[spirv-reader] Follow non-canonicalized SPIR-V type for composite extract

Follow the actual SPIR-V type when computing a composite extract
instad of the canonicalized view in the optimizer's type manager.
Do this so we can generate the correct member name for a struct,
rather than using the member name for the other representative
struct type. The optimizer's type canonicalizer is insensitive to
struct member names.

Prompted by tint:213, for which the original case was an
access chain.

Bug: tint:3, tint:213
Change-Id: I8705c7ee655fe47c8b7a3658db524fe18833efdb
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/27603
Commit-Queue: David Neto <dneto@google.com>
Reviewed-by: dan sinclair <dsinclair@chromium.org>
This commit is contained in:
David Neto 2020-08-28 16:28:42 +00:00 committed by Commit Bot service account
parent 53b1c39036
commit fed63103f5
2 changed files with 99 additions and 32 deletions

View File

@ -2906,7 +2906,7 @@ TypedExpression FunctionEmitter::MakeAccessChain(
std::move(current_expr.expr), std::move(current_expr.expr),
std::move(MakeOperand(inst, index).expr)); std::move(MakeOperand(inst, index).expr));
} }
// All vector components are the same type, so follow the first. // All vector components are the same type.
pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0); pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0);
break; break;
case SpvOpTypeMatrix: case SpvOpTypeMatrix:
@ -2914,7 +2914,7 @@ TypedExpression FunctionEmitter::MakeAccessChain(
next_expr = std::make_unique<ast::ArrayAccessorExpression>( next_expr = std::make_unique<ast::ArrayAccessorExpression>(
std::move(current_expr.expr), std::move(current_expr.expr),
std::move(MakeOperand(inst, index).expr)); std::move(MakeOperand(inst, index).expr));
// All matrix components are the same type, so follow the first. // All matrix components are the same type.
pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0); pointee_type_id = pointee_type_inst->GetSingleWordInOperand(0);
break; break;
case SpvOpTypeArray: case SpvOpTypeArray:
@ -2988,20 +2988,31 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
static const char* swizzles[] = {"x", "y", "z", "w"}; static const char* swizzles[] = {"x", "y", "z", "w"};
const auto composite = inst.GetSingleWordInOperand(0); const auto composite = inst.GetSingleWordInOperand(0);
const auto composite_type_id = def_use_mgr_->GetDef(composite)->type_id(); auto current_type_id = def_use_mgr_->GetDef(composite)->type_id();
const auto* current_type = type_mgr_->GetType(composite_type_id); // Build up a nested expression for the access chain by walking down the type
// hierarchy, maintaining |current_type_id| as the SPIR-V ID of the type of
// the object pointed to after processing the previous indices.
const auto num_in_operands = inst.NumInOperands(); const auto num_in_operands = inst.NumInOperands();
for (uint32_t index = 1; index < num_in_operands; ++index) { for (uint32_t index = 1; index < num_in_operands; ++index) {
const uint32_t index_val = inst.GetSingleWordInOperand(index); const uint32_t index_val = inst.GetSingleWordInOperand(index);
const auto* current_type_inst = def_use_mgr_->GetDef(current_type_id);
if (!current_type_inst) {
Fail() << "composite type %" << current_type_id
<< " is invalid after following " << (index - 1)
<< " indices: " << inst.PrettyPrint();
return {};
}
std::unique_ptr<ast::Expression> next_expr; std::unique_ptr<ast::Expression> next_expr;
switch (current_type->kind()) { switch (current_type_inst->opcode()) {
case spvtools::opt::analysis::Type::kVector: { case SpvOpTypeVector: {
// Try generating a MemberAccessor expression. That result in something // Try generating a MemberAccessor expression. That result in something
// like "foo.z", which is more idiomatic than "foo[2]". // like "foo.z", which is more idiomatic than "foo[2]".
if (current_type->AsVector()->element_count() <= index_val) { const auto num_elems = current_type_inst->GetSingleWordInOperand(1);
if (num_elems <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value " Fail() << "CompositeExtract %" << inst.result_id() << " index value "
<< index_val << " is out of bounds for vector of " << index_val << " is out of bounds for vector of " << num_elems
<< current_type->AsVector()->element_count() << " elements"; << " elements";
return {}; return {};
} }
if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) { if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) {
@ -3013,15 +3024,17 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
