mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-05-14 19:31:25 +00:00
Transforms are supposed to be immutable, operating on the DataMaps provided for input and output, so make the methods const. Add a ShouldRun() method which the Manager can use to skip over transforms that do not need to be run. Change-Id: I320ac964577e94ac988748d8aca85bd43ee8d3b5 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/77120 Kokoro: Kokoro <noreply+kokoro@google.com> Reviewed-by: Antonio Maiorano <amaiorano@google.com> Commit-Queue: Ben Clayton <bclayton@google.com>
423 lines
15 KiB
C++
423 lines
15 KiB
C++
// Copyright 2021 The Tint Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "src/transform/promote_side_effects_to_decl.h"
|
|
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
|
|
#include "src/program_builder.h"
|
|
#include "src/sem/block_statement.h"
|
|
#include "src/sem/call.h"
|
|
#include "src/sem/expression.h"
|
|
#include "src/sem/for_loop_statement.h"
|
|
#include "src/sem/if_statement.h"
|
|
#include "src/sem/statement.h"
|
|
#include "src/sem/type_constructor.h"
|
|
#include "src/utils/reverse.h"
|
|
|
|
TINT_INSTANTIATE_TYPEINFO(tint::transform::PromoteSideEffectsToDecl);
|
|
TINT_INSTANTIATE_TYPEINFO(tint::transform::PromoteSideEffectsToDecl::Config);
|
|
|
|
namespace tint {
|
|
namespace transform {
|
|
|
|
/// Private implementation of PromoteSideEffectsToDecl transform
|
|
class PromoteSideEffectsToDecl::State {
|
|
private:
|
|
CloneContext& ctx;
|
|
const Config& cfg;
|
|
ProgramBuilder& b;
|
|
|
|
/// Holds information about a for-loop that needs to be decomposed into a
|
|
/// loop, so that declaration statements can be inserted before the condition
|
|
/// expression or continuing statement.
|
|
struct LoopInfo {
|
|
ast::StatementList cond_decls;
|
|
ast::StatementList cont_decls;
|
|
};
|
|
|
|
/// Holds information about 'if's with 'else-if' statements that need to be
|
|
/// decomposed into 'if {else}' so that declaration statements can be inserted
|
|
/// before the condition expression.
|
|
struct IfInfo {
|
|
/// Info for each else-if that needs decomposing
|
|
struct ElseIfInfo {
|
|
/// Decls to insert before condition
|
|
ast::StatementList cond_decls;
|
|
};
|
|
|
|
/// 'else if's that need to be decomposed to 'else { if }'
|
|
std::unordered_map<const sem::ElseStatement*, ElseIfInfo> else_ifs;
|
|
};
|
|
|
|
// For-loops that need to be decomposed to loops.
|
|
std::unordered_map<const sem::ForLoopStatement*, LoopInfo> loops;
|
|
|
|
/// If statements with 'else if's that need to be decomposed to 'else { if }'
|
|
std::unordered_map<const sem::IfStatement*, IfInfo> ifs;
|
|
|
|
// Inserts `decl` before `sem_expr`, possibly marking a for-loop to be
|
|
// converted to a loop, or an else-if to an else { if }..
|
|
bool InsertBefore(const sem::Expression* sem_expr,
|
|
const ast::VariableDeclStatement* decl) {
|
|
auto* sem_stmt = sem_expr->Stmt();
|
|
auto* stmt = sem_stmt->Declaration();
|
|
|
|
if (auto* else_if = sem_stmt->As<sem::ElseStatement>()) {
|
|
// Expression used in 'else if' condition.
|
|
// Need to convert 'else if' to 'else { if }'.
|
|
auto& if_info = ifs[else_if->Parent()->As<sem::IfStatement>()];
|
|
if_info.else_ifs[else_if].cond_decls.push_back(decl);
|
|
return true;
|
|
}
|
|
|
|
if (auto* fl = sem_stmt->As<sem::ForLoopStatement>()) {
|
|
// Expression used in for-loop condition.
|
|
// For-loop needs to be decomposed to a loop.
|
|
loops[fl].cond_decls.emplace_back(decl);
|
|
return true;
|
|
}
|
|
|
|
auto* parent = sem_stmt->Parent(); // The statement's parent
|
|
if (auto* block = parent->As<sem::BlockStatement>()) {
|
|
// Expression's statement sits in a block. Simple case.
