl::uint128 v,
const FormatConversionSpecImpl conv,
FormatSinkImpl *sink) {
return {ConvertIntArg(v, conv, sink)};
}
ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_();
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,526 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#include <string.h>
#include <wchar.h>
#include <cstdio>
#include <iomanip>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include "absl/base/port.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class Cord;
class FormatCountCapture;
class FormatSink;
template <absl::FormatConversionCharSet C>
struct FormatConvertResult;
class FormatConversionSpec;
namespace str_format_internal {
template <typename T, typename = void>
struct HasUserDefinedConvert : std::false_type {};
template <typename T>
struct HasUserDefinedConvert<T, void_t<decltype(AbslFormatConvert(
std::declval<const T&>(),
std::declval<const FormatConversionSpec&>(),
std::declval<FormatSink*>()))>>
: std::true_type {};
void AbslFormatConvert(); // Stops the lexical name lookup
template <typename T>
auto FormatConvertImpl(const T& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink)
-> decltype(AbslFormatConvert(v,
std::declval<const FormatConversionSpec&>(),
std::declval<FormatSink*>())) {
using FormatConversionSpecT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatConversionSpec>;
using FormatSinkT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatSink>;
auto fcs = conv.Wrap<FormatConversionSpecT>();
auto fs = sink->Wrap<FormatSinkT>();
return AbslFormatConvert(v, fcs, &fs);
}
template <typename T>
class StreamedWrapper;
// If 'v' can be converted (in the printf sense) according to 'conv',
// then convert it, appending to `sink` and return `true`.
// Otherwise fail and return `false`.
// AbslFormatConvert(v, conv, sink) is intended to be found by ADL on 'v'
// as an extension mechanism. These FormatConvertImpl functions are the default
// implementations.
// The ADL search is augmented via the 'Sink*' parameter, which also
// serves as a disambiguator to reject possible unintended 'AbslFormatConvert'
// functions in the namespaces associated with 'v'.
// Raw pointers.
struct VoidPtr {
VoidPtr() = default;
template <typename T,
decltype(reinterpret_cast<uintptr_t>(std::declval<T*>())) = 0>
VoidPtr(T* ptr) // NOLINT
: value(ptr ? reinterpret_cast<uintptr_t>(ptr) : 0) {}
uintptr_t value;
};
template <FormatConversionCharSet C>
struct ArgConvertResult {
bool value;
};
template <FormatConversionCharSet C>
constexpr FormatConversionCharSet ExtractCharSet(FormatConvertResult<C>) {
return C;
}
template <FormatConversionCharSet C>
constexpr FormatConversionCharSet ExtractCharSet(ArgConvertResult<C>) {
return C;
}
using StringConvertResult =
ArgConvertResult<FormatConversionCharSetInternal::s>;
ArgConvertResult<FormatConversionCharSetInternal::p> FormatConvertImpl(
VoidPtr v, FormatConversionSpecImpl conv, FormatSinkImpl* sink);
// Strings.
StringConvertResult FormatConvertImpl(const std::string& v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
StringConvertResult FormatConvertImpl(string_view v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
#if defined(ABSL_HAVE_STD_STRING_VIEW) && !defined(ABSL_USES_STD_STRING_VIEW)
inline StringConvertResult FormatConvertImpl(std::string_view v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
return FormatConvertImpl(absl::string_view(v.data(), v.size()), conv, sink);
}
#endif // ABSL_HAVE_STD_STRING_VIEW && !ABSL_USES_STD_STRING_VIEW
ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::s, FormatConversionCharSetInternal::p)>
FormatConvertImpl(const char* v, const FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
template <class AbslCord, typename std::enable_if<std::is_same<
AbslCord, absl::Cord>::value>::type* = nullptr>
StringConvertResult FormatConvertImpl(const AbslCord& value,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
bool is_left = conv.has_left_flag();
size_t space_remaining = 0;
int width = conv.width();
if (width >= 0) space_remaining = width;
size_t to_write = value.size();
int precision = conv.precision();
if (precision >= 0)
to_write = (std::min)(to_write, static_cast<size_t>(precision));
space_remaining = Excess(to_write, space_remaining);
if (space_remaining > 0 && !is_left) sink->Append(space_remaining, ' ');
for (string_view piece : value.Chunks()) {
if (piece.size() > to_write) {
piece.remove_suffix(piece.size() - to_write);
to_write = 0;
} else {
to_write -= piece.size();
}
sink->Append(piece);
if (to_write == 0) {
break;
}
}
if (space_remaining > 0 && is_left) sink->Append(space_remaining, ' ');
return {true};
}
using IntegralConvertResult = ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::c,
FormatConversionCharSetInternal::kNumeric,
FormatConversionCharSetInternal::kStar)>;
using FloatingConvertResult =
ArgConvertResult<FormatConversionCharSetInternal::kFloating>;
// Floats.
FloatingConvertResult FormatConvertImpl(float v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(double v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(long double v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
// Chars.
IntegralConvertResult FormatConvertImpl(char v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(signed char v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned char v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
// Ints.
IntegralConvertResult FormatConvertImpl(short v, // NOLINT
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned short v, // NOLINT
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(int v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long v, // NOLINT
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long v, // NOLINT
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long long v, // NOLINT
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long long v, // NOLINT
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(int128 v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(uint128 v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
template <typename T, enable_if_t<std::is_same<T, bool>::value, int> = 0>
IntegralConvertResult FormatConvertImpl(T v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
return FormatConvertImpl(static_cast<int>(v), conv, sink);
}
// We provide this function to help the checker, but it is never defined.
// FormatArgImpl will use the underlying Convert functions instead.
template <typename T>
typename std::enable_if<std::is_enum<T>::value &&
!HasUserDefinedConvert<T>::value,
IntegralConvertResult>::type
FormatConvertImpl(T v, FormatConversionSpecImpl conv, FormatSinkImpl* sink);
template <typename T>
StringConvertResult FormatConvertImpl(const StreamedWrapper<T>& v,
FormatConversionSpecImpl conv,
FormatSinkImpl* out) {
std::ostringstream oss;
oss << v.v_;
if (!oss) return {false};
return str_format_internal::FormatConvertImpl(oss.str(), conv, out);
}
// Use templates and dependent types to delay evaluation of the function
// until after FormatCountCapture is fully defined.
struct FormatCountCaptureHelper {
template <class T = int>
static ArgConvertResult<FormatConversionCharSetInternal::n> ConvertHelper(
const FormatCountCapture& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
const absl::enable_if_t<sizeof(T) != 0, FormatCountCapture>& v2 = v;
if (conv.conversion_char() !=
str_format_internal::FormatConversionCharInternal::n) {
return {false};
}
*v2.p_ = static_cast<int>(sink->size());
return {true};
}
};
template <class T = int>
ArgConvertResult<FormatConversionCharSetInternal::n> FormatConvertImpl(
const FormatCountCapture& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
return FormatCountCaptureHelper::ConvertHelper(v, conv, sink);
}
// Helper friend struct to hide implementation details from the public API of
// FormatArgImpl.
struct FormatArgImplFriend {
template <typename Arg>
static bool ToInt(Arg arg, int* out) {
// A value initialized FormatConversionSpecImpl has a `none` conv, which
// tells the dispatcher to run the `int` conversion.
return arg.dispatcher_(arg.data_, {}, out);
}
template <typename Arg>
static bool Convert(Arg arg, FormatConversionSpecImpl conv,
FormatSinkImpl* out) {
return arg.dispatcher_(arg.data_, conv, out);
}
template <typename Arg>
static typename Arg::Dispatcher GetVTablePtrForTest(Arg arg) {
return arg.dispatcher_;
}
};
template <typename Arg>
constexpr FormatConversionCharSet ArgumentToConv() {
return absl::str_format_internal::ExtractCharSet(
decltype(str_format_internal::FormatConvertImpl(
std::declval<const Arg&>(),
std::declval<const FormatConversionSpecImpl&>(),
std::declval<FormatSinkImpl*>())){});
}
// A type-erased handle to a format argument.
class FormatArgImpl {
private:
enum { kInlinedSpace = 8 };
using VoidPtr = str_format_internal::VoidPtr;
union Data {
const void* ptr;
const volatile void* volatile_ptr;
char buf[kInlinedSpace];
};
using Dispatcher = bool (*)(Data, FormatConversionSpecImpl, void* out);
template <typename T>
struct store_by_value
: std::integral_constant<bool, (sizeof(T) <= kInlinedSpace) &&
(std::is_integral<T>::value ||
std::is_floating_point<T>::value ||
std::is_pointer<T>::value ||
std::is_same<VoidPtr, T>::value)> {};
enum StoragePolicy { ByPointer, ByVolatilePointer, ByValue };
template <typename T>
struct storage_policy
: std::integral_constant<StoragePolicy,
(std::is_volatile<T>::value
? ByVolatilePointer
: (store_by_value<T>::value ? ByValue
: ByPointer))> {
};
// To reduce the number of vtables we will decay values before hand.
// Anything with a user-defined Convert will get its own vtable.
// For everything else:
// - Decay char* and char arrays into `const char*`
// - Decay any other pointer to `const void*`
// - Decay all enums to their underlying type.
// - Decay function pointers to void*.
template <typename T, typename = void>
struct DecayType {
static constexpr bool kHasUserDefined =
str_format_internal::HasUserDefinedConvert<T>::value;
using type = typename std::conditional<
!kHasUserDefined && std::is_convertible<T, const char*>::value,
const char*,
typename std::conditional<!kHasUserDefined &&
std::is_convertible<T, VoidPtr>::value,
VoidPtr, const T&>::type>::type;
};
template <typename T>
struct DecayType<T,
typename std::enable_if<
!str_format_internal::HasUserDefinedConvert<T>::value &&
std::is_enum<T>::value>::type> {
using type = typename std::underlying_type<T>::type;
};
public:
template <typename T>
explicit FormatArgImpl(const T& value) {
using D = typename DecayType<T>::type;
static_assert(
std::is_same<D, const T&>::value || storage_policy<D>::value == ByValue,
"Decayed types must be stored by value");
Init(static_cast<D>(value));
}
private:
friend struct str_format_internal::FormatArgImplFriend;
template <typename T, StoragePolicy = storage_policy<T>::value>
struct Manager;
template <typename T>
struct Manager<T, ByPointer> {
static Data SetValue(const T& value) {
Data data;
data.ptr = std::addressof(value);
return data;
}
static const T& Value(Data arg) { return *static_cast<const T*>(arg.ptr); }
};
template <typename T>
struct Manager<T, ByVolatilePointer> {
static Data SetValue(const T& value) {
Data data;
data.volatile_ptr = &value;
return data;
}
static const T& Value(Data arg) {
return *static_cast<const T*>(arg.volatile_ptr);
}
};
template <typename T>
struct Manager<T, ByValue> {
static Data SetValue(const T& value) {
Data data;
memcpy(data.buf, &value, sizeof(value));
return data;
}
static T Value(Data arg) {
T value;
memcpy(&value, arg.buf, sizeof(T));
return value;
}
};
template <typename T>
void Init(const T& value) {
data_ = Manager<T>::SetValue(value);
dispatcher_ = &Dispatch<T>;
}
template <typename T>
static int ToIntVal(const T& val) {
using CommonType = typename std::conditional<std::is_signed<T>::value,
int64_t, uint64_t>::type;
if (static_cast<CommonType>(val) >
static_cast<CommonType>((std::numeric_limits<int>::max)())) {
return (std::numeric_limits<int>::max)();
} else if (std::is_signed<T>::value &&
static_cast<CommonType>(val) <
static_cast<CommonType>((std::numeric_limits<int>::min)())) {
return (std::numeric_limits<int>::min)();
}
return static_cast<int>(val);
}
template <typename T>
static bool ToInt(Data arg, int* out, std::true_type /* is_integral */,
std::false_type) {
*out = ToIntVal(Manager<T>::Value(arg));
return true;
}
template <typename T>
static bool ToInt(Data arg, int* out, std::false_type,
std::true_type /* is_enum */) {
*out = ToIntVal(static_cast<typename std::underlying_type<T>::type>(
Manager<T>::Value(arg)));
return true;
}
template <typename T>
static bool ToInt(Data, int*, std::false_type, std::false_type) {
return false;
}
template <typename T>
static bool Dispatch(Data arg, FormatConversionSpecImpl spec, void* out) {
// A `none` conv indicates that we want the `int` conversion.
if (ABSL_PREDICT_FALSE(spec.conversion_char() ==
FormatConversionCharInternal::kNone)) {
return ToInt<T>(arg, static_cast<int*>(out), std::is_integral<T>(),
std::is_enum<T>());
}
if (ABSL_PREDICT_FALSE(!Contains(ArgumentToConv<T>(),
spec.conversion_char()))) {
return false;
}
return str_format_internal::FormatConvertImpl(
Manager<T>::Value(arg), spec,
static_cast<FormatSinkImpl*>(out))
.value;
}
Data data_;
Dispatcher dispatcher_;
};
#define ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(T, E) \
E template bool FormatArgImpl::Dispatch<T>(Data, FormatConversionSpecImpl, \
void*)
#define ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(...) \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(str_format_internal::VoidPtr, \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(bool, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(char, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(signed char, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned char, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(short, __VA_ARGS__); /* NOLINT */ \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned short, /* NOLINT */ \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(int, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned int, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long, __VA_ARGS__); /* NOLINT */ \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned long, /* NOLINT */ \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long long, /* NOLINT */ \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned long long, /* NOLINT */ \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(int128, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(uint128, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(float, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(double, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long double, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(const char*, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(std::string, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(string_view, __VA_ARGS__)
ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(extern);
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_

