mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-06-06 06:33:30 +00:00
Once all ast::Type derived classes are removed, there will be no distinction between a type initializer / conversion and a function call. Bug: tint:1810 Change-Id: Ic10fd1a0364a564d24dbe2499af0f1424641596c Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/118980 Auto-Submit: Ben Clayton <bclayton@google.com> Reviewed-by: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com> Commit-Queue: Ben Clayton <bclayton@chromium.org>
1168 lines
53 KiB
C++
1168 lines
53 KiB
C++
// Copyright 2022 The Tint Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "src/tint/transform/std140.h"
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <variant>
|
|
|
|
#include "src/tint/program_builder.h"
|
|
#include "src/tint/sem/index_accessor_expression.h"
|
|
#include "src/tint/sem/member_accessor_expression.h"
|
|
#include "src/tint/sem/module.h"
|
|
#include "src/tint/sem/struct.h"
|
|
#include "src/tint/sem/variable.h"
|
|
#include "src/tint/utils/compiler_macros.h"
|
|
#include "src/tint/utils/hashmap.h"
|
|
#include "src/tint/utils/transform.h"
|
|
|
|
TINT_INSTANTIATE_TYPEINFO(tint::transform::Std140);
|
|
|
|
using namespace tint::number_suffixes; // NOLINT
|
|
|
|
namespace {
|
|
|
|
/// UniformVariable is used by Std140::State::AccessIndex to indicate the root uniform variable
|
|
struct UniformVariable {};
|
|
|
|
/// Inequality operator for UniformVariable
|
|
bool operator!=(const UniformVariable&, const UniformVariable&) {
|
|
return false;
|
|
}
|
|
|
|
/// DynamicIndex is used by Std140::State::AccessIndex to indicate a runtime-expression index
|
|
struct DynamicIndex {
|
|
size_t slot; // The index of the expression in Std140::State::AccessChain::dynamic_indices
|
|
};
|
|
|
|
/// Inequality operator for DynamicIndex
|
|
bool operator!=(const DynamicIndex& a, const DynamicIndex& b) {
|
|
return a.slot != b.slot;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace tint::utils {
|
|
|
|
/// Hasher specialization for UniformVariable
|
|
template <>
|
|
struct Hasher<UniformVariable> {
|
|
/// The hash function for the UniformVariable
|
|
/// @return the hash for the given UniformVariable
|
|
size_t operator()(const UniformVariable&) const { return 0; }
|
|
};
|
|
|
|
/// Hasher specialization for DynamicIndex
|
|
template <>
|
|
struct Hasher<DynamicIndex> {
|
|
/// The hash function for the DynamicIndex
|
|
/// @param d the DynamicIndex to hash
|
|
/// @return the hash for the given DynamicIndex
|
|
size_t operator()(const DynamicIndex& d) const { return utils::Hash(d.slot); }
|
|
};
|
|
|
|
} // namespace tint::utils
|
|
|
|
namespace tint::transform {
|
|
|
|
/// PIMPL state for the transform
|
|
struct Std140::State {
|
|
/// Constructor
|
|
/// @param program the source program
|
|
explicit State(const Program* program) : src(program) {}
|
|
|
|
/// Runs the transform
|
|
/// @returns the new program or SkipTransform if the transform is not required
|
|
ApplyResult Run() {
|
|
if (!ShouldRun()) {
|
|
// Transform is not required
|
|
return SkipTransform;
|
|
}
|
|
|
|
// Begin by creating forked types for any type that is used as a uniform buffer, that
|
|
// either directly or transitively contains a matrix that needs splitting for std140 layout.
|
|
ForkTypes();
|
|
|
|
// Next, replace all the uniform variables to use the forked types.
|
|
ReplaceUniformVarTypes();
|
|
|
|
// Finally, replace all expression chains that used the authored types with those that
|
|
// correctly use the forked types.
|
|
ctx.ReplaceAll([&](const ast::Expression* expr) -> const ast::Expression* {
|
|
if (auto access = AccessChainFor(expr)) {
|
|
if (!access->std140_mat_idx.has_value()) {
|
|
// loading a std140 type, which is not a whole or partial decomposed matrix
|
|
return LoadWithConvert(access.value());
|
|
}
|
|
if (!access->IsMatrixSubset() || // loading a whole matrix
|
|
std::holds_alternative<DynamicIndex>(
|
|
access->indices[*access->std140_mat_idx + 1])) {
|
|
// Whole object or matrix is loaded, or the matrix column is indexed with a
|
|
// non-constant index. Build a helper function to load the expression chain.
|
|
return LoadMatrixWithFn(access.value());
|
|
}
|
|
// Matrix column is statically indexed. Can be emitted as an inline expression.
|
|
return LoadSubMatrixInline(access.value());
|
|
}
|
|
// Expression isn't an access to a std140-layout uniform buffer.
|
|
// Just clone.
|
|
return nullptr;
|
|
});
|
|
|
|
ctx.Clone();
|
|
return Program(std::move(b));
|
|
}
|
|
|
|
/// @returns true if this transform should be run for the given program
|
|
bool ShouldRun() const {
|
|
// Returns true if the type needs to be forked for std140 usage.
|
|
auto needs_fork = [&](const type::Type* ty) {
|
|
while (auto* arr = ty->As<type::Array>()) {
|
|
ty = arr->ElemType();
|
|
}
|
|
if (auto* mat = ty->As<type::Matrix>()) {
|
|
if (MatrixNeedsDecomposing(mat)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Scan structures for members that need forking
|
|
for (auto* ty : src->Types()) {
|
|
if (auto* str = ty->As<sem::Struct>()) {
|
|
if (str->UsedAs(type::AddressSpace::kUniform)) {
|
|
for (auto* member : str->Members()) {
|
|
if (needs_fork(member->Type())) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan uniform variables that have types that need forking
|
|
for (auto* decl : src->AST().GlobalVariables()) {
|
|
auto* global = src->Sem().Get(decl);
|
|
if (global->AddressSpace() == type::AddressSpace::kUniform) {
|
|
if (needs_fork(global->Type()->UnwrapRef())) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we reach here, no uniform variables use a type that needs forking for std140 layout
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
/// Swizzle describes a vector swizzle
|
|
using Swizzle = utils::Vector<uint32_t, 4>;
|
|
|
|
/// AccessIndex describes a single access in an access chain.
|
|
/// The access is one of:
|
|
/// UniformVariable - the root uniform variable.
|
|
/// u32 - a static index on a struct, array index, matrix column or vector element.