|
|
// Insert the decl before the parent statement
|
|
ctx.InsertBefore(block->Declaration()->statements, stmt, decl);
|
|
return true;
|
|
}
|
|
|
|
if (auto* fl = parent->As<sem::ForLoopStatement>()) {
|
|
// Expression is used in a for-loop. These require special care.
|
|
if (fl->Declaration()->initializer == stmt) {
|
|
// Expression used in for-loop initializer.
|
|
// Insert the let above the for-loop.
|
|
ctx.InsertBefore(fl->Block()->Declaration()->statements,
|
|
fl->Declaration(), decl);
|
|
return true;
|
|
}
|
|
|
|
if (fl->Declaration()->continuing == stmt) {
|
|
// Expression used in for-loop continuing.
|
|
// For-loop needs to be decomposed to a loop.
|
|
loops[fl].cont_decls.emplace_back(decl);
|
|
return true;
|
|
}
|
|
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled use of expression in for-loop";
|
|
return false;
|
|
}
|
|
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "unhandled expression parent statement type: "
|
|
<< parent->TypeInfo().name;
|
|
return false;
|
|
}
|
|
|
|
// Hoists array and structure initializers to a constant variable, declared
|
|
// just before the statement of usage.
|
|
bool TypeConstructorToLet(const ast::CallExpression* expr) {
|
|
auto* ctor = ctx.src->Sem().Get(expr);
|
|
if (!ctor->Target()->Is<sem::TypeConstructor>()) {
|
|
return true;
|
|
}
|
|
auto* sem_stmt = ctor->Stmt();
|
|
if (!sem_stmt) {
|
|
// Expression is outside of a statement. This usually means the
|
|
// expression is part of a global (module-scope) constant declaration.
|
|
// These must be constexpr, and so cannot contain the type of
|
|
// expressions that must be sanitized.
|
|
return true;
|
|
}
|
|
|
|
auto* stmt = sem_stmt->Declaration();
|
|
|
|
if (auto* src_var_decl = stmt->As<ast::VariableDeclStatement>()) {
|
|
if (src_var_decl->variable->constructor == expr) {
|
|
// This statement is just a variable declaration with the
|
|
// initializer as the constructor value. This is what we're
|
|
// attempting to transform to, and so ignore.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto* src_ty = ctor->Type();
|
|
if (!src_ty->IsAnyOf<sem::Array, sem::Struct>()) {
|
|
// We only care about array and struct initializers
|
|
return true;
|
|
}
|
|
|
|
// Construct the let that holds the hoisted initializer
|
|
auto name = b.Sym();
|
|
auto* let = b.Const(name, nullptr, ctx.Clone(expr));
|
|
auto* let_decl = b.Decl(let);
|
|
|
|
if (!InsertBefore(ctor, let_decl)) {
|
|
return false;
|
|
}
|
|
|
|
// Replace the initializer expression with a reference to the let
|
|
ctx.Replace(expr, b.Expr(name));
|
|
return true;
|
|
}
|
|
|
|
// Extracts array and matrix values that are dynamically indexed to a
|
|
// temporary `var` local that is then indexed.
|
|
bool DynamicIndexToVar(const ast::IndexAccessorExpression* access_expr) {
|
|
auto* index_expr = access_expr->index;
|
|
auto* object_expr = access_expr->object;
|
|
auto& sem = ctx.src->Sem();
|
|
|
|
if (sem.Get(index_expr)->ConstantValue()) {
|
|
// Index expression resolves to a compile time value.
|
|
// As this isn't a dynamic index, we can ignore this.
|
|
return true;
|
|
}
|
|
|
|
auto* indexed = sem.Get(object_expr);
|
|
if (!indexed->Type()->IsAnyOf<sem::Array, sem::Matrix>()) {
|
|
// We only care about array and matrices.
|
|
return true;
|
|
}
|
|
|
|
// Construct a `var` declaration to hold the value in memory.
|
|
// TODO(bclayton): group multiple accesses in the same object.
|
|
// e.g. arr[i] + arr[i+1] // Don't create two vars for this
|
|
auto var_name = b.Symbols().New("var_for_index");
|
|
auto* var_decl = b.Decl(b.Var(var_name, nullptr, ctx.Clone(object_expr)));
|
|
|
|
if (!InsertBefore(indexed, var_decl)) {
|
|
return false;
|
|
}
|
|
|
|
// Replace the original index expression with the new `var`.