View File

@@ -0,0 +1,130 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/arg.h"
#include <ostream>
#include <string>
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
class FormatArgImplTest : public ::testing::Test {
public:
enum Color { kRed, kGreen, kBlue };
static const char *hi() { return "hi"; }
struct X {};
X x_;
};
inline FormatConvertResult<FormatConversionCharSet{}> AbslFormatConvert(
const FormatArgImplTest::X &, const FormatConversionSpec &, FormatSink *) {
return {false};
}
TEST_F(FormatArgImplTest, ToInt) {
int out = 0;
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(1), &out));
EXPECT_EQ(1, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(-1), &out));
EXPECT_EQ(-1, out);
EXPECT_TRUE(
FormatArgImplFriend::ToInt(FormatArgImpl(static_cast<char>(64)), &out));
EXPECT_EQ(64, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<unsigned long long>(123456)), &out)); // NOLINT
EXPECT_EQ(123456, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<unsigned long long>( // NOLINT
std::numeric_limits<int>::max()) +
1),
&out));
EXPECT_EQ(std::numeric_limits<int>::max(), out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<long long>( // NOLINT
std::numeric_limits<int>::min()) -
10),
&out));
EXPECT_EQ(std::numeric_limits<int>::min(), out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(false), &out));
EXPECT_EQ(0, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(true), &out));
EXPECT_EQ(1, out);
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(2.2), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(3.2f), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<int *>(nullptr)), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(hi()), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl("hi"), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(x_), &out));
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(kBlue), &out));
EXPECT_EQ(2, out);
}
extern const char kMyArray[];
TEST_F(FormatArgImplTest, CharArraysDecayToCharPtr) {
const char* a = "";
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("A")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("ABC")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(kMyArray)));
}
TEST_F(FormatArgImplTest, OtherPtrDecayToVoidPtr) {
auto expected = FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<void *>(nullptr)));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<int *>(nullptr))),
expected);
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<volatile int *>(nullptr))),
expected);
auto p = static_cast<void (*)()>([] {});
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(p)),
expected);
}
TEST_F(FormatArgImplTest, WorksWithCharArraysOfUnknownSize) {
std::string s;
FormatSinkImpl sink(&s);
FormatConversionSpecImpl conv;
FormatConversionSpecImplFriend::SetConversionChar(
FormatConversionCharInternal::s, &conv);
FormatConversionSpecImplFriend::SetFlags(Flags(), &conv);
FormatConversionSpecImplFriend::SetWidth(-1, &conv);
FormatConversionSpecImplFriend::SetPrecision(-1, &conv);
EXPECT_TRUE(
FormatArgImplFriend::Convert(FormatArgImpl(kMyArray), conv, &sink));
sink.Flush();
EXPECT_EQ("ABCDE", s);
}
const char kMyArray[] = "ABCDE";
} // namespace
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,258 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/bind.h"
#include <cerrno>
#include <limits>
#include <sstream>
#include <string>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
inline bool BindFromPosition(int position, int* value,
absl::Span<const FormatArgImpl> pack) {
assert(position > 0);
if (static_cast<size_t>(position) > pack.size()) {
return false;
}
// -1 because positions are 1-based
return FormatArgImplFriend::ToInt(pack[position - 1], value);
}
class ArgContext {
public:
explicit ArgContext(absl::Span<const FormatArgImpl> pack) : pack_(pack) {}
// Fill 'bound' with the results of applying the context's argument pack
// to the specified 'unbound'. We synthesize a BoundConversion by
// lining up a UnboundConversion with a user argument. We also
// resolve any '*' specifiers for width and precision, so after
// this call, 'bound' has all the information it needs to be formatted.
// Returns false on failure.
bool Bind(const UnboundConversion* unbound, BoundConversion* bound);
private:
absl::Span<const FormatArgImpl> pack_;
};
inline bool ArgContext::Bind(const UnboundConversion* unbound,
BoundConversion* bound) {
const FormatArgImpl* arg = nullptr;
int arg_position = unbound->arg_position;
if (static_cast<size_t>(arg_position - 1) >= pack_.size()) return false;
arg = &pack_[arg_position - 1]; // 1-based
if (unbound->flags != Flags::kBasic) {
int width = unbound->width.value();
bool force_left = false;
if (unbound->width.is_from_arg()) {
if (!BindFromPosition(unbound->width.get_from_arg(), &width, pack_))
return false;
if (width < 0) {
// "A negative field width is taken as a '-' flag followed by a
// positive field width."
force_left = true;
// Make sure we don't overflow the width when negating it.
width = -std::max(width, -std::numeric_limits<int>::max());
}
}
int precision = unbound->precision.value();
if (unbound->precision.is_from_arg()) {
if (!BindFromPosition(unbound->precision.get_from_arg(), &precision,
pack_))
return false;
}
FormatConversionSpecImplFriend::SetWidth(width, bound);
FormatConversionSpecImplFriend::SetPrecision(precision, bound);
if (force_left) {
FormatConversionSpecImplFriend::SetFlags(unbound->flags | Flags::kLeft,
bound);
} else {
FormatConversionSpecImplFriend::SetFlags(unbound->flags, bound);
}
} else {
FormatConversionSpecImplFriend::SetFlags(unbound->flags, bound);
FormatConversionSpecImplFriend::SetWidth(-1, bound);
FormatConversionSpecImplFriend::SetPrecision(-1, bound);
}
FormatConversionSpecImplFriend::SetConversionChar(unbound->conv, bound);
bound->set_arg(arg);
return true;
}
template <typename Converter>
class ConverterConsumer {
public:
ConverterConsumer(Converter converter, absl::Span<const FormatArgImpl> pack)
: converter_(converter), arg_context_(pack) {}
bool Append(string_view s) {
converter_.Append(s);
return true;
}
bool ConvertOne(const UnboundConversion& conv, string_view conv_string) {
BoundConversion bound;
if (!arg_context_.Bind(&conv, &bound)) return false;
return converter_.ConvertOne(bound, conv_string);
}
private:
Converter converter_;
ArgContext arg_context_;
};
template <typename Converter>
bool ConvertAll(const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args, Converter converter) {
if (format.has_parsed_conversion()) {
return format.parsed_conversion()->ProcessFormat(
ConverterConsumer<Converter>(converter, args));
} else {
return ParseFormatString(format.str(),
ConverterConsumer<Converter>(converter, args));
}
}
class DefaultConverter {
public:
explicit DefaultConverter(FormatSinkImpl* sink) : sink_(sink) {}
void Append(string_view s) const { sink_->Append(s); }
bool ConvertOne(const BoundConversion& bound, string_view /*conv*/) const {
return FormatArgImplFriend::Convert(*bound.arg(), bound, sink_);
}
private:
FormatSinkImpl* sink_;
};
class SummarizingConverter {
public:
explicit SummarizingConverter(FormatSinkImpl* sink) : sink_(sink) {}
void Append(string_view s) const { sink_->Append(s); }
bool ConvertOne(const BoundConversion& bound, string_view /*conv*/) const {
UntypedFormatSpecImpl spec("%d");
std::ostringstream ss;
ss << "{" << Streamable(spec, {*bound.arg()}) << ":"
<< FormatConversionSpecImplFriend::FlagsToString(bound);
if (bound.width() >= 0) ss << bound.width();
if (bound.precision() >= 0) ss << "." << bound.precision();
ss << bound.conversion_char() << "}";
Append(ss.str());
return true;
}
private:
FormatSinkImpl* sink_;
};
} // namespace
bool BindWithPack(const UnboundConversion* props,
absl::Span<const FormatArgImpl> pack,
BoundConversion* bound) {
return ArgContext(pack).Bind(props, bound);
}
std::string Summarize(const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
typedef SummarizingConverter Converter;
std::string out;
{
// inner block to destroy sink before returning out. It ensures a last
// flush.
FormatSinkImpl sink(&out);
if (!ConvertAll(format, args, Converter(&sink))) {
return "";
}
}
return out;
}
bool FormatUntyped(FormatRawSinkImpl raw_sink,
const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
FormatSinkImpl sink(raw_sink);
using Converter = DefaultConverter;
return ConvertAll(format, args, Converter(&sink));
}
std::ostream& Streamable::Print(std::ostream& os) const {
if (!FormatUntyped(&os, format_, args_)) os.setstate(std::ios::failbit);
return os;
}
std::string& AppendPack(std::string* out, const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
size_t orig = out->size();
if (ABSL_PREDICT_FALSE(!FormatUntyped(out, format, args))) {
out->erase(orig);
}
return *out;
}
std::string FormatPack(const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
std::string out;
if (ABSL_PREDICT_FALSE(!FormatUntyped(&out, format, args))) {
out.clear();
}
return out;
}
int FprintF(std::FILE* output, const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
FILERawSink sink(output);
if (!FormatUntyped(&sink, format, args)) {
errno = EINVAL;
return -1;
}
if (sink.error()) {
errno = sink.error();
return -1;
}
if (sink.count() > static_cast<size_t>(std::numeric_limits<int>::max())) {
errno = EFBIG;
return -1;
}
return static_cast<int>(sink.count());
}
int SnprintF(char* output, size_t size, const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
BufferRawSink sink(output, size ? size - 1 : 0);
if (!FormatUntyped(&sink, format, args)) {
errno = EINVAL;
return -1;
}
size_t total = sink.total_written();
if (size) output[std::min(total, size - 1)] = 0;
return static_cast<int>(total);
}
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,217 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
#include <array>
#include <cstdio>
#include <sstream>
#include <string>
#include "absl/base/port.h"
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/checker.h"
#include "absl/strings/internal/str_format/parser.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class UntypedFormatSpec;
namespace str_format_internal {
class BoundConversion : public FormatConversionSpecImpl {
public:
const FormatArgImpl* arg() const { return arg_; }
void set_arg(const FormatArgImpl* a) { arg_ = a; }
private:
const FormatArgImpl* arg_;
};
// This is the type-erased class that the implementation uses.
class UntypedFormatSpecImpl {
public:
UntypedFormatSpecImpl() = delete;
explicit UntypedFormatSpecImpl(string_view s)
: data_(s.data()), size_(s.size()) {}
explicit UntypedFormatSpecImpl(
const str_format_internal::ParsedFormatBase* pc)
: data_(pc), size_(~size_t{}) {}
bool has_parsed_conversion() const { return size_ == ~size_t{}; }
string_view str() const {
assert(!has_parsed_conversion());
return string_view(static_cast<const char*>(data_), size_);
}
const str_format_internal::ParsedFormatBase* parsed_conversion() const {
assert(has_parsed_conversion());
return static_cast<const str_format_internal::ParsedFormatBase*>(data_);
}
template <typename T>
static const UntypedFormatSpecImpl& Extract(const T& s) {
return s.spec_;
}
private:
const void* data_;
size_t size_;
};
template <typename T, FormatConversionCharSet...>
struct MakeDependent {
using type = T;
};
// Implicitly convertible from `const char*`, `string_view`, and the
// `ExtendedParsedFormat` type. This abstraction allows all format functions to
// operate on any without providing too many overloads.
template <FormatConversionCharSet... Args>
class FormatSpecTemplate
: public MakeDependent<UntypedFormatSpec, Args...>::type {
using Base = typename MakeDependent<UntypedFormatSpec, Args...>::type;
public:
#ifdef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
// Honeypot overload for when the string is not constexpr.
// We use the 'unavailable' attribute to give a better compiler error than
// just 'method is deleted'.
FormatSpecTemplate(...) // NOLINT
__attribute__((unavailable("Format string is not constexpr.")));
// Honeypot overload for when the format is constexpr and invalid.
// We use the 'unavailable' attribute to give a better compiler error than
// just 'method is deleted'.
// To avoid checking the format twice, we just check that the format is
// constexpr. If is it valid, then the overload below will kick in.
// We add the template here to make this overload have lower priority.
template <typename = void>
FormatSpecTemplate(const char* s) // NOLINT
__attribute__((
enable_if(str_format_internal::EnsureConstexpr(s), "constexpr trap"),
unavailable(
"Format specified does not match the arguments passed.")));
template <typename T = void>
FormatSpecTemplate(string_view s) // NOLINT
__attribute__((enable_if(str_format_internal::EnsureConstexpr(s),
"constexpr trap"))) {
static_assert(sizeof(T*) == 0,
"Format specified does not match the arguments passed.");
}
// Good format overload.
FormatSpecTemplate(const char* s) // NOLINT
__attribute__((enable_if(ValidFormatImpl<Args...>(s), "bad format trap")))
: Base(s) {}
FormatSpecTemplate(string_view s) // NOLINT
__attribute__((enable_if(ValidFormatImpl<Args...>(s), "bad format trap")))
: Base(s) {}
#else // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
FormatSpecTemplate(const char* s) : Base(s) {} // NOLINT
FormatSpecTemplate(string_view s) : Base(s) {} // NOLINT
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
template <
FormatConversionCharSet... C,
typename = typename std::enable_if<sizeof...(C) == sizeof...(Args)>::type,
typename = typename std::enable_if<AllOf(Contains(Args,
C)...)>::type>
FormatSpecTemplate(const ExtendedParsedFormat<C...>& pc) // NOLINT
: Base(&pc) {}
};
class Streamable {
public:
Streamable(const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args)
: format_(format) {
if (args.size() <= ABSL_ARRAYSIZE(few_args_)) {
for (size_t i = 0; i < args.size(); ++i) {
few_args_[i] = args[i];
}
args_ = absl::MakeSpan(few_args_, args.size());
} else {
many_args_.assign(args.begin(), args.end());
args_ = many_args_;
}
}
std::ostream& Print(std::ostream& os) const;
friend std::ostream& operator<<(std::ostream& os, const Streamable& l) {
return l.Print(os);
}
private:
const UntypedFormatSpecImpl& format_;
absl::Span<const FormatArgImpl> args_;
// if args_.size() is 4 or less:
FormatArgImpl few_args_[4] = {FormatArgImpl(0), FormatArgImpl(0),
FormatArgImpl(0), FormatArgImpl(0)};
// if args_.size() is more than 4:
std::vector<FormatArgImpl> many_args_;
};
// for testing
std::string Summarize(UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
bool BindWithPack(const UnboundConversion* props,
absl::Span<const FormatArgImpl> pack, BoundConversion* bound);
bool FormatUntyped(FormatRawSinkImpl raw_sink,
UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
std::string& AppendPack(std::string* out, UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
std::string FormatPack(const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
int FprintF(std::FILE* output, UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
int SnprintF(char* output, size_t size, UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
// Returned by Streamed(v). Converts via '%s' to the std::string created
// by std::ostream << v.
template <typename T>
class StreamedWrapper {
public:
explicit StreamedWrapper(const T& v) : v_(v) { }
private:
template <typename S>
friend ArgConvertResult<FormatConversionCharSetInternal::s> FormatConvertImpl(
const StreamedWrapper<S>& v, FormatConversionSpecImpl conv,
FormatSinkImpl* out);
const T& v_;
};
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_