|
|
/// DynamicIndex - a runtime index on an array, matrix column, or vector element.
|
|
/// Swizzle - a static vector swizzle.
|
|
using AccessIndex = std::variant<UniformVariable, u32, DynamicIndex, Swizzle>;
|
|
|
|
/// A vector of AccessIndex.
|
|
using AccessIndices = utils::Vector<AccessIndex, 8>;
|
|
|
|
/// A key used to cache load functions for an access chain.
|
|
struct LoadFnKey {
|
|
/// The root uniform buffer variable for the access chain.
|
|
const sem::GlobalVariable* var;
|
|
|
|
/// The chain of accesses indices.
|
|
AccessIndices indices;
|
|
|
|
/// Hash function for LoadFnKey.
|
|
struct Hasher {
|
|
/// @param fn the LoadFnKey to hash
|
|
/// @return the hash for the given LoadFnKey
|
|
size_t operator()(const LoadFnKey& fn) const { return utils::Hash(fn.var, fn.indices); }
|
|
};
|
|
|
|
/// Equality operator
|
|
bool operator==(const LoadFnKey& other) const {
|
|
return var == other.var && indices == other.indices;
|
|
}
|
|
};
|
|
|
|
/// The source program
|
|
const Program* const src;
|
|
/// The target program builder
|
|
ProgramBuilder b;
|
|
/// The clone context
|
|
CloneContext ctx = {&b, src, /* auto_clone_symbols */ true};
|
|
/// Alias to the semantic info in src
|
|
const sem::Info& sem = src->Sem();
|
|
/// Alias to the symbols in src
|
|
const SymbolTable& sym = src->Symbols();
|
|
|
|
/// Map of load function signature, to the generated function
|
|
utils::Hashmap<LoadFnKey, Symbol, 8, LoadFnKey::Hasher> load_fns;
|
|
|
|
/// Map of std140-forked type to converter function name
|
|
utils::Hashmap<const type::Type*, Symbol, 8> conv_fns;
|
|
|
|
// Uniform variables that have been modified to use a std140 type
|
|
utils::Hashset<const sem::Variable*, 8> std140_uniforms;
|
|
|
|
// Map of original structure to 'std140' forked structure
|
|
utils::Hashmap<const sem::Struct*, Symbol, 8> std140_structs;
|
|
|
|
// Map of structure member in src of a matrix type, to list of decomposed column
|
|
// members in ctx.dst.
|
|
utils::Hashmap<const sem::StructMember*, utils::Vector<const ast::StructMember*, 4>, 8>
|
|
std140_mat_members;
|
|
|
|
/// Describes a matrix that has been forked to a std140-structure holding the decomposed column
|
|
/// vectors of the matrix.
|
|
struct Std140Matrix {
|
|
/// The decomposed structure name (in ctx.dst)
|
|
Symbol name;
|
|
/// The column vector structure member names (in ctx.dst)
|
|
utils::Vector<Symbol, 4> columns;
|
|
};
|
|
|
|
// Map of matrix type in src, to decomposed column structure in ctx.dst.
|
|
utils::Hashmap<const type::Matrix*, Std140Matrix, 8> std140_mats;
|
|
|
|
/// AccessChain describes a chain of access expressions to uniform buffer variable.
|
|
struct AccessChain {
|
|
/// The uniform buffer variable.
|
|
const sem::GlobalVariable* var;
|
|
/// The chain of access indices, starting with the first access on #var.
|
|
AccessIndices indices;
|
|
/// The runtime-evaluated expressions. This vector is indexed by the DynamicIndex::slot
|
|
utils::Vector<const sem::ValueExpression*, 8> dynamic_indices;
|
|
/// The type of the std140-decomposed matrix being accessed.
|
|
/// May be nullptr if the chain does not pass through a std140-decomposed matrix.
|
|
const type::Matrix* std140_mat_ty = nullptr;
|
|
/// The index in #indices of the access that resolves to the std140-decomposed matrix.
|
|
/// May hold no value if the chain does not pass through a std140-decomposed matrix.
|
|
std::optional<size_t> std140_mat_idx;
|
|
|
|
/// @returns true if the access chain is to part of (not the whole) std140-decomposed matrix
|
|
bool IsMatrixSubset() const {
|
|
return std140_mat_idx.has_value() && (std140_mat_idx.value() + 1 != indices.Length());
|
|
}
|
|
};
|
|
|
|
/// @returns true if the given matrix needs decomposing to column vectors for std140 layout.
|
|
/// Std140 layout require matrix stride to be 16, otherwise decomposing is needed.
|
|
static bool MatrixNeedsDecomposing(const type::Matrix* mat) {
|
|
return mat->ColumnStride() != 16;
|
|
}
|
|
|
|
/// ForkTypes walks the user-declared types in dependency order, forking structures that are
|
|
/// used as uniform buffers which (transitively) use matrices that need std140 decomposition to
|
|
/// column vectors. Populates the #std140_mat_members map, #std140_structs set and #std140_mats
|
|
/// map (via Std140Type()).
|
|
void ForkTypes() {
|
|
// For each module scope declaration...
|
|
for (auto* global : src->Sem().Module()->DependencyOrderedDeclarations()) {
|
|
// Check to see if this is a structure used by a uniform buffer...
|
|
auto* str = sem.Get<sem::Struct>(global);
|
|
if (str && str->UsedAs(type::AddressSpace::kUniform)) {
|
|
// Should this uniform buffer be forked for std140 usage?
|
|
bool fork_std140 = false;
|
|
utils::Vector<const ast::StructMember*, 8> members;
|
|
for (auto* member : str->Members()) {
|
|
if (auto* mat = member->Type()->As<type::Matrix>()) {
|
|
// Is this member a matrix that needs decomposition for std140-layout?
|
|
if (MatrixNeedsDecomposing(mat)) {
|
|
// Structure member of matrix type needs decomposition.
|
|
fork_std140 = true;
|
|
// Replace the member with column vectors.
|
|
const auto name_prefix = PrefixForUniqueNames(
|
|
str->Declaration(), member->Name(), mat->columns());
|
|
|
|
// Build a struct member for each column of the matrix
|
|
auto column_members = DecomposedMatrixStructMembers(
|
|
mat, name_prefix, member->Align(), member->Size());
|
|
|
|
// Add the member to the forked structure
|
|
for (auto* column_member : column_members) {
|
|
members.Push(column_member);
|
|
}
|
|
// Record that this matrix member was replaced with the N column
|
|
// members.