|
|
ctx.Replace(object_expr, b.Expr(var_name));
|
|
return true;
|
|
}
|
|
|
|
// Converts any for-loops marked for conversion to loops, inserting
|
|
// registered declaration statements before the condition or continuing
|
|
// statement.
|
|
void ForLoopsToLoops() {
|
|
if (loops.empty()) {
|
|
return;
|
|
}
|
|
|
|
// At least one for-loop needs to be transformed into a loop.
|
|
ctx.ReplaceAll(
|
|
[&](const ast::ForLoopStatement* stmt) -> const ast::Statement* {
|
|
auto& sem = ctx.src->Sem();
|
|
|
|
if (auto* fl = sem.Get(stmt)) {
|
|
if (auto it = loops.find(fl); it != loops.end()) {
|
|
auto& info = it->second;
|
|
auto* for_loop = fl->Declaration();
|
|
// For-loop needs to be decomposed to a loop.
|
|
// Build the loop body's statements.
|
|
// Start with any let declarations for the conditional
|
|
// expression.
|
|
auto body_stmts = info.cond_decls;
|
|
// If the for-loop has a condition, emit this next as:
|
|
// if (!cond) { break; }
|
|
if (auto* cond = for_loop->condition) {
|
|
// !condition
|
|
auto* not_cond = b.create<ast::UnaryOpExpression>(
|
|
ast::UnaryOp::kNot, ctx.Clone(cond));
|
|
// { break; }
|
|
auto* break_body = b.Block(b.create<ast::BreakStatement>());
|
|
// if (!condition) { break; }
|
|
body_stmts.emplace_back(b.If(not_cond, break_body));
|
|
}
|
|
// Next emit the for-loop body
|
|
for (auto* body_stmt : for_loop->body->statements) {
|
|
body_stmts.emplace_back(ctx.Clone(body_stmt));
|
|
}
|
|
|
|
// Finally create the continuing block if there was one.
|
|
const ast::BlockStatement* continuing = nullptr;
|
|
if (auto* cont = for_loop->continuing) {
|
|
// Continuing block starts with any let declarations used by
|
|
// the continuing.
|
|
auto cont_stmts = info.cont_decls;
|
|
cont_stmts.emplace_back(ctx.Clone(cont));
|
|
continuing = b.Block(cont_stmts);
|
|
}
|
|
|
|
auto* body = b.Block(body_stmts);
|
|
auto* loop = b.Loop(body, continuing);
|
|
if (auto* init = for_loop->initializer) {
|
|
return b.Block(ctx.Clone(init), loop);
|
|
}
|
|
return loop;
|
|
}
|
|
}
|
|
return nullptr;
|
|
});
|
|
}
|
|
|
|
void ElseIfsToElseWithNestedIfs() {
|
|
if (ifs.empty()) {
|
|
return;
|
|
}
|
|
|
|
ctx.ReplaceAll([&](const ast::IfStatement* if_stmt) //
|
|
-> const ast::IfStatement* {
|
|
auto& sem = ctx.src->Sem();
|
|
auto* sem_if = sem.Get(if_stmt);
|
|
if (!sem_if) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto it = ifs.find(sem_if);
|
|
if (it == ifs.end()) {
|
|
return nullptr;
|
|
}
|
|
auto& if_info = it->second;
|
|
|
|
// This if statement has "else if"s that need to be converted to "else
|
|
// { if }"s
|
|
|
|
ast::ElseStatementList next_else_stmts;
|
|
next_else_stmts.reserve(if_stmt->else_statements.size());
|
|
|
|
for (auto* else_stmt : utils::Reverse(if_stmt->else_statements)) {
|
|
if (else_stmt->condition == nullptr) {
|
|
// The last 'else', keep as is
|
|
next_else_stmts.insert(next_else_stmts.begin(), ctx.Clone(else_stmt));
|
|
|
|
} else {
|
|
auto* sem_else_if = sem.Get(else_stmt);
|
|
|
|
auto it2 = if_info.else_ifs.find(sem_else_if);
|
|
if (it2 == if_info.else_ifs.end()) {
|
|
// 'else if' we don't need to modify (no decls to insert), so
|
|
// keep as is
|
|
next_else_stmts.insert(next_else_stmts.begin(),
|
|
ctx.Clone(else_stmt));
|
|
|
|
} else {
|
|
// 'else if' we need to replace with 'else <decls> { if }'
|
|
auto& else_if_info = it2->second;
|
|
|
|