View File

@@ -0,0 +1,157 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/bind.h"
#include <string.h>
#include <limits>
#include "gtest/gtest.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
class FormatBindTest : public ::testing::Test {
public:
bool Extract(const char *s, UnboundConversion *props, int *next) const {
return ConsumeUnboundConversion(s, s + strlen(s), props, next) ==
s + strlen(s);
}
};
TEST_F(FormatBindTest, BindSingle) {
struct Expectation {
int line;
const char *fmt;
int ok_phases;
const FormatArgImpl *arg;
int width;
int precision;
int next_arg;
};
const int no = -1;
const int ia[] = { 10, 20, 30, 40};
const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]),
FormatArgImpl(ia[2]), FormatArgImpl(ia[3])};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
const Expectation kExpect[] = {
{__LINE__, "d", 2, &args[0], no, no, 2},
{__LINE__, "4d", 2, &args[0], 4, no, 2},
{__LINE__, ".5d", 2, &args[0], no, 5, 2},
{__LINE__, "4.5d", 2, &args[0], 4, 5, 2},
{__LINE__, "*d", 2, &args[1], 10, no, 3},
{__LINE__, ".*d", 2, &args[1], no, 10, 3},
{__LINE__, "*.*d", 2, &args[2], 10, 20, 4},
{__LINE__, "1$d", 2, &args[0], no, no, 0},
{__LINE__, "2$d", 2, &args[1], no, no, 0},
{__LINE__, "3$d", 2, &args[2], no, no, 0},
{__LINE__, "4$d", 2, &args[3], no, no, 0},
{__LINE__, "2$*1$d", 2, &args[1], 10, no, 0},
{__LINE__, "2$*2$d", 2, &args[1], 20, no, 0},
{__LINE__, "2$*3$d", 2, &args[1], 30, no, 0},
{__LINE__, "2$.*1$d", 2, &args[1], no, 10, 0},
{__LINE__, "2$.*2$d", 2, &args[1], no, 20, 0},
{__LINE__, "2$.*3$d", 2, &args[1], no, 30, 0},
{__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0},
{__LINE__, "2$*2$.*2$d", 2, &args[1], 20, 20, 0},
{__LINE__, "2$*1$.*3$d", 2, &args[1], 10, 30, 0},
{__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0},
{__LINE__, "1$*d", 0}, // indexed, then positional
{__LINE__, "*2$d", 0}, // positional, then indexed
{__LINE__, "6$d", 1}, // arg position out of bounds
{__LINE__, "1$6$d", 0}, // width position incorrectly specified
{__LINE__, "1$.6$d", 0}, // precision position incorrectly specified
{__LINE__, "1$*6$d", 1}, // width position out of bounds
{__LINE__, "1$.*6$d", 1}, // precision position out of bounds
};
#pragma GCC diagnostic pop
for (const Expectation &e : kExpect) {
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UnboundConversion props;
BoundConversion bound;
int ok_phases = 0;
int next = 0;
if (Extract(e.fmt, &props, &next)) {
++ok_phases;
if (BindWithPack(&props, args, &bound)) {
++ok_phases;
}
}
EXPECT_EQ(e.ok_phases, ok_phases);
if (e.ok_phases < 2) continue;
if (e.arg != nullptr) {
EXPECT_EQ(e.arg, bound.arg());
}
EXPECT_EQ(e.width, bound.width());
EXPECT_EQ(e.precision, bound.precision());
}
}
TEST_F(FormatBindTest, WidthUnderflowRegression) {
UnboundConversion props;
BoundConversion bound;
int next = 0;
const int args_i[] = {std::numeric_limits<int>::min(), 17};
const FormatArgImpl args[] = {FormatArgImpl(args_i[0]),
FormatArgImpl(args_i[1])};
ASSERT_TRUE(Extract("*d", &props, &next));
ASSERT_TRUE(BindWithPack(&props, args, &bound));
EXPECT_EQ(bound.width(), std::numeric_limits<int>::max());
EXPECT_EQ(bound.arg(), args + 1);
}
TEST_F(FormatBindTest, FormatPack) {
struct Expectation {
int line;
const char *fmt;
const char *summary;
};
const int ia[] = { 10, 20, 30, 40, -10 };
const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]),
FormatArgImpl(ia[2]), FormatArgImpl(ia[3]),
FormatArgImpl(ia[4])};
const Expectation kExpect[] = {
{__LINE__, "a%4db%dc", "a{10:4d}b{20:d}c"},
{__LINE__, "a%.4db%dc", "a{10:.4d}b{20:d}c"},
{__LINE__, "a%4.5db%dc", "a{10:4.5d}b{20:d}c"},
{__LINE__, "a%db%4.5dc", "a{10:d}b{20:4.5d}c"},
{__LINE__, "a%db%*.*dc", "a{10:d}b{40:20.30d}c"},
{__LINE__, "a%.*fb", "a{20:.10f}b"},
{__LINE__, "a%1$db%2$*3$.*4$dc", "a{10:d}b{20:30.40d}c"},
{__LINE__, "a%4$db%3$*2$.*1$dc", "a{40:d}b{30:20.10d}c"},
{__LINE__, "a%04ldb", "a{10:04d}b"},
{__LINE__, "a%-#04lldb", "a{10:-#04d}b"},
{__LINE__, "a%1$*5$db", "a{10:-10d}b"},
{__LINE__, "a%1$.*5$db", "a{10:d}b"},
};
for (const Expectation &e : kExpect) {
absl::string_view fmt = e.fmt;
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UntypedFormatSpecImpl format(fmt);
EXPECT_EQ(e.summary,
str_format_internal::Summarize(format, absl::MakeSpan(args)))
<< "line:" << e.line;
}
}
} // namespace
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,333 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_
#include "absl/base/attributes.h"
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/extension.h"
// Compile time check support for entry points.
#ifndef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
#if ABSL_HAVE_ATTRIBUTE(enable_if) && !defined(__native_client__)
#define ABSL_INTERNAL_ENABLE_FORMAT_CHECKER 1
#endif // ABSL_HAVE_ATTRIBUTE(enable_if) && !defined(__native_client__)
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
constexpr bool AllOf() { return true; }
template <typename... T>
constexpr bool AllOf(bool b, T... t) {
return b && AllOf(t...);
}
#ifdef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
constexpr bool ContainsChar(const char* chars, char c) {
return *chars == c || (*chars && ContainsChar(chars + 1, c));
}
// A constexpr compatible list of Convs.
struct ConvList {
const FormatConversionCharSet* array;
int count;
// We do the bound check here to avoid having to do it on the callers.
// Returning an empty FormatConversionCharSet has the same effect as
// short circuiting because it will never match any conversion.
constexpr FormatConversionCharSet operator[](int i) const {
return i < count ? array[i] : FormatConversionCharSet{};
}
constexpr ConvList without_front() const {
return count != 0 ? ConvList{array + 1, count - 1} : *this;
}
};
template <size_t count>
struct ConvListT {
// Make sure the array has size > 0.
FormatConversionCharSet list[count ? count : 1];
};
constexpr char GetChar(string_view str, size_t index) {
return index < str.size() ? str[index] : char{};
}
constexpr string_view ConsumeFront(string_view str, size_t len = 1) {
return len <= str.size() ? string_view(str.data() + len, str.size() - len)
: string_view();
}
constexpr string_view ConsumeAnyOf(string_view format, const char* chars) {
return ContainsChar(chars, GetChar(format, 0))
? ConsumeAnyOf(ConsumeFront(format), chars)
: format;
}
constexpr bool IsDigit(char c) { return c >= '0' && c <= '9'; }
// Helper class for the ParseDigits function.
// It encapsulates the two return values we need there.
struct Integer {
string_view format;
int value;
// If the next character is a '$', consume it.
// Otherwise, make `this` an invalid positional argument.
constexpr Integer ConsumePositionalDollar() const {
return GetChar(format, 0) == '$' ? Integer{ConsumeFront(format), value}
: Integer{format, 0};
}
};
constexpr Integer ParseDigits(string_view format, int value = 0) {
return IsDigit(GetChar(format, 0))
? ParseDigits(ConsumeFront(format),
10 * value + GetChar(format, 0) - '0')
: Integer{format, value};
}
// Parse digits for a positional argument.
// The parsing also consumes the '$'.
constexpr Integer ParsePositional(string_view format) {
return ParseDigits(format).ConsumePositionalDollar();
}
// Parses a single conversion specifier.
// See ConvParser::Run() for post conditions.
class ConvParser {
constexpr ConvParser SetFormat(string_view format) const {
return ConvParser(format, args_, error_, arg_position_, is_positional_);
}
constexpr ConvParser SetArgs(ConvList args) const {
return ConvParser(format_, args, error_, arg_position_, is_positional_);
}
constexpr ConvParser SetError(bool error) const {
return ConvParser(format_, args_, error_ || error, arg_position_,
is_positional_);
}
constexpr ConvParser SetArgPosition(int arg_position) const {
return ConvParser(format_, args_, error_, arg_position, is_positional_);
}
// Consumes the next arg and verifies that it matches `conv`.
// `error_` is set if there is no next arg or if it doesn't match `conv`.
constexpr ConvParser ConsumeNextArg(char conv) const {
return SetArgs(args_.without_front()).SetError(!Contains(args_[0], conv));
}
// Verify that positional argument `i.value` matches `conv`.
// `error_` is set if `i.value` is not a valid argument or if it doesn't
// match.
constexpr ConvParser VerifyPositional(Integer i, char conv) const {
return SetFormat(i.format).SetError(!Contains(args_[i.value - 1], conv));
}
// Parse the position of the arg and store it in `arg_position_`.
constexpr ConvParser ParseArgPosition(Integer arg) const {
return SetFormat(arg.format).SetArgPosition(arg.value);
}
// Consume the flags.
constexpr ConvParser ParseFlags() const {
return SetFormat(ConsumeAnyOf(format_, "-+ #0"));
}
// Consume the width.
// If it is '*', we verify that it matches `args_`. `error_` is set if it
// doesn't match.
constexpr ConvParser ParseWidth() const {
return IsDigit(GetChar(format_, 0))
? SetFormat(ParseDigits(format_).format)
: GetChar(format_, 0) == '*'
? is_positional_
? VerifyPositional(
ParsePositional(ConsumeFront(format_)), '*')
: SetFormat(ConsumeFront(format_))
.ConsumeNextArg('*')
: *this;
}
// Consume the precision.
// If it is '*', we verify that it matches `args_`. `error_` is set if it
// doesn't match.
constexpr ConvParser ParsePrecision() const {
return GetChar(format_, 0) != '.'
? *this
: GetChar(format_, 1) == '*'
? is_positional_
? VerifyPositional(
ParsePositional(ConsumeFront(format_, 2)), '*')
: SetFormat(ConsumeFront(format_, 2))
.ConsumeNextArg('*')
: SetFormat(ParseDigits(ConsumeFront(format_)).format);
}
// Consume the length characters.
constexpr ConvParser ParseLength() const {
return SetFormat(ConsumeAnyOf(format_, "lLhjztq"));
}
// Consume the conversion character and verify that it matches `args_`.
// `error_` is set if it doesn't match.
constexpr ConvParser ParseConversion() const {
return is_positional_
? VerifyPositional({ConsumeFront(format_), arg_position_},
GetChar(format_, 0))
: ConsumeNextArg(GetChar(format_, 0))
.SetFormat(ConsumeFront(format_));
}
constexpr ConvParser(string_view format, ConvList args, bool error,
int arg_position, bool is_positional)
: format_(format),
args_(args),
error_(error),
arg_position_(arg_position),
is_positional_(is_positional) {}
public:
constexpr ConvParser(string_view format, ConvList args, bool is_positional)
: format_(format),
args_(args),
error_(false),
arg_position_(0),
is_positional_(is_positional) {}
// Consume the whole conversion specifier.
// `format()` will be set to the character after the conversion character.
// `error()` will be set if any of the arguments do not match.
constexpr ConvParser Run() const {
return (is_positional_ ? ParseArgPosition(ParsePositional(format_)) : *this)
.ParseFlags()
.ParseWidth()
.ParsePrecision()
.ParseLength()
.ParseConversion();
}
constexpr string_view format() const { return format_; }
constexpr ConvList args() const { return args_; }
constexpr bool error() const { return error_; }
constexpr bool is_positional() const { return is_positional_; }
private:
string_view format_;
// Current list of arguments. If we are not in positional mode we will consume
// from the front.
ConvList args_;
bool error_;
// Holds the argument position of the conversion character, if we are in
// positional mode. Otherwise, it is unspecified.
int arg_position_;
// Whether we are in positional mode.
// It changes the behavior of '*' and where to find the converted argument.
bool is_positional_;
};
// Parses a whole format expression.
// See FormatParser::Run().
class FormatParser {
static constexpr bool FoundPercent(string_view format) {
return format.empty() ||
(GetChar(format, 0) == '%' && GetChar(format, 1) != '%');
}
// We use an inner function to increase the recursion limit.
// The inner function consumes up to `limit` characters on every run.
// This increases the limit from 512 to ~512*limit.
static constexpr string_view ConsumeNonPercentInner(string_view format,
int limit = 20) {
return FoundPercent(format) || !limit
? format
: ConsumeNonPercentInner(
ConsumeFront(format, GetChar(format, 0) == '%' &&
GetChar(format, 1) == '%'
? 2
: 1),
limit - 1);
}
// Consume characters until the next conversion spec %.
// It skips %%.
static constexpr string_view ConsumeNonPercent(string_view format) {
return FoundPercent(format)
? format
: ConsumeNonPercent(ConsumeNonPercentInner(format));
}
static constexpr bool IsPositional(string_view format) {
return IsDigit(GetChar(format, 0)) ? IsPositional(ConsumeFront(format))
: GetChar(format, 0) == '$';
}
constexpr bool RunImpl(bool is_positional) const {
// In non-positional mode we require all arguments to be consumed.
// In positional mode just reaching the end of the format without errors is
// enough.
return (format_.empty() && (is_positional || args_.count == 0)) ||
(!format_.empty() &&
ValidateArg(
ConvParser(ConsumeFront(format_), args_, is_positional).Run()));
}
constexpr bool ValidateArg(ConvParser conv) const {
return !conv.error() && FormatParser(conv.format(), conv.args())
.RunImpl(conv.is_positional());
}
public:
constexpr FormatParser(string_view format, ConvList args)
: format_(ConsumeNonPercent(format)), args_(args) {}
// Runs the parser for `format` and `args`.
// It verifies that the format is valid and that all conversion specifiers
// match the arguments passed.
// In non-positional mode it also verfies that all arguments are consumed.
constexpr bool Run() const {
return RunImpl(!format_.empty() && IsPositional(ConsumeFront(format_)));
}
private:
string_view format_;
// Current list of arguments.
// If we are not in positional mode we will consume from the front and will
// have to be empty in the end.
ConvList args_;
};
template <FormatConversionCharSet... C>
constexpr bool ValidFormatImpl(string_view format) {
return FormatParser(format,
{ConvListT<sizeof...(C)>{{C...}}.list, sizeof...(C)})
.Run();
}
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_CHECKER_H_