|
|
std140_mat_members.Add(member, std::move(column_members));
|
|
|
|
continue; // Next member
|
|
}
|
|
} else if (auto* std140_ty = Std140Type(member->Type())) {
|
|
// Member is of a type that requires forking for std140-layout
|
|
fork_std140 = true;
|
|
auto attrs = ctx.Clone(member->Declaration()->attributes);
|
|
members.Push(
|
|
b.Member(sym.NameFor(member->Name()), std140_ty, std::move(attrs)));
|
|
continue; // Next member
|
|
}
|
|
|
|
// Nothing special about this member.
|
|
// Push the member in src to members without first cloning. We'll replace this
|
|
// with a cloned member once we know whether we need to fork the structure or
|
|
// not.
|
|
members.Push(member->Declaration());
|
|
}
|
|
|
|
// Did any of the members require forking the structure?
|
|
if (fork_std140) {
|
|
// Clone any members that have not already been cloned.
|
|
for (auto& member : members) {
|
|
if (member->program_id == src->ID()) {
|
|
member = ctx.Clone(member);
|
|
}
|
|
}
|
|
// Create a new forked structure, and insert it just under the original
|
|
// structure.
|
|
auto name = b.Symbols().New(sym.NameFor(str->Name()) + "_std140");
|
|
auto* std140 = b.create<ast::Struct>(name, std::move(members),
|
|
ctx.Clone(str->Declaration()->attributes));
|
|
ctx.InsertAfter(src->AST().GlobalDeclarations(), global, std140);
|
|
std140_structs.Add(str, name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Walks the global variables, replacing the type of those that are a uniform buffer with a
|
|
/// type that has been forked for std140-layout.
|
|
/// Populates the #std140_uniforms set.
|
|
void ReplaceUniformVarTypes() {
|
|
for (auto* global : src->AST().GlobalVariables()) {
|
|
if (auto* var = global->As<ast::Var>()) {
|
|
if (var->declared_address_space == type::AddressSpace::kUniform) {
|
|
auto* v = sem.Get(var);
|
|
if (auto* std140_ty = Std140Type(v->Type()->UnwrapRef())) {
|
|
ctx.Replace(global->type, std140_ty);
|
|
std140_uniforms.Add(v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @returns a unique structure member prefix for the splitting of a matrix member into @p count
|
|
/// column vector members. The new members must be suffixed with a zero-based index ranging from
|
|
/// `[0..count)`.
|
|
/// @param str the structure that will hold the uniquely named member.
|
|
/// @param unsuffixed the common name prefix to use for the new members.
|
|
/// @param count the number of members that need to be created.
|
|
std::string PrefixForUniqueNames(const ast::Struct* str,
|
|
Symbol unsuffixed,
|
|
uint32_t count) const {
|
|
auto prefix = sym.NameFor(unsuffixed);
|
|
// Keep on inserting '_' between the unsuffixed name and the suffix numbers until the name
|
|
// is unique.
|
|
while (true) {
|
|
prefix += "_";
|
|
|
|
utils::Hashset<std::string, 4> strings;
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
strings.Add(prefix + std::to_string(i));
|
|
}
|
|
|
|
bool unique = true;
|
|
for (auto* member : str->members) {
|
|
// The member name must be unique over the entire set of `count` suffixed names.
|
|
if (strings.Contains(sym.NameFor(member->symbol))) {
|
|
unique = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (unique) {
|
|
return prefix;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @returns a new, forked std140 AST type for the corresponding non-forked semantic type.
|
|
/// If the semantic type is not split for std140-layout, then nullptr is returned.
|
|
/// @note will construct new std140 structures to hold decomposed matrices, populating
|
|
/// #std140_mats.
|
|
const ast::Type* Std140Type(const type::Type* ty) {
|
|
return Switch(
|
|
ty, //
|
|
[&](const sem::Struct* str) -> const ast::Type* {
|
|
if (auto std140 = std140_structs.Find(str)) {
|
|
return b.ty(*std140);
|
|
}
|
|
return nullptr;
|
|
},
|
|
[&](const type::Matrix* mat) -> const ast::Type* {
|
|
if (MatrixNeedsDecomposing(mat)) {
|
|
auto std140_mat = std140_mats.GetOrCreate(mat, [&] {
|
|
auto name = b.Symbols().New("mat" + std::to_string(mat->columns()) + "x" +
|
|
std::to_string(mat->rows()) + "_" +
|
|
src->FriendlyName(mat->type()));
|
|
auto members =
|
|
DecomposedMatrixStructMembers(mat, "col", mat->Align(), mat->Size());
|
|
b.Structure(name, members);
|
|
return Std140Matrix{
|
|
name,
|
|
utils::Transform(members, [&](auto* member) { return member->symbol; }),
|
|
};
|
|
});
|
|
return b.ty(std140_mat.name);
|
|
}
|
|
return nullptr;
|
|
},
|
|
[&](const type::Array* arr) -> const ast::Type* {
|
|
if (auto* std140 = Std140Type(arr->ElemType())) {
|
|
utils::Vector<const ast::Attribute*, 1> attrs;
|
|
if (!arr->IsStrideImplicit()) {
|
|
attrs.Push(b.create<ast::StrideAttribute>(arr->Stride()));
|
|
}
|
|
auto count = arr->ConstantCount();
|
|
if (TINT_UNLIKELY(!count)) {
|
|
// Non-constant counts should not be possible:
|
|
// * Override-expression counts can only be applied to workgroup arrays, and
|
|
// this method only handles types transitively used as uniform buffers.
|
|
// * Runtime-sized arrays cannot be used in uniform buffers.
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unexpected non-constant array count";
|
|
count = 1;
|
|
}
|
|
return b.create<ast::Array>(std140, b.Expr(u32(count.value())),
|
|
std::move(attrs));
|
|
}
|
|
return nullptr;
|
|
});
|
|
}
|
|
|
|
/// @param mat the matrix to decompose (in src)
|
|
/// @param name_prefix the name prefix to apply to each of the returned column vector members.
|
|
/// @param align the alignment in bytes of the matrix.
|
|
/// @param size the size in bytes of the matrix.
|
|
/// @returns a vector of decomposed matrix column vectors as structure members (in ctx.dst).
|
|
utils::Vector<const ast::StructMember*, 4> DecomposedMatrixStructMembers(
|
|
const type::Matrix* mat,
|
|
const std::string& name_prefix,
|
|
uint32_t align,
|
|
uint32_t size) {
|
|
// Replace the member with column vectors.