// Build the else body's statements, starting with let decls for
|
|
// the conditional expression
|
|
auto& body_stmts = else_if_info.cond_decls;
|
|
|
|
// Build nested if
|
|
body_stmts.emplace_back(b.If(ctx.Clone(else_stmt->condition),
|
|
ctx.Clone(else_stmt->body),
|
|
next_else_stmts));
|
|
|
|
// Build else
|
|
auto* else_with_nested_if = b.Else(b.Block(body_stmts));
|
|
|
|
// This will be used in parent if (either another nested if, or
|
|
// top-level if)
|
|
next_else_stmts = {else_with_nested_if};
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build a new top-level if with new else statements
|
|
if (next_else_stmts.empty()) {
|
|
TINT_ICE(Transform, b.Diagnostics())
|
|
<< "Expected else statements to insert into new if";
|
|
}
|
|
auto* new_if = b.If(ctx.Clone(if_stmt->condition),
|
|
ctx.Clone(if_stmt->body), next_else_stmts);
|
|
return new_if;
|
|
});
|
|
}
|
|
|
|
public:
|
|
/// Constructor
|
|
/// @param ctx_in the CloneContext primed with the input program and
|
|
/// @param cfg_in the transform config
|
|
/// ProgramBuilder
|
|
explicit State(CloneContext& ctx_in, const Config& cfg_in)
|
|
: ctx(ctx_in), cfg(cfg_in), b(*ctx_in.dst) {}
|
|
|
|
/// Runs the transform
|
|
void Run() {
|
|
// Scan the AST nodes for expressions that need to be promoted to their own
|
|
// constant or variable declaration.
|
|
|
|
// Note: Correct handling of nested expressions is guaranteed due to the
|
|
// depth-first traversal of the ast::Node::Clone() methods:
|
|
//
|
|
// The inner-most expressions are traversed first, and they are hoisted
|
|
// to variables declared just above the statement of use. The outer
|
|
// expression will then be hoisted, inserting themselves between the
|
|
// inner declaration and the statement of use. This pattern applies
|
|
// correctly to any nested depth.
|
|
//
|
|
// Depth-first traversal of the AST is guaranteed because AST nodes are
|
|
// fully immutable and require their children to be constructed first so
|
|
// their pointer can be passed to the parent's constructor.
|
|
|
|
for (auto* node : ctx.src->ASTNodes().Objects()) {
|
|
if (cfg.type_ctor_to_let) {
|
|
if (auto* call_expr = node->As<ast::CallExpression>()) {
|
|
if (!TypeConstructorToLet(call_expr)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cfg.dynamic_index_to_var) {
|
|
if (auto* access_expr = node->As<ast::IndexAccessorExpression>()) {
|
|
if (!DynamicIndexToVar(access_expr)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ForLoopsToLoops();
|
|
ElseIfsToElseWithNestedIfs();
|
|
|
|
ctx.Clone();
|
|
}
|
|
};
|
|
|
|
PromoteSideEffectsToDecl::PromoteSideEffectsToDecl() = default;
|
|
PromoteSideEffectsToDecl::~PromoteSideEffectsToDecl() = default;
|
|
|
|
void PromoteSideEffectsToDecl::Run(CloneContext& ctx,
|
|
const DataMap& inputs,
|
|
DataMap&) const {
|
|
auto* cfg = inputs.Get<Config>();
|
|
if (cfg == nullptr) {
|
|
ctx.dst->Diagnostics().add_error(
|
|
diag::System::Transform,
|
|
"missing transform data for " + std::string(TypeInfo().name));
|
|
return;
|
|
}
|
|
|
|
State state(ctx, *cfg);
|
|
state.Run();
|
|
}
|
|
|
|
PromoteSideEffectsToDecl::Config::Config(bool type_ctor_to_let_in,
|
|
bool dynamic_index_to_var_in)
|
|
: type_ctor_to_let(type_ctor_to_let_in),
|
|
dynamic_index_to_var(dynamic_index_to_var_in) {}
|
|
|
|
PromoteSideEffectsToDecl::Config::~Config() = default;
|
|
|
|
} // namespace transform
|
|
} // namespace tint
|