View File

@@ -0,0 +1,170 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
std::string ConvToString(FormatConversionCharSet conv) {
std::string out;
#define CONV_SET_CASE(c) \
if (Contains(conv, FormatConversionCharSetInternal::c)) { \
out += #c; \
}
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(CONV_SET_CASE, )
#undef CONV_SET_CASE
if (Contains(conv, FormatConversionCharSetInternal::kStar)) {
out += "*";
}
return out;
}
TEST(StrFormatChecker, ArgumentToConv) {
FormatConversionCharSet conv = ArgumentToConv<std::string>();
EXPECT_EQ(ConvToString(conv), "s");
conv = ArgumentToConv<const char*>();
EXPECT_EQ(ConvToString(conv), "sp");
conv = ArgumentToConv<double>();
EXPECT_EQ(ConvToString(conv), "fFeEgGaA");
conv = ArgumentToConv<int>();
EXPECT_EQ(ConvToString(conv), "cdiouxXfFeEgGaA*");
conv = ArgumentToConv<std::string*>();
EXPECT_EQ(ConvToString(conv), "p");
}
#ifdef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
struct Case {
bool result;
const char* format;
};
template <typename... Args>
constexpr Case ValidFormat(const char* format) {
return {ValidFormatImpl<ArgumentToConv<Args>()...>(format), format};
}
TEST(StrFormatChecker, ValidFormat) {
// We want to make sure these expressions are constexpr and they have the
// expected value.
// If they are not constexpr the attribute will just ignore them and not give
// a compile time error.
enum e {};
enum class e2 {};
constexpr Case trues[] = {
ValidFormat<>("abc"), //
ValidFormat<e>("%d"), //
ValidFormat<e2>("%d"), //
ValidFormat<int>("%% %d"), //
ValidFormat<int>("%ld"), //
ValidFormat<int>("%lld"), //
ValidFormat<std::string>("%s"), //
ValidFormat<std::string>("%10s"), //
ValidFormat<int>("%.10x"), //
ValidFormat<int, int>("%*.3x"), //
ValidFormat<int>("%1.d"), //
ValidFormat<int>("%.d"), //
ValidFormat<int, double>("%d %g"), //
ValidFormat<int, std::string>("%*s"), //
ValidFormat<int, double>("%.*f"), //
ValidFormat<void (*)(), volatile int*>("%p %p"), //
ValidFormat<string_view, const char*, double, void*>(
"string_view=%s const char*=%s double=%f void*=%p)"),
ValidFormat<int>("%% %1$d"), //
ValidFormat<int>("%1$ld"), //
ValidFormat<int>("%1$lld"), //
ValidFormat<std::string>("%1$s"), //
ValidFormat<std::string>("%1$10s"), //
ValidFormat<int>("%1$.10x"), //
ValidFormat<int>("%1$*1$.*1$d"), //
ValidFormat<int, int>("%1$*2$.3x"), //
ValidFormat<int>("%1$1.d"), //
ValidFormat<int>("%1$.d"), //
ValidFormat<double, int>("%2$d %1$g"), //
ValidFormat<int, std::string>("%2$*1$s"), //
ValidFormat<int, double>("%2$.*1$f"), //
ValidFormat<void*, string_view, const char*, double>(
"string_view=%2$s const char*=%3$s double=%4$f void*=%1$p "
"repeat=%3$s)")};
for (Case c : trues) {
EXPECT_TRUE(c.result) << c.format;
}
constexpr Case falses[] = {
ValidFormat<int>(""), //
ValidFormat<e>("%s"), //
ValidFormat<e2>("%s"), //
ValidFormat<>("%s"), //
ValidFormat<>("%r"), //
ValidFormat<int>("%s"), //
ValidFormat<int>("%.1.d"), //
ValidFormat<int>("%*1d"), //
ValidFormat<int>("%1-d"), //
ValidFormat<std::string, int>("%*s"), //
ValidFormat<int>("%*d"), //
ValidFormat<std::string>("%p"), //
ValidFormat<int (*)(int)>("%d"), //
ValidFormat<>("%3$d"), //
ValidFormat<>("%1$r"), //
ValidFormat<int>("%1$s"), //
ValidFormat<int>("%1$.1.d"), //
ValidFormat<int>("%1$*2$1d"), //
ValidFormat<int>("%1$1-d"), //
ValidFormat<std::string, int>("%2$*1$s"), //
ValidFormat<std::string>("%1$p"),
ValidFormat<int, int>("%d %2$d"), //
};
for (Case c : falses) {
EXPECT_FALSE(c.result) << c.format;
}
}
TEST(StrFormatChecker, LongFormat) {
#define CHARS_X_40 "1234567890123456789012345678901234567890"
#define CHARS_X_400 \
CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 CHARS_X_40 \
CHARS_X_40 CHARS_X_40 CHARS_X_40
#define CHARS_X_4000 \
CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400 \
CHARS_X_400 CHARS_X_400 CHARS_X_400 CHARS_X_400
constexpr char long_format[] =
CHARS_X_4000 "%d" CHARS_X_4000 "%s" CHARS_X_4000;
constexpr bool is_valid = ValidFormat<int, std::string>(long_format).result;
EXPECT_TRUE(is_valid);
}
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
} // namespace
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,75 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/extension.h"
#include <errno.h>
#include <algorithm>
#include <string>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
std::string FlagsToString(Flags v) {
std::string s;
s.append(FlagsContains(v, Flags::kLeft) ? "-" : "");
s.append(FlagsContains(v, Flags::kShowPos) ? "+" : "");
s.append(FlagsContains(v, Flags::kSignCol) ? " " : "");
s.append(FlagsContains(v, Flags::kAlt) ? "#" : "");
s.append(FlagsContains(v, Flags::kZero) ? "0" : "");
return s;
}
#define ABSL_INTERNAL_X_VAL(id) \
constexpr absl::FormatConversionChar FormatConversionCharInternal::id;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, )
#undef ABSL_INTERNAL_X_VAL
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr absl::FormatConversionChar FormatConversionCharInternal::kNone;
#define ABSL_INTERNAL_CHAR_SET_CASE(c) \
constexpr FormatConversionCharSet FormatConversionCharSetInternal::c;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, )
#undef ABSL_INTERNAL_CHAR_SET_CASE
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kStar;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kIntegral;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kFloating;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kNumeric;
// NOLINTNEXTLINE(readability-redundant-declaration)
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kPointer;
bool FormatSinkImpl::PutPaddedString(string_view value, int width,
int precision, bool left) {
size_t space_remaining = 0;
if (width >= 0) space_remaining = width;
size_t n = value.size();
if (precision >= 0) n = std::min(n, static_cast<size_t>(precision));
string_view shown(value.data(), n);
space_remaining = Excess(shown.size(), space_remaining);
if (!left) Append(space_remaining, ' ');
Append(shown);
if (left) Append(space_remaining, ' ');
return true;
}
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,445 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_EXTENSION_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_EXTENSION_H_
#include <limits.h>
#include <cstddef>
#include <cstring>
#include <ostream>
#include "absl/base/config.h"
#include "absl/base/port.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/internal/str_format/output.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
enum class FormatConversionChar : uint8_t;
enum class FormatConversionCharSet : uint64_t;
namespace str_format_internal {
class FormatRawSinkImpl {
public:
// Implicitly convert from any type that provides the hook function as
// described above.
template <typename T, decltype(str_format_internal::InvokeFlush(
std::declval<T*>(), string_view()))* = nullptr>
FormatRawSinkImpl(T* raw) // NOLINT
: sink_(raw), write_(&FormatRawSinkImpl::Flush<T>) {}
void Write(string_view s) { write_(sink_, s); }
template <typename T>
static FormatRawSinkImpl Extract(T s) {
return s.sink_;
}
private:
template <typename T>
static void Flush(void* r, string_view s) {
str_format_internal::InvokeFlush(static_cast<T*>(r), s);
}
void* sink_;
void (*write_)(void*, string_view);
};
// An abstraction to which conversions write their string data.
class FormatSinkImpl {
public:
explicit FormatSinkImpl(FormatRawSinkImpl raw) : raw_(raw) {}
~FormatSinkImpl() { Flush(); }
void Flush() {
raw_.Write(string_view(buf_, pos_ - buf_));
pos_ = buf_;
}
void Append(size_t n, char c) {
if (n == 0) return;
size_ += n;
auto raw_append = [&](size_t count) {
memset(pos_, c, count);
pos_ += count;
};
while (n > Avail()) {
n -= Avail();
if (Avail() > 0) {
raw_append(Avail());
}
Flush();
}
raw_append(n);
}
void Append(string_view v) {
size_t n = v.size();
if (n == 0) return;
size_ += n;
if (n >= Avail()) {
Flush();
raw_.Write(v);
return;
}
memcpy(pos_, v.data(), n);
pos_ += n;
}
size_t size() const { return size_; }
// Put 'v' to 'sink' with specified width, precision, and left flag.
bool PutPaddedString(string_view v, int width, int precision, bool left);
template <typename T>
T Wrap() {
return T(this);
}
template <typename T>
static FormatSinkImpl* Extract(T* s) {
return s->sink_;
}
private:
size_t Avail() const { return buf_ + sizeof(buf_) - pos_; }
FormatRawSinkImpl raw_;
size_t size_ = 0;
char* pos_ = buf_;
char buf_[1024];
};
enum class Flags : uint8_t {
kBasic = 0,
kLeft = 1 << 0,
kShowPos = 1 << 1,
kSignCol = 1 << 2,
kAlt = 1 << 3,
kZero = 1 << 4,
// This is not a real flag. It just exists to turn off kBasic when no other
// flags are set. This is for when width/precision are specified.
kNonBasic = 1 << 5,
};
constexpr Flags operator|(Flags a, Flags b) {
return static_cast<Flags>(static_cast<uint8_t>(a) | static_cast<uint8_t>(b));
}
constexpr bool FlagsContains(Flags haystack, Flags needle) {
return (static_cast<uint8_t>(haystack) & static_cast<uint8_t>(needle)) ==
static_cast<uint8_t>(needle);
}
std::string FlagsToString(Flags v);
inline std::ostream& operator<<(std::ostream& os, Flags v) {
return os << FlagsToString(v);
}
// clang-format off
#define ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, X_SEP) \
/* text */ \
X_VAL(c) X_SEP X_VAL(s) X_SEP \
/* ints */ \
X_VAL(d) X_SEP X_VAL(i) X_SEP X_VAL(o) X_SEP \
X_VAL(u) X_SEP X_VAL(x) X_SEP X_VAL(X) X_SEP \
/* floats */ \
X_VAL(f) X_SEP X_VAL(F) X_SEP X_VAL(e) X_SEP X_VAL(E) X_SEP \
X_VAL(g) X_SEP X_VAL(G) X_SEP X_VAL(a) X_SEP X_VAL(A) X_SEP \
/* misc */ \
X_VAL(n) X_SEP X_VAL(p)
// clang-format on
// This type should not be referenced, it exists only to provide labels
// internally that match the values declared in FormatConversionChar in
// str_format.h. This is meant to allow internal libraries to use the same
// declared interface type as the public interface
// (absl::StrFormatConversionChar) while keeping the definition in a public
// header.
// Internal libraries should use the form
// `FormatConversionCharInternal::c`, `FormatConversionCharInternal::kNone` for