|
|
const auto num_columns = mat->columns();
|
|
// Build a struct member for each column of the matrix
|
|
utils::Vector<const ast::StructMember*, 4> out;
|
|
for (uint32_t i = 0; i < num_columns; i++) {
|
|
utils::Vector<const ast::Attribute*, 1> attributes;
|
|
if ((i == 0) && mat->Align() != align) {
|
|
// The matrix was @align() annotated with a larger alignment
|
|
// than the natural alignment for the matrix. This extra padding
|
|
// needs to be applied to the first column vector.
|
|
attributes.Push(b.MemberAlign(i32(align)));
|
|
}
|
|
if ((i == num_columns - 1) && mat->Size() != size) {
|
|
// The matrix was @size() annotated with a larger size than the
|
|
// natural size for the matrix. This extra padding needs to be
|
|
// applied to the last column vector.
|
|
attributes.Push(
|
|
b.MemberSize(AInt(size - mat->ColumnType()->Align() * (num_columns - 1))));
|
|
}
|
|
|
|
// Build the member
|
|
const auto col_name = name_prefix + std::to_string(i);
|
|
const auto* col_ty = CreateASTTypeFor(ctx, mat->ColumnType());
|
|
const auto* col_member = b.Member(col_name, col_ty, std::move(attributes));
|
|
// Record the member for std140_mat_members
|
|
out.Push(col_member);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
/// Walks the @p ast_expr, constructing and returning an AccessChain.
|
|
/// @returns an AccessChain if the expression is an access to a std140-forked uniform buffer,
|
|
/// otherwise returns a std::nullopt.
|
|
std::optional<AccessChain> AccessChainFor(const ast::Expression* ast_expr) {
|
|
auto* expr = sem.GetVal(ast_expr);
|
|
if (!expr) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
AccessChain access;
|
|
|
|
// Start by looking at the root identifier. This must be a std140-forked uniform buffer.
|
|
access.var = tint::As<sem::GlobalVariable>(expr->RootIdentifier());
|
|
if (!access.var || !std140_uniforms.Contains(access.var)) {
|
|
// Not at std140-forked uniform buffer access chain.
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Walk from the outer-most expression, inwards towards the root identifier.
|
|
while (true) {
|
|
enum class Action { kStop, kContinue, kError };
|
|
Action action = Switch(
|
|
expr->Unwrap(), //
|
|
[&](const sem::VariableUser* user) {
|
|
if (user->Variable() == access.var) {
|
|
// Walked all the way to the root identifier. We're done traversing.
|
|
access.indices.Push(UniformVariable{});
|
|
return Action::kStop;
|
|
}
|
|
if (TINT_LIKELY(user->Variable()->Type()->Is<type::Pointer>())) {
|
|
// Found a pointer. As the root identifier is a uniform buffer variable,
|
|
// this must be a pointer-let. Continue traversing from the let
|
|
// initializer.
|
|
expr = user->Variable()->Initializer();
|
|
return Action::kContinue;
|
|
}
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unexpected variable found walking access chain: "
|
|
<< sym.NameFor(user->Variable()->Declaration()->symbol);
|
|
return Action::kError;
|
|
},
|
|
[&](const sem::StructMemberAccess* a) {
|
|
// Is this a std140 decomposed matrix?
|
|
if (std140_mat_members.Contains(a->Member())) {
|
|
// Record this on the access.
|
|
access.std140_mat_idx = access.indices.Length();
|
|
access.std140_mat_ty = expr->Type()->UnwrapRef()->As<type::Matrix>();
|
|
}
|
|
// Structure member accesses are always statically indexed
|
|
access.indices.Push(u32(a->Member()->Index()));
|
|
expr = a->Object();
|
|
return Action::kContinue;
|
|
},
|
|
[&](const sem::IndexAccessorExpression* a) {
|
|
// Array, matrix or vector index.
|
|
if (auto* val = a->Index()->ConstantValue()) {
|
|
access.indices.Push(val->ValueAs<u32>());
|
|
} else {
|
|
access.indices.Push(DynamicIndex{access.dynamic_indices.Length()});
|
|
access.dynamic_indices.Push(a->Index());
|
|
}
|
|
expr = a->Object();
|
|
|
|
// Is the object a std140 decomposed matrix?
|
|
if (auto* mat = expr->Type()->UnwrapRef()->As<type::Matrix>()) {
|
|
if (std140_mats.Contains(mat)) {
|
|
// Record this on the access.
|
|
access.std140_mat_idx = access.indices.Length();
|
|
access.std140_mat_ty = mat;
|
|
}
|
|
}
|
|
return Action::kContinue;
|
|
},
|
|
[&](const sem::Swizzle* s) {
|
|
// Vector swizzle.
|
|
if (s->Indices().Length() == 1) {
|
|
access.indices.Push(u32(s->Indices()[0]));
|
|
} else {
|
|
access.indices.Push(s->Indices());
|
|
}
|
|
expr = s->Object();
|
|
return Action::kContinue;
|
|
},
|
|
[&](const sem::ValueExpression* e) {
|
|
// Walk past indirection and address-of unary ops.
|
|
return Switch(e->Declaration(), //
|
|
[&](const ast::UnaryOpExpression* u) {
|
|
switch (u->op) {
|
|
case ast::UnaryOp::kAddressOf:
|
|
case ast::UnaryOp::kIndirection:
|
|
expr = sem.GetVal(u->expr);
|
|
return Action::kContinue;
|
|
default:
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled unary op for access chain: "
|
|
<< u->op;
|
|
return Action::kError;
|
|
}
|
|
});
|
|
},
|
|
[&](Default) {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled expression type for access chain\n"
|
|
<< "AST: " << expr->Declaration()->TypeInfo().name << "\n"
|
|
<< "SEM: " << expr->TypeInfo().name;
|
|
return Action::kError;
|
|
});
|
|
|
|
switch (action) {
|
|
case Action::kContinue:
|
|
continue;
|
|
case Action::kStop:
|
|
break;
|
|
case Action::kError:
|
|
return std::nullopt;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// As the access walked from RHS to LHS, the last index operation applies to the source
|
|
// variable. We want this the other way around, so reverse the arrays and fix indicies.
|
|
std::reverse(access.indices.begin(), access.indices.end());
|
|
std::reverse(access.dynamic_indices.begin(), access.dynamic_indices.end());
|
|
if (access.std140_mat_idx.has_value()) {
|
|
access.std140_mat_idx = access.indices.Length() - *access.std140_mat_idx - 1;
|
|
}
|
|
for (auto& index : access.indices) {
|
|
if (auto* dyn_idx = std::get_if<DynamicIndex>(&index)) {
|
|
dyn_idx->slot = access.dynamic_indices.Length() - dyn_idx->slot - 1;
|
|
}
|
|
}
|
|
|
|
return access;
|
|
}
|
|
|
|
/// @returns a name suffix for a std140 -> non-std140 conversion function based on the type
|
|
/// being converted.