std::make_unique<ast::IdentifierExpression>(swizzles[index_val]); std::make_unique<ast::IdentifierExpression>(swizzles[index_val]);
next_expr = std::make_unique<ast::MemberAccessorExpression>( next_expr = std::make_unique<ast::MemberAccessorExpression>(
std::move(current_expr.expr), std::move(letter_index)); std::move(current_expr.expr), std::move(letter_index));
current_type = current_type->AsVector()->element_type(); // All vector components are the same type.
current_type_id = current_type_inst->GetSingleWordInOperand(0);
break; break;
} }
case spvtools::opt::analysis::Type::kMatrix: case SpvOpTypeMatrix: {
// Check bounds // Check bounds
if (current_type->AsMatrix()->element_count() <= index_val) { const auto num_elems = current_type_inst->GetSingleWordInOperand(1);
if (num_elems <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value " Fail() << "CompositeExtract %" << inst.result_id() << " index value "
<< index_val << " is out of bounds for matrix of " << index_val << " is out of bounds for matrix of " << num_elems
<< current_type->AsMatrix()->element_count() << " elements"; << " elements";
return {}; return {};
} }
if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) { if (index_val >= sizeof(swizzles) / sizeof(swizzles[0])) {
@ -3032,45 +3045,44 @@ TypedExpression FunctionEmitter::MakeCompositeExtract(
// Use array syntax. // Use array syntax.
next_expr = std::make_unique<ast::ArrayAccessorExpression>( next_expr = std::make_unique<ast::ArrayAccessorExpression>(
std::move(current_expr.expr), make_index(index_val)); std::move(current_expr.expr), make_index(index_val));
current_type = current_type->AsMatrix()->element_type(); // All matrix components are the same type.
current_type_id = current_type_inst->GetSingleWordInOperand(0);
break; break;
case spvtools::opt::analysis::Type::kArray: }
case SpvOpTypeArray:
// The array size could be a spec constant, and so it's not always // The array size could be a spec constant, and so it's not always
// statically checkable. Instead, rely on a runtime index clamp // statically checkable. Instead, rely on a runtime index clamp
// or runtime check to keep this safe. // or runtime check to keep this safe.
next_expr = std::make_unique<ast::ArrayAccessorExpression>( next_expr = std::make_unique<ast::ArrayAccessorExpression>(
std::move(current_expr.expr), make_index(index_val)); std::move(current_expr.expr), make_index(index_val));
current_type = current_type->AsArray()->element_type(); current_type_id = current_type_inst->GetSingleWordInOperand(0);
break; break;
case spvtools::opt::analysis::Type::kRuntimeArray: case SpvOpTypeRuntimeArray:
Fail() << "can't do OpCompositeExtract on a runtime array"; Fail() << "can't do OpCompositeExtract on a runtime array";
return {}; return {};
case spvtools::opt::analysis::Type::kStruct: { case SpvOpTypeStruct: {
if (current_type->AsStruct()->element_types().size() <= index_val) { const auto num_members = current_type_inst->NumInOperands();
if (num_members <= index_val) {
Fail() << "CompositeExtract %" << inst.result_id() << " index value " Fail() << "CompositeExtract %" << inst.result_id() << " index value "
<< index_val << " is out of bounds for structure %" << index_val << " is out of bounds for structure %"
<< type_mgr_->GetId(current_type) << " having " << current_type_id << " having " << num_members << " members";
<< current_type->AsStruct()->element_types().size()
<< " elements";
return {}; return {};
} }
auto member_access = auto member_access = std::make_unique<ast::IdentifierExpression>(
std::make_unique<ast::IdentifierExpression>(namer_.GetMemberName( namer_.GetMemberName(current_type_id, uint32_t(index_val)));
type_mgr_->GetId(current_type), uint32_t(index_val)));
next_expr = std::make_unique<ast::MemberAccessorExpression>( next_expr = std::make_unique<ast::MemberAccessorExpression>(
std::move(current_expr.expr), std::move(member_access)); std::move(current_expr.expr), std::move(member_access));
current_type = current_type->AsStruct()->element_types()[index_val]; current_type_id = current_type_inst->GetSingleWordInOperand(index_val);
break; break;
} }
default: default:
Fail() << "CompositeExtract with bad type %" Fail() << "CompositeExtract with bad type %" << current_type_id << ": "
<< type_mgr_->GetId(current_type) << " " << current_type->str(); << current_type_inst->PrettyPrint();
return {}; return {};
} }
current_expr.reset(TypedExpression( current_expr.reset(TypedExpression(
parser_impl_.ConvertType(type_mgr_->GetId(current_type)), parser_impl_.ConvertType(current_type_id), std::move(next_expr)));
std::move(next_expr)));
} }
return current_expr; return current_expr;
} }