// comparisons. Use in switch statements is not recommended due to a bug in how
// gcc 4.9 -Wswitch handles declared but undefined enums.
struct FormatConversionCharInternal {
FormatConversionCharInternal() = delete;
private:
// clang-format off
enum class Enum : uint8_t {
c, s, // text
d, i, o, u, x, X, // int
f, F, e, E, g, G, a, A, // float
n, p, // misc
kNone
};
// clang-format on
public:
#define ABSL_INTERNAL_X_VAL(id) \
static constexpr FormatConversionChar id = \
static_cast<FormatConversionChar>(Enum::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, )
#undef ABSL_INTERNAL_X_VAL
static constexpr FormatConversionChar kNone =
static_cast<FormatConversionChar>(Enum::kNone);
};
// clang-format on
inline FormatConversionChar FormatConversionCharFromChar(char c) {
switch (c) {
#define ABSL_INTERNAL_X_VAL(id) \
case #id[0]: \
return FormatConversionCharInternal::id;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, )
#undef ABSL_INTERNAL_X_VAL
}
return FormatConversionCharInternal::kNone;
}
inline bool FormatConversionCharIsUpper(FormatConversionChar c) {
if (c == FormatConversionCharInternal::X ||
c == FormatConversionCharInternal::F ||
c == FormatConversionCharInternal::E ||
c == FormatConversionCharInternal::G ||
c == FormatConversionCharInternal::A) {
return true;
} else {
return false;
}
}
inline bool FormatConversionCharIsFloat(FormatConversionChar c) {
if (c == FormatConversionCharInternal::a ||
c == FormatConversionCharInternal::e ||
c == FormatConversionCharInternal::f ||
c == FormatConversionCharInternal::g ||
c == FormatConversionCharInternal::A ||
c == FormatConversionCharInternal::E ||
c == FormatConversionCharInternal::F ||
c == FormatConversionCharInternal::G) {
return true;
} else {
return false;
}
}
inline char FormatConversionCharToChar(FormatConversionChar c) {
if (c == FormatConversionCharInternal::kNone) {
return '\0';
#define ABSL_INTERNAL_X_VAL(e) \
} else if (c == FormatConversionCharInternal::e) { \
return #e[0];
#define ABSL_INTERNAL_X_SEP
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL,
ABSL_INTERNAL_X_SEP)
} else {
return '\0';
}
#undef ABSL_INTERNAL_X_VAL
#undef ABSL_INTERNAL_X_SEP
}
// The associated char.
inline std::ostream& operator<<(std::ostream& os, FormatConversionChar v) {
char c = FormatConversionCharToChar(v);
if (!c) c = '?';
return os << c;
}
struct FormatConversionSpecImplFriend;
class FormatConversionSpecImpl {
public:
// Width and precison are not specified, no flags are set.
bool is_basic() const { return flags_ == Flags::kBasic; }
bool has_left_flag() const { return FlagsContains(flags_, Flags::kLeft); }
bool has_show_pos_flag() const {
return FlagsContains(flags_, Flags::kShowPos);
}
bool has_sign_col_flag() const {
return FlagsContains(flags_, Flags::kSignCol);
}
bool has_alt_flag() const { return FlagsContains(flags_, Flags::kAlt); }
bool has_zero_flag() const { return FlagsContains(flags_, Flags::kZero); }
FormatConversionChar conversion_char() const {
// Keep this field first in the struct . It generates better code when
// accessing it when ConversionSpec is passed by value in registers.
static_assert(offsetof(FormatConversionSpecImpl, conv_) == 0, "");
return conv_;
}
// Returns the specified width. If width is unspecfied, it returns a negative
// value.
int width() const { return width_; }
// Returns the specified precision. If precision is unspecfied, it returns a
// negative value.
int precision() const { return precision_; }
template <typename T>
T Wrap() {
return T(*this);
}
private:
friend struct str_format_internal::FormatConversionSpecImplFriend;
FormatConversionChar conv_ = FormatConversionCharInternal::kNone;
Flags flags_;
int width_;
int precision_;
};
struct FormatConversionSpecImplFriend final {
static void SetFlags(Flags f, FormatConversionSpecImpl* conv) {
conv->flags_ = f;
}
static void SetConversionChar(FormatConversionChar c,
FormatConversionSpecImpl* conv) {
conv->conv_ = c;
}
static void SetWidth(int w, FormatConversionSpecImpl* conv) {
conv->width_ = w;
}
static void SetPrecision(int p, FormatConversionSpecImpl* conv) {
conv->precision_ = p;
}
static std::string FlagsToString(const FormatConversionSpecImpl& spec) {
return str_format_internal::FlagsToString(spec.flags_);
}
};
// Type safe OR operator.
// We need this for two reasons:
// 1. operator| on enums makes them decay to integers and the result is an
// integer. We need the result to stay as an enum.
// 2. We use "enum class" which would not work even if we accepted the decay.
constexpr FormatConversionCharSet FormatConversionCharSetUnion(
FormatConversionCharSet a) {
return a;
}
template <typename... CharSet>
constexpr FormatConversionCharSet FormatConversionCharSetUnion(
FormatConversionCharSet a, CharSet... rest) {
return static_cast<FormatConversionCharSet>(
static_cast<uint64_t>(a) |
static_cast<uint64_t>(FormatConversionCharSetUnion(rest...)));
}
constexpr uint64_t FormatConversionCharToConvInt(FormatConversionChar c) {
return uint64_t{1} << (1 + static_cast<uint8_t>(c));
}
constexpr uint64_t FormatConversionCharToConvInt(char conv) {
return
#define ABSL_INTERNAL_CHAR_SET_CASE(c) \
conv == #c[0] \
? FormatConversionCharToConvInt(FormatConversionCharInternal::c) \
:
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, )
#undef ABSL_INTERNAL_CHAR_SET_CASE
conv == '*'
? 1
: 0;
}
constexpr FormatConversionCharSet FormatConversionCharToConvValue(char conv) {
return static_cast<FormatConversionCharSet>(
FormatConversionCharToConvInt(conv));
}
struct FormatConversionCharSetInternal {
#define ABSL_INTERNAL_CHAR_SET_CASE(c) \
static constexpr FormatConversionCharSet c = \
FormatConversionCharToConvValue(#c[0]);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, )
#undef ABSL_INTERNAL_CHAR_SET_CASE
// Used for width/precision '*' specification.
static constexpr FormatConversionCharSet kStar =
FormatConversionCharToConvValue('*');
static constexpr FormatConversionCharSet kIntegral =
FormatConversionCharSetUnion(d, i, u, o, x, X);
static constexpr FormatConversionCharSet kFloating =
FormatConversionCharSetUnion(a, e, f, g, A, E, F, G);
static constexpr FormatConversionCharSet kNumeric =
FormatConversionCharSetUnion(kIntegral, kFloating);
static constexpr FormatConversionCharSet kPointer = p;
};
// Type safe OR operator.
// We need this for two reasons:
// 1. operator| on enums makes them decay to integers and the result is an
// integer. We need the result to stay as an enum.
// 2. We use "enum class" which would not work even if we accepted the decay.
constexpr FormatConversionCharSet operator|(FormatConversionCharSet a,
FormatConversionCharSet b) {
return FormatConversionCharSetUnion(a, b);
}
// Overloaded conversion functions to support absl::ParsedFormat.
// Get a conversion with a single character in it.
constexpr FormatConversionCharSet ToFormatConversionCharSet(char c) {
return static_cast<FormatConversionCharSet>(
FormatConversionCharToConvValue(c));
}
// Get a conversion with a single character in it.
constexpr FormatConversionCharSet ToFormatConversionCharSet(
FormatConversionCharSet c) {
return c;
}
template <typename T>
void ToFormatConversionCharSet(T) = delete;
// Checks whether `c` exists in `set`.
constexpr bool Contains(FormatConversionCharSet set, char c) {
return (static_cast<uint64_t>(set) &
static_cast<uint64_t>(FormatConversionCharToConvValue(c))) != 0;
}
// Checks whether all the characters in `c` are contained in `set`
constexpr bool Contains(FormatConversionCharSet set,
FormatConversionCharSet c) {
return (static_cast<uint64_t>(set) & static_cast<uint64_t>(c)) ==
static_cast<uint64_t>(c);
}
// Checks whether all the characters in `c` are contained in `set`
constexpr bool Contains(FormatConversionCharSet set, FormatConversionChar c) {
return (static_cast<uint64_t>(set) & FormatConversionCharToConvInt(c)) != 0;
}
// Return capacity - used, clipped to a minimum of 0.
inline size_t Excess(size_t used, size_t capacity) {
return used < capacity ? capacity - used : 0;
}
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_EXTENSION_H_

View File

@@ -0,0 +1,98 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "absl/strings/internal/str_format/extension.h"
#include <random>
#include <string>
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
namespace my_namespace {
class UserDefinedType {
public:
UserDefinedType() = default;
void Append(absl::string_view str) { value_.append(str.data(), str.size()); }
const std::string& Value() const { return value_; }
friend void AbslFormatFlush(UserDefinedType* x, absl::string_view str) {
x->Append(str);
}
private:
std::string value_;
};
} // namespace my_namespace
namespace {
std::string MakeRandomString(size_t len) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis('a', 'z');
std::string s(len, '0');
for (char& c : s) {
c = dis(gen);
}
return s;
}
TEST(FormatExtensionTest, SinkAppendSubstring) {
for (size_t chunk_size : {1, 10, 100, 1000, 10000}) {
std::string expected, actual;
absl::str_format_internal::FormatSinkImpl sink(&actual);
for (size_t chunks = 0; chunks < 10; ++chunks) {
std::string rand = MakeRandomString(chunk_size);
expected += rand;
sink.Append(rand);
}
sink.Flush();
EXPECT_EQ(actual, expected);
}
}
TEST(FormatExtensionTest, SinkAppendChars) {
for (size_t chunk_size : {1, 10, 100, 1000, 10000}) {
std::string expected, actual;
absl::str_format_internal::FormatSinkImpl sink(&actual);
for (size_t chunks = 0; chunks < 10; ++chunks) {
std::string rand = MakeRandomString(1);
expected.append(chunk_size, rand[0]);
sink.Append(chunk_size, rand[0]);
}
sink.Flush();
EXPECT_EQ(actual, expected);
}
}
TEST(FormatExtensionTest, VerifyEnumEquality) {
#define X_VAL(id) \
EXPECT_EQ(absl::FormatConversionChar::id, \
absl::str_format_internal::FormatConversionCharInternal::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, );
#undef X_VAL
#define X_VAL(id) \
EXPECT_EQ(absl::FormatConversionCharSet::id, \
absl::str_format_internal::FormatConversionCharSetInternal::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, );
#undef X_VAL
}
} // namespace