|
|
const std::string ConvertSuffix(const type::Type* ty) {
|
|
return Switch(
|
|
ty, //
|
|
[&](const sem::Struct* str) { return sym.NameFor(str->Name()); },
|
|
[&](const type::Array* arr) {
|
|
auto count = arr->ConstantCount();
|
|
if (TINT_UNLIKELY(!count)) {
|
|
// Non-constant counts should not be possible:
|
|
// * Override-expression counts can only be applied to workgroup arrays, and
|
|
// this method only handles types transitively used as uniform buffers.
|
|
// * Runtime-sized arrays cannot be used in uniform buffers.
|
|
TINT_ICE(Transform, b.Diagnostics()) << "unexpected non-constant array count";
|
|
count = 1;
|
|
}
|
|
return "arr" + std::to_string(count.value()) + "_" + ConvertSuffix(arr->ElemType());
|
|
},
|
|
[&](const type::Matrix* mat) {
|
|
return "mat" + std::to_string(mat->columns()) + "x" + std::to_string(mat->rows()) +
|
|
"_" + ConvertSuffix(mat->type());
|
|
},
|
|
[&](const type::F32*) { return "f32"; }, //
|
|
[&](const type::F16*) { return "f16"; },
|
|
[&](Default) {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled type for conversion name: " << src->FriendlyName(ty);
|
|
return "";
|
|
});
|
|
}
|
|
|
|
/// Generates and returns an expression that loads the value from a std140 uniform buffer,
|
|
/// converting the final result to a non-std140 type.
|
|
/// @param chain the access chain from a uniform buffer to the value to load.
|
|
const ast::Expression* LoadWithConvert(const AccessChain& chain) {
|
|
const ast::Expression* expr = nullptr;
|
|
const type::Type* ty = nullptr;
|
|
auto dynamic_index = [&](size_t idx) {
|
|
return ctx.Clone(chain.dynamic_indices[idx]->Declaration());
|
|
};
|
|
for (size_t i = 0; i < chain.indices.Length(); i++) {
|
|
auto [new_expr, new_ty, _] = BuildAccessExpr(expr, ty, chain, i, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
}
|
|
return Convert(ty, expr);
|
|
}
|
|
|
|
/// Generates and returns an expression that converts the expression @p expr of the
|
|
/// std140-forked type to the type @p ty. If @p expr is not a std140-forked type, then Convert()
|
|
/// will simply return @p expr.
|
|
/// @returns the converted value expression.
|
|
const ast::Expression* Convert(const type::Type* ty, const ast::Expression* expr) {
|
|
// Get an existing, or create a new function for converting the std140 type to ty.
|
|
auto fn = conv_fns.GetOrCreate(ty, [&] {
|
|
auto std140_ty = Std140Type(ty);
|
|
if (!std140_ty) {
|
|
// ty was not forked for std140.
|
|
return Symbol{};
|
|
}
|
|
|
|
// The converter function takes a single argument of the std140 type.
|
|
auto* param = b.Param("val", std140_ty);
|
|
|
|
utils::Vector<const ast::Statement*, 3> stmts;
|
|
|
|
Switch(
|
|
ty, //
|
|
[&](const sem::Struct* str) {
|
|
// Convert each of the structure members using either a converter function
|
|
// call, or by reassembling a std140 matrix from column vector members.
|
|
utils::Vector<const ast::Expression*, 8> args;
|
|
for (auto* member : str->Members()) {
|
|
if (auto col_members = std140_mat_members.Find(member)) {
|
|
// std140 decomposed matrix. Reassemble.
|
|
auto* mat_ty = CreateASTTypeFor(ctx, member->Type());
|
|
auto mat_args =
|
|
utils::Transform(*col_members, [&](const ast::StructMember* m) {
|
|
return b.MemberAccessor(param, m->symbol);
|
|
});
|
|
args.Push(b.Call(mat_ty, std::move(mat_args)));
|
|
} else {
|
|
// Convert the member
|
|
args.Push(
|
|
Convert(member->Type(),
|
|
b.MemberAccessor(param, sym.NameFor(member->Name()))));
|
|
}
|
|
}
|
|
stmts.Push(b.Return(b.Call(CreateASTTypeFor(ctx, ty), std::move(args))));
|
|
}, //
|
|
[&](const type::Matrix* mat) {
|
|
// Reassemble a std140 matrix from the structure of column vector members.
|
|
auto std140_mat = std140_mats.Get(mat);
|
|
if (TINT_LIKELY(std140_mat)) {
|
|
utils::Vector<const ast::Expression*, 8> args;
|
|
// std140 decomposed matrix. Reassemble.
|
|
auto* mat_ty = CreateASTTypeFor(ctx, mat);
|
|
auto mat_args = utils::Transform(std140_mat->columns, [&](Symbol name) {
|
|
return b.MemberAccessor(param, name);
|
|
});
|
|
stmts.Push(b.Return(b.Call(mat_ty, std::move(mat_args))));
|
|
} else {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "failed to find std140 matrix info for: " << src->FriendlyName(ty);
|
|
}
|
|
}, //
|
|
[&](const type::Array* arr) {
|
|
// Converting an array. Create a function var for the converted array, and
|
|
// loop over the input elements, converting each and assigning the result to
|
|
// the local array.
|
|
auto* var = b.Var("arr", CreateASTTypeFor(ctx, ty));
|
|
auto* i = b.Var("i", b.ty.u32());
|
|
auto* dst_el = b.IndexAccessor(var, i);
|
|
auto* src_el = Convert(arr->ElemType(), b.IndexAccessor(param, i));
|
|
auto count = arr->ConstantCount();
|
|
if (TINT_UNLIKELY(!count)) {
|
|
// Non-constant counts should not be possible:
|
|
// * Override-expression counts can only be applied to workgroup arrays, and
|
|
// this method only handles types transitively used as uniform buffers.
|
|
// * Runtime-sized arrays cannot be used in uniform buffers.