View File

@ -451,6 +451,61 @@ TEST_F(SpvParserTest_CompositeExtract, Struct) {
<< ToString(fe.ast_body()); << ToString(fe.ast_body());
} }
TEST_F(SpvParserTest_CompositeExtract, Struct_DifferOnlyInMemberName) {
const auto assembly =
R"(
OpMemberName %s0 0 "algo"
OpMemberName %s1 0 "rithm"
)" + Preamble() +
R"(
%s0 = OpTypeStruct %uint
%s1 = OpTypeStruct %uint
%ptr0 = OpTypePointer Function %s0
%ptr1 = OpTypePointer Function %s1
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%var0 = OpVariable %ptr0 Function
%var1 = OpVariable %ptr1 Function
%1 = OpLoad %s0 %var0
%2 = OpCompositeExtract %uint %1 0
%3 = OpLoad %s1 %var1
%4 = OpCompositeExtract %uint %3 0
OpReturn
OpFunctionEnd
)";
auto* p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly;
FunctionEmitter fe(p, *spirv_function(100));
EXPECT_TRUE(fe.EmitBody()) << p->error();
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_2
none
__u32
{
MemberAccessor{
Identifier{x_1}
Identifier{algo}
}
}
})"))
<< ToString(fe.ast_body());
EXPECT_THAT(ToString(fe.ast_body()), HasSubstr(R"(
Variable{
x_4
none
__u32
{
MemberAccessor{
Identifier{x_3}
Identifier{rithm}
}
}
})"))
<< ToString(fe.ast_body());
}
TEST_F(SpvParserTest_CompositeExtract, Struct_IndexTooBigError) { TEST_F(SpvParserTest_CompositeExtract, Struct_IndexTooBigError) {
const auto assembly = Preamble() + R"( const auto assembly = Preamble() + R"(
%ptr = OpTypePointer Function %s_v2f_u_i %ptr = OpTypePointer Function %s_v2f_u_i
@ -468,7 +523,7 @@ TEST_F(SpvParserTest_CompositeExtract, Struct_IndexTooBigError) {
FunctionEmitter fe(p, *spirv_function(100)); FunctionEmitter fe(p, *spirv_function(100));
EXPECT_FALSE(fe.EmitBody()); EXPECT_FALSE(fe.EmitBody());
EXPECT_THAT(p->error(), Eq("CompositeExtract %2 index value 40 is out of " EXPECT_THAT(p->error(), Eq("CompositeExtract %2 index value 40 is out of "
"bounds for structure %25 having 3 elements")); "bounds for structure %25 having 3 members"));
} }
TEST_F(SpvParserTest_CompositeExtract, Struct_Array_Matrix_Vector) { TEST_F(SpvParserTest_CompositeExtract, Struct_Array_Matrix_Vector) {