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,37 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_
#include "absl/strings/internal/str_format/extension.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink);
bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink);
bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink);
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_FLOAT_CONVERSION_H_

View File

@@ -0,0 +1,72 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/output.h"
#include <errno.h>
#include <cstring>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
struct ClearErrnoGuard {
ClearErrnoGuard() : old_value(errno) { errno = 0; }
~ClearErrnoGuard() {
if (!errno) errno = old_value;
}
int old_value;
};
} // namespace
void BufferRawSink::Write(string_view v) {
size_t to_write = std::min(v.size(), size_);
std::memcpy(buffer_, v.data(), to_write);
buffer_ += to_write;
size_ -= to_write;
total_written_ += v.size();
}
void FILERawSink::Write(string_view v) {
while (!v.empty() && !error_) {
// Reset errno to zero in case the libc implementation doesn't set errno
// when a failure occurs.
ClearErrnoGuard guard;
if (size_t result = std::fwrite(v.data(), 1, v.size(), output_)) {
// Some progress was made.
count_ += result;
v.remove_prefix(result);
} else {
if (errno == EINTR) {
continue;
} else if (errno) {
error_ = errno;
} else if (std::ferror(output_)) {
// Non-POSIX compliant libc implementations may not set errno, so we
// have check the streams error indicator.
error_ = EBADF;
} else {
// We're likely on a non-POSIX system that encountered EINTR but had no
// way of reporting it.
continue;
}
}
}
}
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,96 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Output extension hooks for the Format library.
// `internal::InvokeFlush` calls the appropriate flush function for the
// specified output argument.
// `BufferRawSink` is a simple output sink for a char buffer. Used by SnprintF.
// `FILERawSink` is a std::FILE* based sink. Used by PrintF and FprintF.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_
#include <cstdio>
#include <ostream>
#include <string>
#include "absl/base/port.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
// RawSink implementation that writes into a char* buffer.
// It will not overflow the buffer, but will keep the total count of chars
// that would have been written.
class BufferRawSink {
public:
BufferRawSink(char* buffer, size_t size) : buffer_(buffer), size_(size) {}
size_t total_written() const { return total_written_; }
void Write(string_view v);
private:
char* buffer_;
size_t size_;
size_t total_written_ = 0;
};
// RawSink implementation that writes into a FILE*.
// It keeps track of the total number of bytes written and any error encountered
// during the writes.
class FILERawSink {
public:
explicit FILERawSink(std::FILE* output) : output_(output) {}
void Write(string_view v);
size_t count() const { return count_; }
int error() const { return error_; }
private:
std::FILE* output_;
int error_ = 0;
size_t count_ = 0;
};
// Provide RawSink integration with common types from the STL.
inline void AbslFormatFlush(std::string* out, string_view s) {
out->append(s.data(), s.size());
}
inline void AbslFormatFlush(std::ostream* out, string_view s) {
out->write(s.data(), s.size());
}
inline void AbslFormatFlush(FILERawSink* sink, string_view v) {
sink->Write(v);
}
inline void AbslFormatFlush(BufferRawSink* sink, string_view v) {
sink->Write(v);
}
// This is a SFINAE to get a better compiler error message when the type
// is not supported.
template <typename T>
auto InvokeFlush(T* out, string_view s) -> decltype(AbslFormatFlush(out, s)) {
AbslFormatFlush(out, s);
}
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_

View File

@@ -0,0 +1,79 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/output.h"
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/cord.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
TEST(InvokeFlush, String) {
std::string str = "ABC";
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str, "ABCDEF");
}
TEST(InvokeFlush, Stream) {
std::stringstream str;
str << "ABC";
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str.str(), "ABCDEF");
}
TEST(InvokeFlush, Cord) {
absl::Cord str("ABC");
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str, "ABCDEF");
}
TEST(BufferRawSink, Limits) {
char buf[16];
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World237xx");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World237237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World2372x");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World");
str_format_internal::InvokeFlush(&bufsink, "237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World237xx");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World");
str_format_internal::InvokeFlush(&bufsink, "237237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World2372x");
}
}
} // namespace
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,339 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/parser.h"
#include <assert.h>
#include <string.h>
#include <wchar.h>
#include <cctype>
#include <cstdint>
#include <algorithm>
#include <initializer_list>
#include <limits>
#include <ostream>
#include <string>
#include <unordered_set>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
using CC = FormatConversionCharInternal;
using LM = LengthMod;
// Abbreviations to fit in the table below.
constexpr auto f_sign = Flags::kSignCol;
constexpr auto f_alt = Flags::kAlt;
constexpr auto f_pos = Flags::kShowPos;
constexpr auto f_left = Flags::kLeft;
constexpr auto f_zero = Flags::kZero;
ABSL_CONST_INIT const ConvTag kTags[256] = {
{}, {}, {}, {}, {}, {}, {}, {}, // 00-07
{}, {}, {}, {}, {}, {}, {}, {}, // 08-0f
{}, {}, {}, {}, {}, {}, {}, {}, // 10-17
{}, {}, {}, {}, {}, {}, {}, {}, // 18-1f
f_sign, {}, {}, f_alt, {}, {}, {}, {}, // !"#$%&'
{}, {}, {}, f_pos, {}, f_left, {}, {}, // ()*+,-./
f_zero, {}, {}, {}, {}, {}, {}, {}, // 01234567
{}, {}, {}, {}, {}, {}, {}, {}, // 89:;<=>?
{}, CC::A, {}, {}, {}, CC::E, CC::F, CC::G, // @ABCDEFG
{}, {}, {}, {}, LM::L, {}, {}, {}, // HIJKLMNO
{}, {}, {}, {}, {}, {}, {}, {}, // PQRSTUVW
CC::X, {}, {}, {}, {}, {}, {}, {}, // XYZ[\]^_
{}, CC::a, {}, CC::c, CC::d, CC::e, CC::f, CC::g, // `abcdefg
LM::h, CC::i, LM::j, {}, LM::l, {}, CC::n, CC::o, // hijklmno
CC::p, LM::q, {}, CC::s, LM::t, CC::u, {}, {}, // pqrstuvw
CC::x, {}, LM::z, {}, {}, {}, {}, {}, // xyz{|}!
{}, {}, {}, {}, {}, {}, {}, {}, // 80-87
{}, {}, {}, {}, {}, {}, {}, {}, // 88-8f
{}, {}, {}, {}, {}, {}, {}, {}, // 90-97
{}, {}, {}, {}, {}, {}, {}, {}, // 98-9f
{}, {}, {}, {}, {}, {}, {}, {}, // a0-a7
{}, {}, {}, {}, {}, {}, {}, {}, // a8-af
{}, {}, {}, {}, {}, {}, {}, {}, // b0-b7
{}, {}, {}, {}, {}, {}, {}, {}, // b8-bf
{}, {}, {}, {}, {}, {}, {}, {}, // c0-c7
{}, {}, {}, {}, {}, {}, {}, {}, // c8-cf
{}, {}, {}, {}, {}, {}, {}, {}, // d0-d7
{}, {}, {}, {}, {}, {}, {}, {}, // d8-df
{}, {}, {}, {}, {}, {}, {}, {}, // e0-e7
{}, {}, {}, {}, {}, {}, {}, {}, // e8-ef
{}, {}, {}, {}, {}, {}, {}, {}, // f0-f7
{}, {}, {}, {}, {}, {}, {}, {}, // f8-ff
};
namespace {
bool CheckFastPathSetting(const UnboundConversion& conv) {
bool width_precision_needed =
conv.width.value() >= 0 || conv.precision.value() >= 0;
if (width_precision_needed && conv.flags == Flags::kBasic) {
fprintf(stderr,
"basic=%d left=%d show_pos=%d sign_col=%d alt=%d zero=%d "
"width=%d precision=%d\n",
conv.flags == Flags::kBasic ? 1 : 0,
FlagsContains(conv.flags, Flags::kLeft) ? 1 : 0,
FlagsContains(conv.flags, Flags::kShowPos) ? 1 : 0,
FlagsContains(conv.flags, Flags::kSignCol) ? 1 : 0,
FlagsContains(conv.flags, Flags::kAlt) ? 1 : 0,
FlagsContains(conv.flags, Flags::kZero) ? 1 : 0, conv.width.value(),
conv.precision.value());
return false;
}
return true;
}
template <bool is_positional>
const char *ConsumeConversion(const char *pos, const char *const end,
UnboundConversion *conv, int *next_arg) {
const char* const original_pos = pos;
char c;
// Read the next char into `c` and update `pos`. Returns false if there are
// no more chars to read.
#define ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR() \
do { \
if (ABSL_PREDICT_FALSE(pos == end)) return nullptr; \
c = *pos++; \
} while (0)
const auto parse_digits = [&] {
int digits = c - '0';
// We do not want to overflow `digits` so we consume at most digits10
// digits. If there are more digits the parsing will fail later on when the
// digit doesn't match the expected characters.
int num_digits = std::numeric_limits<int>::digits10;
for (;;) {
if (ABSL_PREDICT_FALSE(pos == end)) break;
c = *pos++;
if (!std::isdigit(c)) break;
--num_digits;
if (ABSL_PREDICT_FALSE(!num_digits)) break;
digits = 10 * digits + c - '0';
}
return digits;
};
if (is_positional) {
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
if (ABSL_PREDICT_FALSE(c < '1' || c > '9')) return nullptr;
conv->arg_position = parse_digits();
assert(conv->arg_position > 0);
if (ABSL_PREDICT_FALSE(c != '$')) return nullptr;
}
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
// We should start with the basic flag on.
assert(conv->flags == Flags::kBasic);
// Any non alpha character makes this conversion not basic.
// This includes flags (-+ #0), width (1-9, *) or precision (.).
// All conversion characters and length modifiers are alpha characters.
if (c < 'A') {
while (c <= '0') {
auto tag = GetTagForChar(c);
if (tag.is_flags()) {
conv->flags = conv->flags | tag.as_flags();
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
} else {
break;
}
}
if (c <= '9') {
if (c >= '0') {
int maybe_width = parse_digits();
if (!is_positional && c == '$') {
if (ABSL_PREDICT_FALSE(*next_arg != 0)) return nullptr;
// Positional conversion.
*next_arg = -1;
return ConsumeConversion<true>(original_pos, end, conv, next_arg);
}
conv->flags = conv->flags | Flags::kNonBasic;
conv->width.set_value(maybe_width);
} else if (c == '*') {
conv->flags = conv->flags | Flags::kNonBasic;
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
if (is_positional) {
if (ABSL_PREDICT_FALSE(c < '1' || c > '9')) return nullptr;
conv->width.set_from_arg(parse_digits());
if (ABSL_PREDICT_FALSE(c != '$')) return nullptr;
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
} else {
conv->width.set_from_arg(++*next_arg);
}
}
}
if (c == '.') {
conv->flags = conv->flags | Flags::kNonBasic;
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
if (std::isdigit(c)) {
conv->precision.set_value(parse_digits());
} else if (c == '*') {
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
if (is_positional) {
if (ABSL_PREDICT_FALSE(c < '1' || c > '9')) return nullptr;
conv->precision.set_from_arg(parse_digits());
if (c != '$') return nullptr;
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
} else {
conv->precision.set_from_arg(++*next_arg);
}
} else {
conv->precision.set_value(0);
}
}
}
auto tag = GetTagForChar(c);
if (ABSL_PREDICT_FALSE(!tag.is_conv())) {
if (ABSL_PREDICT_FALSE(!tag.is_length())) return nullptr;
// It is a length modifier.
using str_format_internal::LengthMod;
LengthMod length_mod = tag.as_length();
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
if (c == 'h' && length_mod == LengthMod::h) {
conv->length_mod = LengthMod::hh;
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
} else if (c == 'l' && length_mod == LengthMod::l) {
conv->length_mod = LengthMod::ll;
ABSL_FORMAT_PARSER_INTERNAL_GET_CHAR();
} else {
conv->length_mod = length_mod;
}
tag = GetTagForChar(c);
if (ABSL_PREDICT_FALSE(!tag.is_conv())) return nullptr;
}
assert(CheckFastPathSetting(*conv));
(void)(&CheckFastPathSetting);
conv->conv = tag.as_conv();
if (!is_positional) conv->arg_position = ++*next_arg;
return pos;
}
} // namespace
std::string LengthModToString(LengthMod v) {
switch (v) {
case LengthMod::h:
return "h";
case LengthMod::hh:
return "hh";
case LengthMod::l:
return "l";
case LengthMod::ll:
return "ll";
case LengthMod::L:
return "L";
case LengthMod::j:
return "j";
case LengthMod::z:
return "z";
case LengthMod::t:
return "t";
case LengthMod::q:
return "q";
case LengthMod::none:
return "";
}
return "";
}
const char *ConsumeUnboundConversion(const char *p, const char *end,
UnboundConversion *conv, int *next_arg) {
if (*next_arg < 0) return ConsumeConversion<true>(p, end, conv, next_arg);
return ConsumeConversion<false>(p, end, conv, next_arg);
}
struct ParsedFormatBase::ParsedFormatConsumer {
explicit ParsedFormatConsumer(ParsedFormatBase *parsedformat)
: parsed(parsedformat), data_pos(parsedformat->data_.get()) {}
bool Append(string_view s) {
if (s.empty()) return true;
size_t text_end = AppendText(s);
if (!parsed->items_.empty() && !parsed->items_.back().is_conversion) {
// Let's extend the existing text run.
parsed->items_.back().text_end = text_end;
} else {
// Let's make a new text run.
parsed->items_.push_back({false, text_end, {}});
}
return true;
}
bool ConvertOne(const UnboundConversion &conv, string_view s) {
size_t text_end = AppendText(s);
parsed->items_.push_back({true, text_end, conv});
return true;
}
size_t AppendText(string_view s) {
memcpy(data_pos, s.data(), s.size());
data_pos += s.size();
return static_cast<size_t>(data_pos - parsed->data_.get());
}
ParsedFormatBase *parsed;
char* data_pos;
};
ParsedFormatBase::ParsedFormatBase(
string_view format, bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs)
: data_(format.empty() ? nullptr : new char[format.size()]) {
has_error_ = !ParseFormatString(format, ParsedFormatConsumer(this)) ||
!MatchesConversions(allow_ignored, convs);
}
bool ParsedFormatBase::MatchesConversions(
bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs) const {
std::unordered_set<int> used;
auto add_if_valid_conv = [&](int pos, char c) {
if (static_cast<size_t>(pos) > convs.size() ||
!Contains(convs.begin()[pos - 1], c))
return false;
used.insert(pos);
return true;
};
for (const ConversionItem &item : items_) {
if (!item.is_conversion) continue;
auto &conv = item.conv;
if (conv.precision.is_from_arg() &&
!add_if_valid_conv(conv.precision.get_from_arg(), '*'))
return false;
if (conv.width.is_from_arg() &&
!add_if_valid_conv(conv.width.get_from_arg(), '*'))
return false;
if (!add_if_valid_conv(conv.arg_position,
FormatConversionCharToChar(conv.conv)))
return false;
}
return used.size() == convs.size() || allow_ignored;
}
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl

View File

@@ -0,0 +1,357 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <cassert>
#include <cstdint>
#include <initializer_list>
#include <iosfwd>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
#include "absl/strings/internal/str_format/checker.h"
#include "absl/strings/internal/str_format/extension.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
enum class LengthMod : std::uint8_t { h, hh, l, ll, L, j, z, t, q, none };
std::string LengthModToString(LengthMod v);
// The analyzed properties of a single specified conversion.
struct UnboundConversion {
UnboundConversion() {}
class InputValue {
public:
void set_value(int value) {
assert(value >= 0);
value_ = value;
}
int value() const { return value_; }
// Marks the value as "from arg". aka the '*' format.
// Requires `value >= 1`.
// When set, is_from_arg() return true and get_from_arg() returns the
// original value.
// `value()`'s return value is unspecfied in this state.
void set_from_arg(int value) {
assert(value > 0);
value_ = -value - 1;
}
bool is_from_arg() const { return value_ < -1; }
int get_from_arg() const {
assert(is_from_arg());
return -value_ - 1;
}
private:
int value_ = -1;
};
// No need to initialize. It will always be set in the parser.
int arg_position;
InputValue width;
InputValue precision;
Flags flags = Flags::kBasic;
LengthMod length_mod = LengthMod::none;
FormatConversionChar conv = FormatConversionCharInternal::kNone;
};
// Consume conversion spec prefix (not including '%') of [p, end) if valid.
// Examples of valid specs would be e.g.: "s", "d", "-12.6f".
// If valid, it returns the first character following the conversion spec,
// and the spec part is broken down and returned in 'conv'.
// If invalid, returns nullptr.
const char* ConsumeUnboundConversion(const char* p, const char* end,
UnboundConversion* conv, int* next_arg);
// Helper tag class for the table below.
// It allows fast `char -> ConversionChar/LengthMod/Flags` checking and
// conversions.
class ConvTag {
public:
constexpr ConvTag(FormatConversionChar conversion_char) // NOLINT
: tag_(static_cast<uint8_t>(conversion_char)) {}
constexpr ConvTag(LengthMod length_mod) // NOLINT
: tag_(0x80 | static_cast<uint8_t>(length_mod)) {}
constexpr ConvTag(Flags flags) // NOLINT
: tag_(0xc0 | static_cast<uint8_t>(flags)) {}
constexpr ConvTag() : tag_(0xFF) {}
bool is_conv() const { return (tag_ & 0x80) == 0; }
bool is_length() const { return (tag_ & 0xC0) == 0x80; }
bool is_flags() const { return (tag_ & 0xE0) == 0xC0; }
FormatConversionChar as_conv() const {
assert(is_conv());
assert(!is_length());
assert(!is_flags());
return static_cast<FormatConversionChar>(tag_);
}
LengthMod as_length() const {
assert(!is_conv());
assert(is_length());
assert(!is_flags());
return static_cast<LengthMod>(tag_ & 0x3F);
}
Flags as_flags() const {
assert(!is_conv());
assert(!is_length());
assert(is_flags());
return static_cast<Flags>(tag_ & 0x1F);
}
private:
uint8_t tag_;
};
extern const ConvTag kTags[256];
// Keep a single table for all the conversion chars and length modifiers.
inline ConvTag GetTagForChar(char c) {
return kTags[static_cast<unsigned char>(c)];
}
// Parse the format string provided in 'src' and pass the identified items into
// 'consumer'.
// Text runs will be passed by calling
// Consumer::Append(string_view);
// ConversionItems will be passed by calling
// Consumer::ConvertOne(UnboundConversion, string_view);
// In the case of ConvertOne, the string_view that is passed is the
// portion of the format string corresponding to the conversion, not including
// the leading %. On success, it returns true. On failure, it stops and returns
// false.
template <typename Consumer>
bool ParseFormatString(string_view src, Consumer consumer) {
int next_arg = 0;
const char* p = src.data();
const char* const end = p + src.size();
while (p != end) {
const char* percent = static_cast<const char*>(memchr(p, '%', end - p));
if (!percent) {
// We found the last substring.
return consumer.Append(string_view(p, end - p));
}
// We found a percent, so push the text run then process the percent.
if (ABSL_PREDICT_FALSE(!consumer.Append(string_view(p, percent - p)))) {
return false;
}
if (ABSL_PREDICT_FALSE(percent + 1 >= end)) return false;
auto tag = GetTagForChar(percent[1]);
if (tag.is_conv()) {
if (ABSL_PREDICT_FALSE(next_arg < 0)) {
// This indicates an error in the format string.
// The only way to get `next_arg < 0` here is to have a positional
// argument first which sets next_arg to -1 and then a non-positional
// argument.
return false;
}
p = percent + 2;
// Keep this case separate from the one below.
// ConvertOne is more efficient when the compiler can see that the `basic`
// flag is set.
UnboundConversion conv;
conv.conv = tag.as_conv();
conv.arg_position = ++next_arg;
if (ABSL_PREDICT_FALSE(
!consumer.ConvertOne(conv, string_view(percent + 1, 1)))) {
return false;
}
} else if (percent[1] != '%') {
UnboundConversion conv;
p = ConsumeUnboundConversion(percent + 1, end, &conv, &next_arg);
if (ABSL_PREDICT_FALSE(p == nullptr)) return false;
if (ABSL_PREDICT_FALSE(!consumer.ConvertOne(
conv, string_view(percent + 1, p - (percent + 1))))) {
return false;
}
} else {
if (ABSL_PREDICT_FALSE(!consumer.Append("%"))) return false;
p = percent + 2;
continue;
}
}
return true;
}
// Always returns true, or fails to compile in a constexpr context if s does not
// point to a constexpr char array.
constexpr bool EnsureConstexpr(string_view s) {
return s.empty() || s[0] == s[0];
}
class ParsedFormatBase {
public:
explicit ParsedFormatBase(
string_view format, bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs);
ParsedFormatBase(const ParsedFormatBase& other) { *this = other; }
ParsedFormatBase(ParsedFormatBase&& other) { *this = std::move(other); }
ParsedFormatBase& operator=(const ParsedFormatBase& other) {
if (this == &other) return *this;
has_error_ = other.has_error_;
items_ = other.items_;
size_t text_size = items_.empty() ? 0 : items_.back().text_end;
data_.reset(new char[text_size]);
memcpy(data_.get(), other.data_.get(), text_size);
return *this;
}
ParsedFormatBase& operator=(ParsedFormatBase&& other) {
if (this == &other) return *this;
has_error_ = other.has_error_;
data_ = std::move(other.data_);
items_ = std::move(other.items_);
// Reset the vector to make sure the invariants hold.
other.items_.clear();
return *this;
}
template <typename Consumer>
bool ProcessFormat(Consumer consumer) const {
const char* const base = data_.get();
string_view text(base, 0);
for (const auto& item : items_) {
const char* const end = text.data() + text.size();
text = string_view(end, (base + item.text_end) - end);
if (item.is_conversion) {
if (!consumer.ConvertOne(item.conv, text)) return false;
} else {
if (!consumer.Append(text)) return false;
}
}
return !has_error_;
}
bool has_error() const { return has_error_; }
private:
// Returns whether the conversions match and if !allow_ignored it verifies
// that all conversions are used by the format.
bool MatchesConversions(
bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs) const;
struct ParsedFormatConsumer;
struct ConversionItem {
bool is_conversion;
// Points to the past-the-end location of this element in the data_ array.
size_t text_end;
UnboundConversion conv;
};
bool has_error_;
std::unique_ptr<char[]> data_;
std::vector<ConversionItem> items_;
};
// A value type representing a preparsed format. These can be created, copied
// around, and reused to speed up formatting loops.
// The user must specify through the template arguments the conversion
// characters used in the format. This will be checked at compile time.
//
// This class uses Conv enum values to specify each argument.
// This allows for more flexibility as you can specify multiple possible
// conversion characters for each argument.
// ParsedFormat<char...> is a simplified alias for when the user only
// needs to specify a single conversion character for each argument.
//
// Example:
// // Extended format supports multiple characters per argument:
// using MyFormat = ExtendedParsedFormat<Conv::d | Conv::x>;
// MyFormat GetFormat(bool use_hex) {
// if (use_hex) return MyFormat("foo %x bar");
// return MyFormat("foo %d bar");
// }
// // 'format' can be used with any value that supports 'd' and 'x',
// // like `int`.
// auto format = GetFormat(use_hex);
// value = StringF(format, i);
//
// This class also supports runtime format checking with the ::New() and
// ::NewAllowIgnored() factory functions.
// This is the only API that allows the user to pass a runtime specified format
// string. These factory functions will return NULL if the format does not match
// the conversions requested by the user.
template <FormatConversionCharSet... C>
class ExtendedParsedFormat : public str_format_internal::ParsedFormatBase {
public:
explicit ExtendedParsedFormat(string_view format)
#ifdef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
__attribute__((
enable_if(str_format_internal::EnsureConstexpr(format),
"Format string is not constexpr."),
enable_if(str_format_internal::ValidFormatImpl<C...>(format),
"Format specified does not match the template arguments.")))
#endif // ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
: ExtendedParsedFormat(format, false) {
}
// ExtendedParsedFormat factory function.
// The user still has to specify the conversion characters, but they will not
// be checked at compile time. Instead, it will be checked at runtime.
// This delays the checking to runtime, but allows the user to pass
// dynamically sourced formats.
// It returns NULL if the format does not match the conversion characters.
// The user is responsible for checking the return value before using it.
//
// The 'New' variant will check that all the specified arguments are being
// consumed by the format and return NULL if any argument is being ignored.
// The 'NewAllowIgnored' variant will not verify this and will allow formats
// that ignore arguments.
static std::unique_ptr<ExtendedParsedFormat> New(string_view format) {
return New(format, false);
}
static std::unique_ptr<ExtendedParsedFormat> NewAllowIgnored(
string_view format) {
return New(format, true);
}
private:
static std::unique_ptr<ExtendedParsedFormat> New(string_view format,
bool allow_ignored) {
std::unique_ptr<ExtendedParsedFormat> conv(
new ExtendedParsedFormat(format, allow_ignored));
if (conv->has_error()) return nullptr;
return conv;
}
ExtendedParsedFormat(string_view s, bool allow_ignored)
: ParsedFormatBase(s, allow_ignored, {C...}) {}
};
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_