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unexpected non-constant array count";
|
|
count = 1;
|
|
}
|
|
stmts.Push(b.Decl(var));
|
|
stmts.Push(b.For(b.Decl(i), //
|
|
b.LessThan(i, u32(count.value())), //
|
|
b.Assign(i, b.Add(i, 1_a)), //
|
|
b.Block(b.Assign(dst_el, src_el))));
|
|
stmts.Push(b.Return(var));
|
|
},
|
|
[&](Default) {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled type for conversion: " << src->FriendlyName(ty);
|
|
});
|
|
|
|
// Generate the function
|
|
auto* ret_ty = CreateASTTypeFor(ctx, ty);
|
|
auto fn_sym = b.Symbols().New("conv_" + ConvertSuffix(ty));
|
|
b.Func(fn_sym, utils::Vector{param}, ret_ty, std::move(stmts));
|
|
return fn_sym;
|
|
});
|
|
|
|
if (!fn.IsValid()) {
|
|
// Not a std140 type, nothing to convert.
|
|
return expr;
|
|
}
|
|
|
|
// Call the helper
|
|
return b.Call(fn, utils::Vector{expr});
|
|
}
|
|
|
|
/// Loads a part of, or a whole std140-decomposed matrix from a uniform buffer, using a helper
|
|
/// function which will be generated if it hasn't been already.
|
|
/// @param access the access chain from the uniform buffer to either the whole matrix or part of
|
|
/// the matrix (column, column-swizzle, or element).
|
|
/// @returns the loaded value expression.
|
|
const ast::Expression* LoadMatrixWithFn(const AccessChain& access) {
|
|
// Get an existing, or create a new function for loading the uniform buffer value.
|
|
// This function is keyed off the uniform buffer variable and the access chain.
|
|
auto fn = load_fns.GetOrCreate(LoadFnKey{access.var, access.indices}, [&] {
|
|
if (access.IsMatrixSubset()) {
|
|
// Access chain passes through the matrix, but ends either at a column vector,
|
|
// column swizzle, or element.
|
|
return BuildLoadPartialMatrixFn(access);
|
|
}
|
|
// Access is to the whole matrix.
|
|
return BuildLoadWholeMatrixFn(access);
|
|
});
|
|
|
|
// Build the arguments
|
|
auto args = utils::Transform(access.dynamic_indices, [&](const sem::ValueExpression* e) {
|
|
return b.Call<u32>(ctx.Clone(e->Declaration()));
|
|
});
|
|
|
|
// Call the helper
|
|
return b.Call(fn, std::move(args));
|
|
}
|
|
|
|
/// Loads a part of a std140-decomposed matrix from a uniform buffer, inline (without calling a
|
|
/// helper function).
|
|
/// @param chain the access chain from the uniform buffer to part of the matrix (column,
|
|
/// column-swizzle, or element).
|
|
/// @note The matrix column must be statically indexed to use this method.
|
|
/// @returns the loaded value expression.
|
|
const ast::Expression* LoadSubMatrixInline(const AccessChain& chain) {
|
|
// Method for generating dynamic index expressions.
|
|
// As this is inline, we can just clone the expression.
|
|
auto dynamic_index = [&](size_t idx) {
|
|
return ctx.Clone(chain.dynamic_indices[idx]->Declaration());
|
|
};
|
|
|
|
const ast::Expression* expr = nullptr;
|
|
const type::Type* ty = nullptr;
|
|
|
|
// Build the expression up to, but not including the matrix member
|
|
auto std140_mat_idx = *chain.std140_mat_idx;
|
|
for (size_t i = 0; i < std140_mat_idx; i++) {
|
|
auto [new_expr, new_ty, _] = BuildAccessExpr(expr, ty, chain, i, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
}
|
|
|
|
// Access is to the std140 decomposed matrix.
|
|
// As this is accessing only part of the matrix, we just need to pick the right column
|
|
// vector member.
|
|
auto column_idx = std::get<u32>(chain.indices[std140_mat_idx + 1]);
|
|
if (auto* str = tint::As<sem::Struct>(ty)) {
|
|
// Structure member matrix. The columns are decomposed into the structure.
|
|
auto mat_member_idx = std::get<u32>(chain.indices[std140_mat_idx]);
|
|
auto* mat_member = str->Members()[mat_member_idx];
|
|
auto mat_columns = *std140_mat_members.Get(mat_member);
|
|
expr = b.MemberAccessor(expr, mat_columns[column_idx]->symbol);
|
|
ty = mat_member->Type()->As<type::Matrix>()->ColumnType();
|
|
} else {
|
|
// Non-structure-member matrix. The columns are decomposed into a new, bespoke std140
|
|
// structure.
|
|
auto [new_expr, new_ty, _] =
|
|
BuildAccessExpr(expr, ty, chain, std140_mat_idx, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
auto* mat = ty->As<type::Matrix>();
|
|
auto std140_mat = std140_mats.Get(ty->As<type::Matrix>());
|
|
expr = b.MemberAccessor(expr, std140_mat->columns[column_idx]);
|
|
ty = mat->ColumnType();
|
|
}
|
|
|
|
// Build any remaining accesses into the column
|
|
for (size_t i = std140_mat_idx + 2; i < chain.indices.Length(); i++) {
|
|
auto [new_expr, new_ty, _] = BuildAccessExpr(expr, ty, chain, i, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
/// Generates a function to load part of a std140-decomposed matrix from a uniform buffer.
|
|
/// The generated function will have a parameter per dynamic (runtime-evaluated) index in the
|
|
/// access chain.
|
|
/// The generated function uses a WGSL switch statement to dynamically select the decomposed
|
|
/// matrix column.
|
|
/// @param chain the access chain from the uniform buffer to part of the matrix (column,
|
|
/// column-swizzle, or element).
|
|
/// @note The matrix column must be dynamically indexed to use this method.
|
|
/// @returns the generated function name.
|
|
Symbol BuildLoadPartialMatrixFn(const AccessChain& chain) {
|
|
// Build the dynamic index parameters
|
|
auto dynamic_index_params = utils::Transform(chain.dynamic_indices, [&](auto*, size_t i) {
|
|
return b.Param("p" + std::to_string(i), b.ty.u32());
|
|
});
|
|
// Method for generating dynamic index expressions.
|
|
// These are passed in as arguments to the function.
|
|
auto dynamic_index = [&](size_t idx) { return b.Expr(dynamic_index_params[idx]->symbol); };
|
|
|
|
// Fetch the access chain indices of the matrix access and the parameter index that
|
|
// holds the matrix column index.
|
|
auto std140_mat_idx = *chain.std140_mat_idx;
|
|
auto column_param_idx = std::get<DynamicIndex>(chain.indices[std140_mat_idx + 1]).slot;
|
|
|
|
// Begin building the function name. This is extended with logic in the loop below
|
|
// (when column_idx == 0).
|
|
std::string name = "load";
|
|
|
|
// The switch cases
|
|
utils::Vector<const ast::CaseStatement*, 4> cases;
|
|
|
|
// The function return type.
|
|
const type::Type* ret_ty = nullptr;
|
|
|
|
// Build switch() cases for each column of the matrix
|
|
auto num_columns = chain.std140_mat_ty->columns();
|
|
for (uint32_t column_idx = 0; column_idx < num_columns; column_idx++) {
|
|
const ast::Expression* expr = nullptr;
|
|
const type::Type* ty = nullptr;
|
|
|
|
// Build the expression up to, but not including the matrix
|
|
for (size_t i = 0; i < std140_mat_idx; i++) {
|
|
auto [new_expr, new_ty, access_name] =
|
|
BuildAccessExpr(expr, ty, chain, i, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
if (column_idx == 0) {
|
|
name += "_" + access_name;
|
|
}
|
|
}
|
|
|
|
if (auto* str = tint::As<sem::Struct>(ty)) {
|
|
// Structure member matrix. The columns are decomposed into the structure.
|
|
auto mat_member_idx = std::get<u32>(chain.indices[std140_mat_idx]);
|
|
auto* mat_member = str->Members()[mat_member_idx];
|
|
if (column_idx == 0) {
|
|
name += "_" + sym.NameFor(mat_member->Name()) + "_p" +
|
|
std::to_string(column_param_idx);
|
|
}
|
|
auto mat_columns = *std140_mat_members.Get(mat_member);
|
|
expr = b.MemberAccessor(expr, mat_columns[column_idx]->symbol);
|
|
ty = mat_member->Type()->As<type::Matrix>()->ColumnType();
|
|
} else {
|
|
// Non-structure-member matrix. The columns are decomposed into a new, bespoke
|
|
// std140 structure.
|
|
auto [new_expr, new_ty, mat_name] =
|
|
BuildAccessExpr(expr, ty, chain, std140_mat_idx, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
if (column_idx == 0) {
|
|
name += "_" + mat_name + "_p" + std::to_string(column_param_idx);
|
|
}
|
|
auto* mat = ty->As<type::Matrix>();
|
|
auto std140_mat = std140_mats.Get(ty->As<type::Matrix>());
|
|
expr = b.MemberAccessor(expr, std140_mat->columns[column_idx]);
|
|
ty = mat->ColumnType();
|
|
}
|
|
|
|
// Build the rest of the expression, skipping over the column index.
|
|
for (size_t i = std140_mat_idx + 2; i < chain.indices.Length(); i++) {
|
|
auto [new_expr, new_ty, access_name] =
|
|
BuildAccessExpr(expr, ty, chain, i, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
if (column_idx == 0) {
|
|
name += "_" + access_name;
|
|
}
|
|
}
|
|
|
|
if (column_idx == 0) {
|
|
ret_ty = ty;
|
|
}
|
|
|
|
auto* case_sel = b.CaseSelector(b.Expr(u32(column_idx)));
|
|
auto* case_body = b.Block(utils::Vector{b.Return(expr)});
|
|
cases.Push(b.Case(case_sel, case_body));
|
|
}
|
|
|
|
// Build the default case (required in WGSL).
|
|
// This just returns a zero value of the return type, as the index must be out of
|
|
// bounds.
|
|
cases.Push(b.DefaultCase(b.Block(b.Return(b.Call(CreateASTTypeFor(ctx, ret_ty))))));
|
|
|
|
auto* column_selector = dynamic_index(column_param_idx);
|
|
auto* stmt = b.Switch(column_selector, std::move(cases));
|
|
|
|
auto fn_sym = b.Symbols().New(name);
|
|
b.Func(fn_sym, std::move(dynamic_index_params), CreateASTTypeFor(ctx, ret_ty),
|
|
utils::Vector{stmt});
|
|
return fn_sym;
|
|
}
|
|
|
|
/// Generates a function to load a whole std140-decomposed matrix from a uniform buffer.
|
|
/// The generated function will have a parameter per dynamic (runtime-evaluated) index in the
|
|
/// access chain.
|
|
/// @param chain the access chain from the uniform buffer to the whole std140-decomposed
|
|
/// matrix.
|
|
/// @returns the generated function name.
|
|
Symbol BuildLoadWholeMatrixFn(const AccessChain& chain) {
|
|
// Build the dynamic index parameters
|
|
auto dynamic_index_params = utils::Transform(chain.dynamic_indices, [&](auto*, size_t i) {
|
|
return b.Param("p" + std::to_string(i), b.ty.u32());
|
|
});
|
|
// Method for generating dynamic index expressions.
|
|
// These are passed in as arguments to the function.
|
|
auto dynamic_index = [&](size_t idx) { return b.Expr(dynamic_index_params[idx]->symbol); };
|
|
|
|
const ast::Expression* expr = nullptr;
|
|
const type::Type* ty = nullptr;
|
|
std::string name = "load";
|
|
|
|
// Build the expression up to, but not including the matrix member
|
|
auto std140_mat_idx = *chain.std140_mat_idx;
|
|
for (size_t i = 0; i < std140_mat_idx; i++) {
|
|
auto [new_expr, new_ty, access_name] =
|
|
BuildAccessExpr(expr, ty, chain, i, dynamic_index);
|
|
expr = new_expr;
|
|
ty = new_ty;
|
|
name += "_" + access_name;
|
|
}
|
|
|
|
utils::Vector<const ast::Statement*, 2> stmts;
|
|
|
|
// Create a temporary pointer to the structure that holds the matrix columns
|
|
auto* let = b.Let("s", b.AddressOf(expr));
|
|
stmts.Push(b.Decl(let));
|
|
|
|
utils::Vector<const ast::MemberAccessorExpression*, 4> columns;
|
|
if (auto* str = tint::As<sem::Struct>(ty)) {
|
|
// Structure member matrix. The columns are decomposed into the structure.
|
|
auto mat_member_idx = std::get<u32>(chain.indices[std140_mat_idx]);
|
|
auto* mat_member = str->Members()[mat_member_idx];
|
|
auto mat_columns = *std140_mat_members.Get(mat_member);
|
|
columns = utils::Transform(mat_columns, [&](auto* column_member) {
|
|
return b.MemberAccessor(b.Deref(let), column_member->symbol);
|
|
});
|
|
ty = mat_member->Type();
|
|
name += "_" + sym.NameFor(mat_member->Name());
|
|
} else {
|
|
// Non-structure-member matrix. The columns are decomposed into a new, bespoke
|
|
// std140 structure.
|
|
auto [new_expr, new_ty, mat_name] =
|
|
BuildAccessExpr(expr, ty, chain, std140_mat_idx, dynamic_index);
|
|
expr = new_expr;
|
|
auto* mat = ty->As<type::Matrix>();
|
|
auto std140_mat = std140_mats.Get(ty->As<type::Matrix>());
|
|
columns = utils::Transform(std140_mat->columns, [&](auto column_name) {
|
|
return b.MemberAccessor(b.Deref(let), column_name);
|
|
});
|
|
ty = mat;
|
|
name += "_" + mat_name;
|
|
}
|
|
|
|
// Reconstruct the matrix from the columns
|
|
expr = b.Call(CreateASTTypeFor(ctx, chain.std140_mat_ty), std::move(columns));
|
|
|
|
// Have the function return the constructed matrix
|
|
stmts.Push(b.Return(expr));
|
|
|
|
// Build the function
|
|
auto* ret_ty = CreateASTTypeFor(ctx, ty);
|
|
auto fn_sym = b.Symbols().New(name);
|
|
b.Func(fn_sym, std::move(dynamic_index_params), ret_ty, std::move(stmts));
|
|
return fn_sym;
|
|
}
|
|
|
|
/// Return type of BuildAccessExpr()
|
|
struct ExprTypeName {
|
|
/// The new, post-access expression
|
|
const ast::Expression* expr;
|
|
/// The type of #expr
|
|
const type::Type* type;
|
|
/// A name segment which can be used to build sensible names for helper functions
|
|
std::string name;
|
|
};
|
|
|
|
/// Builds a single access in an access chain.
|
|
/// @param lhs the expression to index using @p access
|
|
/// @param ty the type of the expression @p lhs
|
|
/// @param chain the access index to perform on @p lhs
|
|
/// @param dynamic_index a function that obtains the i'th dynamic index
|
|
/// @returns a ExprTypeName which holds the new expression, new type and a name segment which
|
|
/// can be used for creating helper function names.
|
|
ExprTypeName BuildAccessExpr(const ast::Expression* lhs,
|
|
const type::Type* ty,
|
|
const AccessChain& chain,
|
|
size_t index,
|
|
std::function<const ast::Expression*(size_t)> dynamic_index) {
|
|
auto& access = chain.indices[index];
|
|
|
|
if (std::get_if<UniformVariable>(&access)) {
|
|
const auto* expr = b.Expr(ctx.Clone(chain.var->Declaration()->symbol));
|
|
const auto name = src->Symbols().NameFor(chain.var->Declaration()->symbol);
|
|
ty = chain.var->Type()->UnwrapRef();
|
|
return {expr, ty, name};
|
|
}
|
|
|
|
if (auto* dyn_idx = std::get_if<DynamicIndex>(&access)) {
|
|
/// The access uses a dynamic (runtime-expression) index.
|
|
auto name = "p" + std::to_string(dyn_idx->slot);
|
|
return Switch(
|
|
ty, //
|
|
[&](const type::Array* arr) -> ExprTypeName {
|
|
auto* idx = dynamic_index(dyn_idx->slot);
|
|
auto* expr = b.IndexAccessor(lhs, idx);
|
|
return {expr, arr->ElemType(), name};
|
|
}, //
|
|
[&](const type::Matrix* mat) -> ExprTypeName {
|
|
auto* idx = dynamic_index(dyn_idx->slot);
|
|
auto* expr = b.IndexAccessor(lhs, idx);
|
|
return {expr, mat->ColumnType(), name};
|
|
}, //
|
|
[&](const type::Vector* vec) -> ExprTypeName {
|
|
auto* idx = dynamic_index(dyn_idx->slot);
|
|
auto* expr = b.IndexAccessor(lhs, idx);
|
|
return {expr, vec->type(), name};
|
|
}, //
|
|
[&](Default) -> ExprTypeName {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled type for access chain: " << src->FriendlyName(ty);
|
|
return {};
|
|
});
|
|
}
|
|
if (auto* swizzle = std::get_if<Swizzle>(&access)) {
|
|
/// The access is a vector swizzle.
|
|
return Switch(
|
|
ty, //
|
|
[&](const type::Vector* vec) -> ExprTypeName {
|
|
static const char xyzw[] = {'x', 'y', 'z', 'w'};
|
|
std::string rhs;
|
|
for (auto el : *swizzle) {
|
|
rhs += xyzw[el];
|
|
}
|
|
auto swizzle_ty = src->Types().Find<type::Vector>(
|
|
vec->type(), static_cast<uint32_t>(swizzle->Length()));
|
|
auto* expr = b.MemberAccessor(lhs, rhs);
|
|
return {expr, swizzle_ty, rhs};
|
|
}, //
|
|
[&](Default) -> ExprTypeName {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled type for access chain: " << src->FriendlyName(ty);
|
|
return {};
|
|
});
|
|
}
|
|
/// The access is a static index.
|
|
auto idx = std::get<u32>(access);
|
|
return Switch(
|
|
ty, //
|
|
[&](const sem::Struct* str) -> ExprTypeName {
|
|
auto* member = str->Members()[idx];
|
|
auto member_name = sym.NameFor(member->Name());
|
|
auto* expr = b.MemberAccessor(lhs, member_name);
|
|
ty = member->Type();
|
|
return {expr, ty, member_name};
|
|
}, //
|
|
[&](const type::Array* arr) -> ExprTypeName {
|
|
auto* expr = b.IndexAccessor(lhs, idx);
|
|
return {expr, arr->ElemType(), std::to_string(idx)};
|
|
}, //
|
|
[&](const type::Matrix* mat) -> ExprTypeName {
|
|
auto* expr = b.IndexAccessor(lhs, idx);
|
|
return {expr, mat->ColumnType(), std::to_string(idx)};
|
|
}, //
|
|
[&](const type::Vector* vec) -> ExprTypeName {
|
|
auto* expr = b.IndexAccessor(lhs, idx);
|
|
return {expr, vec->type(), std::to_string(idx)};
|
|
}, //
|
|
[&](Default) -> ExprTypeName {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled type for access chain: " << src->FriendlyName(ty);
|
|
return {};
|
|
});
|
|
}
|
|
};
|
|
|
|
Std140::Std140() = default;
|
|
|
|
Std140::~Std140() = default;
|
|
|
|
Transform::ApplyResult Std140::Apply(const Program* src, const DataMap&, DataMap&) const {
|
|
return State(src).Run();
|
|
}
|
|
|
|
} // namespace tint::transform
|