View File

@@ -0,0 +1,434 @@
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/parser.h"
#include <string.h>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/macros.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
using testing::Pair;
TEST(LengthModTest, Names) {
struct Expectation {
int line;
LengthMod mod;
const char *name;
};
const Expectation kExpect[] = {
{__LINE__, LengthMod::none, "" },
{__LINE__, LengthMod::h, "h" },
{__LINE__, LengthMod::hh, "hh"},
{__LINE__, LengthMod::l, "l" },
{__LINE__, LengthMod::ll, "ll"},
{__LINE__, LengthMod::L, "L" },
{__LINE__, LengthMod::j, "j" },
{__LINE__, LengthMod::z, "z" },
{__LINE__, LengthMod::t, "t" },
{__LINE__, LengthMod::q, "q" },
};
EXPECT_EQ(ABSL_ARRAYSIZE(kExpect), 10);
for (auto e : kExpect) {
SCOPED_TRACE(e.line);
EXPECT_EQ(e.name, LengthModToString(e.mod));
}
}
TEST(ConversionCharTest, Names) {
struct Expectation {
FormatConversionChar id;
char name;
};
// clang-format off
const Expectation kExpect[] = {
#define X(c) {FormatConversionCharInternal::c, #c[0]}
X(c), X(s), // text
X(d), X(i), X(o), X(u), X(x), X(X), // int
X(f), X(F), X(e), X(E), X(g), X(G), X(a), X(A), // float
X(n), X(p), // misc
#undef X
{FormatConversionCharInternal::kNone, '\0'},
};
// clang-format on
for (auto e : kExpect) {
SCOPED_TRACE(e.name);
FormatConversionChar v = e.id;
EXPECT_EQ(e.name, FormatConversionCharToChar(v));
}
}
class ConsumeUnboundConversionTest : public ::testing::Test {
public:
std::pair<string_view, string_view> Consume(string_view src) {
int next = 0;
o = UnboundConversion(); // refresh
const char* p = ConsumeUnboundConversion(
src.data(), src.data() + src.size(), &o, &next);
if (!p) return {{}, src};
return {string_view(src.data(), p - src.data()),
string_view(p, src.data() + src.size() - p)};
}
bool Run(const char *fmt, bool force_positional = false) {
int next = force_positional ? -1 : 0;
o = UnboundConversion(); // refresh
return ConsumeUnboundConversion(fmt, fmt + strlen(fmt), &o, &next) ==
fmt + strlen(fmt);
}
UnboundConversion o;
};
TEST_F(ConsumeUnboundConversionTest, ConsumeSpecification) {
struct Expectation {
int line;
string_view src;
string_view out;
string_view src_post;
};
const Expectation kExpect[] = {
{__LINE__, "", "", "" },
{__LINE__, "b", "", "b" }, // 'b' is invalid
{__LINE__, "ba", "", "ba"}, // 'b' is invalid
{__LINE__, "l", "", "l" }, // just length mod isn't okay
{__LINE__, "d", "d", "" }, // basic
{__LINE__, "d ", "d", " " }, // leave suffix
{__LINE__, "dd", "d", "d" }, // don't be greedy
{__LINE__, "d9", "d", "9" }, // leave non-space suffix
{__LINE__, "dzz", "d", "zz"}, // length mod as suffix
{__LINE__, "1$*2$d", "1$*2$d", "" }, // arg indexing and * allowed.
{__LINE__, "0-14.3hhd", "0-14.3hhd", ""}, // precision, width
{__LINE__, " 0-+#14.3hhd", " 0-+#14.3hhd", ""}, // flags
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.line);
EXPECT_THAT(Consume(e.src), Pair(e.out, e.src_post));
}
}
TEST_F(ConsumeUnboundConversionTest, BasicConversion) {
EXPECT_FALSE(Run(""));
EXPECT_FALSE(Run("z"));
EXPECT_FALSE(Run("dd")); // no excess allowed
EXPECT_TRUE(Run("d"));
EXPECT_EQ('d', FormatConversionCharToChar(o.conv));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_EQ(1, o.arg_position);
}
TEST_F(ConsumeUnboundConversionTest, ArgPosition) {
EXPECT_TRUE(Run("d"));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("3$d"));
EXPECT_EQ(3, o.arg_position);
EXPECT_TRUE(Run("1$d"));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("1$d", true));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("123$d"));
EXPECT_EQ(123, o.arg_position);
EXPECT_TRUE(Run("123$d", true));
EXPECT_EQ(123, o.arg_position);
EXPECT_TRUE(Run("10$d"));
EXPECT_EQ(10, o.arg_position);
EXPECT_TRUE(Run("10$d", true));
EXPECT_EQ(10, o.arg_position);
// Position can't be zero.
EXPECT_FALSE(Run("0$d"));
EXPECT_FALSE(Run("0$d", true));
EXPECT_FALSE(Run("1$*0$d"));
EXPECT_FALSE(Run("1$.*0$d"));
// Position can't start with a zero digit at all. That is not a 'decimal'.
EXPECT_FALSE(Run("01$p"));
EXPECT_FALSE(Run("01$p", true));
EXPECT_FALSE(Run("1$*01$p"));
EXPECT_FALSE(Run("1$.*01$p"));
}
TEST_F(ConsumeUnboundConversionTest, WidthAndPrecision) {
EXPECT_TRUE(Run("14d"));
EXPECT_EQ('d', FormatConversionCharToChar(o.conv));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_TRUE(Run("14.d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run(".d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run(".5d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(5, o.precision.value());
EXPECT_TRUE(Run(".0d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run("14.5d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_EQ(5, o.precision.value());
EXPECT_TRUE(Run("*.*d"));
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(1, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(2, o.precision.get_from_arg());
EXPECT_EQ(3, o.arg_position);
EXPECT_TRUE(Run("*d"));
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(1, o.width.get_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_EQ(2, o.arg_position);
EXPECT_TRUE(Run(".*d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(1, o.precision.get_from_arg());
EXPECT_EQ(2, o.arg_position);
// mixed implicit and explicit: didn't specify arg position.
EXPECT_FALSE(Run("*23$.*34$d"));
EXPECT_TRUE(Run("12$*23$.*34$d"));
EXPECT_EQ(12, o.arg_position);
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(23, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(34, o.precision.get_from_arg());
EXPECT_TRUE(Run("2$*5$.*9$d"));
EXPECT_EQ(2, o.arg_position);
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(5, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(9, o.precision.get_from_arg());
EXPECT_FALSE(Run(".*0$d")) << "no arg 0";
// Large values
EXPECT_TRUE(Run("999999999.999999999d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_EQ(999999999, o.width.value());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(999999999, o.precision.value());
EXPECT_FALSE(Run("1000000000.999999999d"));
EXPECT_FALSE(Run("999999999.1000000000d"));
EXPECT_FALSE(Run("9999999999d"));
EXPECT_FALSE(Run(".9999999999d"));
}
TEST_F(ConsumeUnboundConversionTest, Flags) {
static const char kAllFlags[] = "-+ #0";
static const int kNumFlags = ABSL_ARRAYSIZE(kAllFlags) - 1;
for (int rev = 0; rev < 2; ++rev) {
for (int i = 0; i < 1 << kNumFlags; ++i) {
std::string fmt;
for (int k = 0; k < kNumFlags; ++k)
if ((i >> k) & 1) fmt += kAllFlags[k];
// flag order shouldn't matter
if (rev == 1) {
std::reverse(fmt.begin(), fmt.end());
}
fmt += 'd';
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt.c_str()));
EXPECT_EQ(fmt.find('-') == std::string::npos,
!FlagsContains(o.flags, Flags::kLeft));
EXPECT_EQ(fmt.find('+') == std::string::npos,
!FlagsContains(o.flags, Flags::kShowPos));
EXPECT_EQ(fmt.find(' ') == std::string::npos,
!FlagsContains(o.flags, Flags::kSignCol));
EXPECT_EQ(fmt.find('#') == std::string::npos,
!FlagsContains(o.flags, Flags::kAlt));
EXPECT_EQ(fmt.find('0') == std::string::npos,
!FlagsContains(o.flags, Flags::kZero));
}
}
}
TEST_F(ConsumeUnboundConversionTest, BasicFlag) {
// Flag is on
for (const char* fmt : {"d", "llx", "G", "1$X"}) {
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt));
EXPECT_EQ(o.flags, Flags::kBasic);
}
// Flag is off
for (const char* fmt : {"3d", ".llx", "-G", "1$#X"}) {
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt));
EXPECT_NE(o.flags, Flags::kBasic);
}
}
TEST_F(ConsumeUnboundConversionTest, LengthMod) {
EXPECT_TRUE(Run("d"));
EXPECT_EQ(LengthMod::none, o.length_mod);
EXPECT_TRUE(Run("hd"));
EXPECT_EQ(LengthMod::h, o.length_mod);
EXPECT_TRUE(Run("hhd"));
EXPECT_EQ(LengthMod::hh, o.length_mod);
EXPECT_TRUE(Run("ld"));
EXPECT_EQ(LengthMod::l, o.length_mod);
EXPECT_TRUE(Run("lld"));
EXPECT_EQ(LengthMod::ll, o.length_mod);
EXPECT_TRUE(Run("Lf"));
EXPECT_EQ(LengthMod::L, o.length_mod);
EXPECT_TRUE(Run("qf"));
EXPECT_EQ(LengthMod::q, o.length_mod);
EXPECT_TRUE(Run("jd"));
EXPECT_EQ(LengthMod::j, o.length_mod);
EXPECT_TRUE(Run("zd"));
EXPECT_EQ(LengthMod::z, o.length_mod);
EXPECT_TRUE(Run("td"));
EXPECT_EQ(LengthMod::t, o.length_mod);
}
struct SummarizeConsumer {
std::string* out;
explicit SummarizeConsumer(std::string* out) : out(out) {}
bool Append(string_view s) {
*out += "[" + std::string(s) + "]";
return true;
}
bool ConvertOne(const UnboundConversion& conv, string_view s) {
*out += "{";
*out += std::string(s);
*out += ":";
*out += std::to_string(conv.arg_position) + "$";
if (conv.width.is_from_arg()) {
*out += std::to_string(conv.width.get_from_arg()) + "$*";
}
if (conv.precision.is_from_arg()) {
*out += "." + std::to_string(conv.precision.get_from_arg()) + "$*";
}
*out += FormatConversionCharToChar(conv.conv);
*out += "}";
return true;
}
};
std::string SummarizeParsedFormat(const ParsedFormatBase& pc) {
std::string out;
if (!pc.ProcessFormat(SummarizeConsumer(&out))) out += "!";
return out;
}
class ParsedFormatTest : public testing::Test {};
TEST_F(ParsedFormatTest, ValueSemantics) {
ParsedFormatBase p1({}, true, {}); // empty format
EXPECT_EQ("", SummarizeParsedFormat(p1));
ParsedFormatBase p2 = p1; // copy construct (empty)
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p2));
p1 = ParsedFormatBase("hello%s", true,
{FormatConversionCharSetInternal::s}); // move assign
EXPECT_EQ("[hello]{s:1$s}", SummarizeParsedFormat(p1));
ParsedFormatBase p3 = p1; // copy construct (nonempty)
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p3));
using std::swap;
swap(p1, p2);
EXPECT_EQ("", SummarizeParsedFormat(p1));
EXPECT_EQ("[hello]{s:1$s}", SummarizeParsedFormat(p2));
swap(p1, p2); // undo
p2 = p1; // copy assign
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p2));
}
struct ExpectParse {
const char* in;
std::initializer_list<FormatConversionCharSet> conv_set;
const char* out;
};
TEST_F(ParsedFormatTest, Parsing) {
// Parse should be equivalent to that obtained by ConversionParseIterator.
// No need to retest the parsing edge cases here.
const ExpectParse kExpect[] = {
{"", {}, ""},
{"ab", {}, "[ab]"},
{"a%d", {FormatConversionCharSetInternal::d}, "[a]{d:1$d}"},
{"a%+d", {FormatConversionCharSetInternal::d}, "[a]{+d:1$d}"},
{"a% d", {FormatConversionCharSetInternal::d}, "[a]{ d:1$d}"},
{"a%b %d", {}, "[a]!"}, // stop after error
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.in);
EXPECT_EQ(e.out,
SummarizeParsedFormat(ParsedFormatBase(e.in, false, e.conv_set)));
}
}
TEST_F(ParsedFormatTest, ParsingFlagOrder) {
const ExpectParse kExpect[] = {
{"a%+ 0d", {FormatConversionCharSetInternal::d}, "[a]{+ 0d:1$d}"},
{"a%+0 d", {FormatConversionCharSetInternal::d}, "[a]{+0 d:1$d}"},
{"a%0+ d", {FormatConversionCharSetInternal::d}, "[a]{0+ d:1$d}"},
{"a% +0d", {FormatConversionCharSetInternal::d}, "[a]{ +0d:1$d}"},
{"a%0 +d", {FormatConversionCharSetInternal::d}, "[a]{0 +d:1$d}"},
{"a% 0+d", {FormatConversionCharSetInternal::d}, "[a]{ 0+d:1$d}"},
{"a%+ 0+d", {FormatConversionCharSetInternal::d}, "[a]{+ 0+d:1$d}"},
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.in);
EXPECT_EQ(e.out,
SummarizeParsedFormat(ParsedFormatBase(e.in, false, e.conv_set)));
}
}
} // namespace
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl